

Tsinghua University

Simulating Unknown Target Models for Query-Efficient Black-box Attacks

Chen Ma, Li Chen, Jun-Hai Yong School of Software, BNRist, Tsinghua University

Motivation

Challenge: How to reduce the high query complexity of black-box attack remains an open problem.

Model stealing attacks can replicate the functionality of target model. How about counterfeit the target model by using a substitute model to **transfer the query stress**?

However, the training requires querying the target model. Consequently, the query complexity remains high, and such attacks can be defended easily.

Motivation

How to train a substitute model without the target model requirement is worthy of further exploration.

One network simulates them all!

Simulator

DenseNet

ResNet-101

VGG-16

Method

Two stages: **meta-training** and **attack stage**.

Training: we collect intermediate query sequences generated by attacking different existing networks. Each sequence is divided into meta-train and meta-test.

Algorithm 1 Training procedure of the Simulator

- Input: Training dataset D, Bandits attack algorithm \mathcal{A} , pre-trained classification networks $\mathbb{N}_1, \ldots, \mathbb{N}_n$, the Simulator network \mathbb{M} and its parameters θ , feed-forward function f of \mathbb{M} , loss function $\mathcal{L}(\cdot, \cdot)$ defined in Eq. (1). Parameters: Training iterations N, query sequence size
- V, meta-train set size t, batch size K, inner-update learning rate λ_1 , outer-update learning rate λ_2 , inner-update iterations T.

Output: The learned Simulator M.

1: for *iter* \leftarrow 1 to N do sample K benign images x_1, \ldots, x_K from D 2: \triangleright iterate over K tasks for $k \leftarrow 1$ to K do 3: a network $\mathbb{N}_i \leftarrow$ sample from $\mathbb{N}_1, \ldots, \mathbb{N}_n$ 4: 5: $Q_1, \ldots, Q_V \leftarrow \mathcal{A}(x_k, \mathbb{N}_i) \quad \triangleright \text{ query sequence}$ $\mathcal{D}_{mtr} \leftarrow Q_1, \ldots, Q_t$ 6: 7: $\mathcal{D}_{mte} \leftarrow Q_{t+1}, \ldots, Q_V$ 8: $\mathbf{p}_{\text{train}} \leftarrow \mathbb{N}_i(\mathcal{D}_{mtr})$ pseudo labels 9: $\mathbf{p}_{\text{test}} \leftarrow \mathbb{N}_i(\mathcal{D}_{mte})$ ▷ reinitialize M's weights $\theta' \leftarrow \theta$ 10:for $i \leftarrow 1$ to T do 11: $\theta' \leftarrow \theta' - \lambda_1 \cdot \nabla_{\theta'} \mathcal{L} \left(f_{\theta'} \left(\mathcal{D}_{mtr} \right), \mathbf{p}_{train} \right)$ 12: end for 13: $L_i \leftarrow \mathcal{L}(f_{\theta'}(\mathcal{D}_{mte}), \mathbf{p}_{test})$ 14: 15: end for $\theta \leftarrow \theta - \lambda_2 \cdot \frac{1}{K} \sum_{i=1}^{K} \nabla_{\theta} L_i \quad \triangleright \text{ the outer update}$ 16: 17: end for 18: return M

Algorithm 2 Simulator Attack under the ℓ_p norm constraint **Input:** Input image $x \in \mathbb{R}^D$ where D is the image dimensionality, true label y of x, feed-forward function f of target model, Simulator M, attack objective loss $\mathcal{L}(\cdot, \cdot)$. Parameters: Warm-up iterations t, simulator-predict interval m, Bandits exploration τ , finite difference probe δ , OCO learning rate η_q , image learning rate η . Output: x_{adv} that satisfies $||x_{adv} - x||_p \le \epsilon$. 1: Initialize the adversarial example $x_{adv} \leftarrow x$ 2: Initialize the gradient to be estimated $\mathbf{g} \leftarrow \mathbf{0}$ 3: Initialize $\mathbb{D} \leftarrow deque(maxlen = t)$ ▷ a bounded double-ended queue with maximum length of t, adding a full \mathbb{D} leads it to drop its oldest item automatically. 4: for $i \leftarrow 1$ to N do $\mathbf{u} \leftarrow \mathcal{N}(\mathbf{0}, \frac{1}{D}\mathbf{I})$ \triangleright the same dimension with x 5: $q1 \leftarrow \mathbf{g} + \tau \mathbf{u}, \quad q2 \leftarrow \mathbf{g} - \tau \mathbf{u}$ 6: $q1 \leftarrow q1/||q1||_2, \quad q2 \leftarrow q2/||q2||_2$ 7: if $i \leq t$ or $(i - t) \mod m = 0$ then 8: $\hat{y}_1 \leftarrow f(x_{adv} + \delta \cdot q1)$ 9: $\hat{y}_2 \leftarrow f(x_{adv} + \delta \cdot q2)$ 10: $\{x_{adv} + \delta \cdot q1, \hat{y}_1, x_{adv} + \delta \cdot q2, \hat{y}_2\}$ append \mathbb{D} 11: 12: if i > t then Fine-tune \mathbb{M} using $\mathbb{D} \ \triangleright$ fine-tune \mathbb{M} every 13: m iterations after the warm-up phase. end if 14: else 15: $\hat{y}_1 \leftarrow \mathbb{M}(x_{adv} + \delta \cdot q1), \quad \hat{y}_2 \leftarrow \mathbb{M}(x_{adv} + \delta \cdot q2)$ 16: end if 17: $\Delta_g \leftarrow \frac{\mathcal{L}(\hat{y}_1, y) - \mathcal{L}(\hat{y}_2, y)}{\tau \delta} \mathbf{u}$ 18: if p = 2 then 19: $\mathbf{g} \leftarrow \mathbf{g} + \eta_a \cdot \Delta_a$ 20: $x_{adv} \leftarrow \prod_{\mathcal{B}_2(x,\epsilon)} (x_{adv} + \eta \cdot \frac{\mathbf{g}}{\|\mathbf{g}\|_2}) \quad \triangleright \prod_{\mathcal{B}_p(x,\epsilon)}$ 21: denotes the ℓ_p norm projection under ℓ_p norm bound. else if $p = \infty$ then \triangleright using the exponentiated 22: gradient update [20] in the ℓ_{∞} norm attack as follows. $\hat{\mathbf{g}} \leftarrow \frac{\mathbf{g+1}}{2}$ 23: $\mathbf{g} \leftarrow \frac{\hat{\mathbf{g}} \cