
Chapter 1

Scattering Parameters

Scattering parameters are a powerful analysis tool, providing much insight on the electrical behavior of circuits and devices
at, and beyond microwave frequencies. Most vector network analyzers are designed with the built-in capability to display S
parameters. To an experienced engineer, S parameter plots can be used to quickly identify problems with a measurement.
A good understanding of their precise meaning is therefore essential. Talk about philosophy behind these derivations in
order to place reader into context. Talk about how the derivations will valid for arbitrary complex reference impedances
(once everything is hammered out). Talk about the view of pseudo-waves and the mocking of waveguide theory mentionned
on p. 535 of [1]. Talk about alterantive point of view where S-parameters are a conceptual tool that can be used to look
at real traveling waves, but don’t have to. Call pseudo-waves: traveling waves of a conceptual measurement setup. Is the
problem of connecting a transmission line of different ZC than was used for the measurement that it may alter the circuit’s
response (ex: might cause different modes to propagate), and thus change the network?? Question: forward/reverse
scattering parameters: Is that when the input (port 1) is excited, or simly incident vs. reflected/transmitted???

The reader is referred to [2][1][3] for a more general treatment, including non-TEM modes. Verify this statement, and
try to include this if possible.

Traveling Waves And Pseudo-Waves

Verify the following statements with the theory in [1].
Link to: Scattering and pseudo-scattering matrices.
Traveling waves: for applications where we are interrested in the real power traveling down a transmission line (ex:

Calibration Techniques). Are these not also power waves???
Pseudo-waves: for applications where the network itself is to be characterised, but measurement/propagation environ-

ment is not important.
Ideal Z0 = 50 Ω pseudo-waves are also used for system-level analyses under the premise that the transmission lines

attached to the S-parameter network under study can be approximated as lossless lines of the same impedance.

1.1 Network Characterization

1.1.1 Low Frequency Solutions

One of the commonly used and well understood network parameter types is the Z parameters. For an n-port network
(Fig. 1.1) the Z matrix relates terminal voltages as a function of terminal currents:

V = ZI (1.1)
V1
V2
...
Vn

 =


z11 z12 · · · z1n
z21 z22 · · · z2n

...
...

. . .
...

zn1 zn2 · · · znn



I1
I2
...
In

 . (1.2)
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2 Chapter 1. Scattering Parameters

Figure 1.1: Arbitrary linear n-port network, N. Figure 1.2: Conceptual setup used to measure the n-port network.
Note that both the the source impedances (ZSi) and characteristic
impedances (ZCi) are set to a real, frequency independant reference
impedance of Z0i.

Conceptually, it is very simple to measure Z parameters:

zij =
Vi
Ij

∣∣∣∣
Ik=0, ∀k 6=j

. (1.3)

1) Inject a test current at port j, while leaving all remaining ports open-circuited (Ik = 0, ∀k 6= j).

2) Measure the voltages that develop at all terminals (Vi, ∀i).

3) Repeat for all ports j = 1 . . . n.

1.1.2 High Frequency Limitations
In general, it is not simple to apply a given current directly to a port, or measure the resulting voltage. The problem is
that signals can only be applied and measured through some form of medium such as cables, which are represented as
transmission lines in Fig. 1.2. At low frequencies, the cable parasitics, which are predominantly resistive losses, can often
be ignored. Mention that we assume a single mode of propagation for each terminal pair: TEM. Does it matter that it
is TEM, or just that there is a single mode? However, in the general case, the solutions to the telegrapher’s equations
reveal that, at a given frequency, two distinct waves traveling in opposite directions can propagate the cables used for the
measurement. The following expression relates net voltages and currents to traveling waves as a function of position on
the cables:

Vi(zi) = V +
i (zi) + V −i (zi) = V +

0i e
−γizi + V −0i e

γizi (1.4)

Ii(zi) = I+i (zi)− I−i (zi) =
V +
0i

ZCi
e−γizi − V −0i

ZCi
eγizi , (1.5)

where

γi is the propagation constant of line i.

ZCi is the characteristic impedance of line i.

Vi(zi) is the net voltage phasor at position zi of line i,

Ii(zi) is the net current phasor flowing in the positive direction at position zi of line i,

V +
i (zi) is the voltage phasor of the traveling wave propagating in the positive direction at position zi of line i,
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1.1. Network Characterization 3

V −i (zi) is the voltage phasor of the traveling wave propagating in the negative direction at position zi of line i,

V +
0i , V +

i (0), and V −0i , V −i (0) are the incident and transmitted/reflected voltage phasors at port i of N respectively.

Thus, at sufficiently high frequencies, the signal applied/measured at the input of the cables will no longer be adequately
describe the X at the port interface. Moreover, it would also be impractical, if not impossible, to create open circuit
conditions at high frequencies to perform a measurement. At certain frequencies, “open-circuit” conditions will simply
behave as a connection to a mismatched transmission medium, allowing a non-negligeable amount of power to radiate
from the port. In other cases, circuits might even become unstable if certain ports are left open-circuited.

1.1.3 Traveling Wave Matrix
The conceptual solution to high-frequency characterization is to provide a matched environment where networks are driven
and loaded using perfectly terminated transmission lines (ZSi = ZCi) that represent the operating conditions. In reality,
nonlinear loads, process variations, and other non-idealities only make it possible to approximate the operating conditions.
However, if the measurement and operating environments are controlled within acceptable tolerances, it is possible to avoid
disasterous situations such as oscillaiton conditions. The resultant measurement should therefore adequately represent the
microwave network.

A matched environment is only part of the solution. Network measurements performed remotely through cables must
eventually be referenced to the port interfaces. This subject will be discussed in further detail in Chapter X. For the moment,
it will simply be stated that a practical representation of high-frequency networks relates forward traveling waves, to the
reverse traveling wave phasors at the port interfaces (zi = 0). This relationship is defined by the traveling wave matrix,
STW:

V −0 = STWV +
0 (1.6)

V −01
V −02

...
V −0n

 =


sTW
11 sTW

12 · · · sTW
1n

sTW
21 sTW

22 · · · sTW
2n

...
...

. . .
...

sTW
n1 sTW

n2 · · · sTW
nn



V +
01

V +
02
...
V +
0n

 . (1.7)

In order to compute STW, degenerate versions of (1.4) and (1.5) will be used to restrict the analysis to the port
interfaces:

Vi , Vi(0) = V +
0i + V −0i Ii , Ii(0) =

V +
0i

ZCi
− V −0i
ZCi

, (1.8)

which can be expressed more succinctly in matrix form:

V = V +
0 + V −0 I = Z−1C

(
V +

0 − V −0
)

(1.9)
V1
V2
...
Vn

 =


V +
01

V +
02
...
V +
0n

+


V −01
V −02

...
V −0n



I1
I2
...
In

 =


Z−1C1 0 · · · 0

0 Z−1C2 · · · 0
...

...
. . .

...
0 0 · · · Z−1Cn




V +
01

V +
02
...
V +
0n

−

V −01
V −02

...
V −0n




Note that ZC is defined as:

ZC , U


ZCn1

ZCn2
...

ZCn=



ZC1 0 · · · 0

0 ZC2 · · · 0
...

...
. . .

...
0 0 · · · ZCn

 . (1.10)

Substituting (1.9) into (1.1), each port (i) is implicitly connected to a transmission line of {ZCi, γi}:

V +
0 + V −0 = ZZ−10 (V +

0 − V −0 )

(ZZ−10 + U)V −0 = (ZZ−10 −U)V +
0

V −0 = (ZZ−10 + U)−1(ZZ−10 −U)V +
0 . (1.11)
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4 Chapter 1. Scattering Parameters

Comparing with (1.6), the traveling-wave matrix is given by:

STW = (ZZ−10 + U)−1(ZZ−10 −U). (1.12)

Matrix Coefficient Measurement

From (1.7), the entries of STW are given by:

sij =
V −i
V +
j

∣∣∣∣∣
V +
k =0, ∀k 6=j

. (1.13)

Thus, each entry sij can be obtained from the ratio of the traveling wave voltage phasor emanating from port i to the
one incident to port j, when the incident waves at all other ports are of zero magnitude (non-existant). Fig. 1.2 presents a
simple setup allowing for the measurement of sij , assuming the availability of a mechanism detecting traveling waves at
the port interfaces:

1) Excite network N with source VSj , while leaving all remaining sources off (VSk = 0, ∀k 6= j).

2) Measure the voltage phasor of the incident wave at port j, and that of the transmitted/reflected waves at all ports i
(V +
j , and V −i , ∀i).

3) Repeat for all ports j = 1 . . . n.

Since both the transmission line characteristic impedance and the generator source impedance are equal to the (real)
reference impedance of the port (ZSi = ZCi = Z0i), all waves emanating from the excited network will be fully dissipated
by the source impedances. This ensures that no component of the transmitted/reflected waves reflect back to violate the
condition V +

k = 0, ∀k 6= j. Alternatively, the ports not being excited (k 6= j) can be terminated by a simple impedance of
ZTi = Z0i instead of a transmission line. The voltage developed at the terminals of ZTi would correspond to V −i . It should
be emphasized that the measurement setup is conceptual, and would only be practical in a simulation environment. Real-
world, S-parameter measurements are performed using devices called reflectometers[4][5], which are critical components
of network analyzers. Mathematical calibration techniques then translate the measurements to the proper reference planes,
at the port interfaces [1].

Power of Traveling Waves

[6]page 150. Also in other book.
In terms of node voltages and currents, the power delivered (derive? cite?) to a load is given by:

P =
1

2
Re{V · I∗} =

1

2
Re

{
V ·
(
V

Z

)∗}
(1.14)

=
1

2

V · V ∗

Re{Z}
, since V · V ∗ ∈ R. (1.15)

A similar expression can be obtained for the power transported by individual traveling waves on transmission line i
(justify?):

P+
i , Incident power P−i , Transmitted/reflected power

P+
i =

1

2

V +
i · V

+∗
i

Re{Z0i}
P−i =

1

2

V −i · V
−∗
i

Re{Z0i}
. (1.16)

I am not sure if this is correct. MUST BE CONFIRMED. Show how this relates to the power loss due to the attenuation
on the line? (Power lost should be equivalent to change in transported power at 2 different points on the line).
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1.1. Network Characterization 5

1.1.4 Normalized S Parameters
From a circuit analysis perspective, the concept of de-coupling a network from its measurement setup or real operating
environment is a non-issue. Consequently, it should be possible to use any set of transmission lines with their associated
ZCi, and γi to perform a measurement. Although ZCi , Z0i

When comparing quantities, it is often easier to cast them onto a more meaningful form. In consequence, microwave
engineers almost always work with normalized scattering parameters, which are readily transformed into more meaningful
quantities: incident and transmitted/reflected powers. However, the main reason normalized scattering parameters are
preferred is because they ensure that the matrices of reciprocal networks are symmetrical [2].

Let us define a and b as n-by-1 column matrices:

a , Z
− 1

2
0 V +

0 , and b , Z
− 1

2
0 V −0 , (1.17)

where

Z
− 1

2
0 =


√
Z01

−1
0 · · · 0

0
√
Z02

−1
· · · 0

...
...

. . .
...

0 0 · · ·
√
Z0n

−1

 . (1.18)

Thus, matrices a & b hold normalized incident and transmitted/reflected voltage phasors of the traveling waves:

ai =
V +
0i√
Z0i

, and bi =
V −0i√
Z0i

. (1.19)

Since the normalized quantities ai & bi account for the characteristic impedance of their respective lines, they are more
closely related to the incident and transmitted/reflected powers than their counterparts V +

i & V −i :

P+
i =

1

2
ai · a∗i P−i =

1

2
bi · b∗i (1.20)

P+
i =

1

2

V +
0i · V

+∗
0i√

Z0i ·
√
Z0i
∗ P−i =

1

2

V −0i · V
−∗
0i√

Z0i ·
√
Z0i
∗ .

ERROR: This does not correspond to the power of the traveling-wave matrix because Re{Z0i} 6=
√
Z0i ·

√
Z0i
∗
. This

might be why {ai, bi} appear to be defined differently in [1].
If we isolate V + & V − from (1.17):

V + = Z
1
2
0 a and V − = Z

1
2
0 b, (1.21)

we can substitute them in (1.9):

V = Z
1
2
0 (a + b) (1.22)

I = Z−10 Z
1
2
0 (a− b) = Z

− 1
2

0 (a− b), (1.23)

and, in turn, into (1.1):

Z
1
2
0 (a + b) = ZZ

− 1
2

0 (a− b)

(ZZ
− 1

2
0 + Z

1
2
0 )b = (ZZ

− 1
2

0 −Z
1
2
0 )a

b = (ZZ
− 1

2
0 + Z

1
2
0 )−1(ZZ

− 1
2

0 −Z
1
2
0 )a. (1.24)

We now have an expression for the normalized scattering matrix (in terms of Z parameters), S, relating normalized
transmitted/reflected waves to the incident waves:

b = Sa, (1.25)

where
S = (ZZ

− 1
2

0 + Z
1
2
0 )−1(ZZ

− 1
2

0 −Z
1
2
0 ). (1.26)
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6 Chapter 1. Scattering Parameters

This does not appear to correspond to p. 548 of [1]. Find out why.
Isolating matrix Z from this expression yields:

Z = Z
1
2
0 (U + S)(U − S)−1Z

1
2
0 . (1.27)

Given that Y = Z−1, a relationship between Y and S parameters is also obtained:

S = (Y −1Z
− 1

2
0 + Z

1
2
0 )−1(Y −1Z

− 1
2

0 −Z
1
2
0 ), (1.28)

and Y = Z
− 1

2
0 (U − S)(U + S)−1Z

− 1
2

0 . (1.29)

One-Port Matrix

Note that, in the special case of a one-port matrix, (1.26) simplifies to:

s11= (z11Z
− 1

2
01 + Z

1
2
01)−1(z11Z

− 1
2

01 − Z
1
2
01) (1.30)

=
z11 − Z01

z11 + Z01
, (1.31)

which can further be reduced by letting Z , z11 and Z0 , Z01:

Γ , s11 =
Z − Z0

Z + Z0
. (1.32)

The symbol Γ is is often preferred to represent the reflection coefficient (Γ , V −/V +) when only a single port is
involved. In fact, all reflection coefficients, sii, correspond to a degenerate one port network:

Γi , sii =
V −i
V +
i

, (1.33)

under the condition that all other ports (k 6= i) are terminated properly. The common factor of
√
Z0i in phasors ai and

bi simply cancel out. Transmission coefficients (sij , where i 6= j) are slightly more complex quantities, especially if
Z0i 6= Z0j .

1.2 Scattering Transmission Parameters, T
The scattering transmission matrix relates the normalized power waves in a form which computes the incident/reflected
waves at port 1 as a function of those present at port 2:[

b1
a1

]
=
[ t11 t12
t21 t22

] [ a2
b2

]
. (1.34)

The scattering transmission matrix is typically defined using T :

T ,
[ t11 t12
t21 t22

]
(1.35)

Thus, the response for a cascade of networks can be computed from a simple matrix multiplication provided the port 1
reference impedance of T i+1 is equivalent to the port 2 reference impedance of T i (GENERATE FIGURE).

Network Parameter Conversion (S ⇔ T )

Taken from [1] - have not confirmed whether correct - Derive?:

T =
1

s21

[ s12s21 − s11s22 s11
−s22 1

]
. (1.36)
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1.3. Cascade of 2 Transmission Line Segments 7

1.3 Cascade of 2 Transmission Line Segments

Figure 1.3: Cascaded transmission line segments.

Consider the discontinuity in Fig. 1.3 formed by cascading transmission lines of different characteristic impedance
values. Note that z = 0 is now positionned at the discontinuity instead of the port interfaces. This notation will lead to a
more elegant derivation of the network parameters.

Instead of using pseudo-waves, we will use traveling waves... TRY TO CONNECT SENTENCES. Next, consider the
reference impedance of each port, Z01 and Z02 to respectively match these values, ZC1 and ZC2:

Z01 = ZC1, and Z02 = ZC2. (1.37)

As a consequence, reflected waves will be fully absorbed by the port terminations during the conceptual S-parameter
measurement that follows. Given that the transmission lines are terminated with their respective ZCi, the forward &
reverse reflection coefficients at the interface of the discontinuity are given by (Fig. 1.4):

Figure 1.4: Reflection coefficients at interface of perfectly terminated lines.

ΓF =
Z02 − Z01

Z02 + Z01
, and ΓR =

Z01 − Z02

Z01 + Z02
. (1.38)

where

Subscripts “F”, and “R” identify quantities as “forward” or “reverse” reflection coefficients, respectively.

Forward Transmission/Reflection

Figure 1.5: Forward transmission/reflection at the discontinuity.

Next, consider the forward transmission/reflection (excitation at port 1 only) of a wave through the discontinuity
(Fig. 1.5). If V +

01 defines the incident wave phasor at the discontinuity itself, position-dependent expressions for the
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8 Chapter 1. Scattering Parameters

incident, reflected and transmitted wave phasors are given by:

V I
F(z) = V +

01e
−γ1z , (1.39)

V R
F (z) = V −01e

γ1z = ΓFV
+
01e

γ1z , (1.40)
and V T

F (z) = V −02e
γ2z = (V +

01 + V −01)e−γ2z = (1 + ΓF)V +
01e
−γ2z . (1.41)

Thus, the forward transmission coefficient is defined as T≡1 + ΓF.

Power Conservation at the Discontinuity

Verify power conservation. Was not able to do so, but should work as follows. Using (1.16) at the discontinuity (z = 0):

incident power = transmitted power + reflected power (1.42)
P I
F = PT

F + PR
F

1

2

V I
F · V I∗

F

Re{Z01}
=

1

2

V T
F · V T∗

F

Re{Z02}
+

1

2

V R
F · V R∗

F

Re{Z01}
1

Re{Z01}
=

(1 + ΓF) · (1 + ΓF)∗

Re{Z02}
+

ΓF · Γ∗F
Re{Z01}

. (1.43)

Scattering Parameters

The forward scattering parameters of the network in Fig. 1.3 can therefore be computed from the phasor values at the port
interfaces:

s11 =
b1
a1

∣∣∣∣
a2=0

=
V R
F (−`1)/

√
Z01

V I
F(−`1)/

√
Z01

s21 =
b2
a1

∣∣∣∣
a2=0

=
V T
F (`2)/

√
Z02

V I
F(−`1)/

√
Z01

∴ s11 = ΓFe
−2γ1`1 ∴ s21 =

√
Z01√
Z02

(1 + ΓF)e−(γ1`1+γ2`2). (1.44)

By symmetry, and because ΓR = −ΓF, the reverse transmission coefficients are given by:

s22 =
b2
a2

∣∣∣∣
a1=0

= ΓRe
−2γ2`2 s12 =

b1
a2

∣∣∣∣
a1=0

=

√
Z02√
Z01

(1 + ΓR)e−(γ1`1+γ2`2)

∴ s22 = −ΓFe
−2γ2`2 ∴ s12 =

√
Z02√
Z01

(1− ΓF)e−(γ1`1+γ2`2). (1.45)

1.4 S-Parameter Reference Impedance Transformer

The result of matching the S-parameter reference impedances of the cascaded transmission line segments to their respective
line impedances in (1.37) is to reference the associated power waves (a1, b1, a2, and b2) to those same impedances. This
property can easily be leveraged to perform a transformation of reference impedances.

Consider a transmitter designed to drive a line of ZC = Z0TX. The simulated linear S-parameter model of the
transmitter would typically be referenced to a (often real) frequency independant impedance, Z0S. Conceptually, the
output can be connected to pair of cascaded transmission lines with arbitrary characteristic impedances. However, if the
Z01 connected to the driver output matches Z0S, the network cascade is more readily computed from the two T matrices.
Furthermore, if the length of both line segments are set to zero, the cascade of lines degenerates into an ideal thru, thus
behaving as a perfect Z01 : Z02 transformer. If Z02 is then chosen to correspond to Z0TX, the resulting T -matrix will
therefore be referenced to the physical traveling waves a

′

TX & b
′

TX GENERATE FIGURE.
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1.4. S-Parameter Reference Impedance Transformer 9

The T -matrix of the impedance transformer is therefore obtained by substituting REF EQ for `1 = `2 = 0 in (1.36):

t11 =
s12s21 − s11s22

s21

∣∣∣∣
`1=`2=0

t12 =
s11
s21

∣∣∣∣
`1=`2=0

t21 =
−s22
s21

∣∣∣∣
`1=`2=0

t22 =
1

s21

∣∣∣∣
`1=`2=0

.

Which yields:

T =
1

1 + ΓF

√
Z02√
Z01

[
1 ΓF

ΓF 1

]
. (1.46)

Another interresting form is obtained by noting that 1 + ΓF = 2Z02

Z02+Z01
:

T =
1

2Z02

√
Z02√
Z01

[
Z02 + Z01 Z02 − Z01

Z02 − Z01 Z02 + Z01

]
. (1.47)

Note: This does not match eq. 79 of [1]. One of the reasons may have something to do with the fact the Qnm matrix is
defined with an & bn rows reversed. Note that eq. 79 also an extra term, |Z02/Z01|. If we let

√
Z0i , rie

jθi , we get:∣∣∣∣Z02

Z01

∣∣∣∣= ∣∣∣∣ (r2ejθ2)2

(r1ejθ1)2

∣∣∣∣ =

∣∣∣∣r22ej2θ2r21e
j2θ1

∣∣∣∣ =
r22
r21

.

I cannot explain this discrepancy.
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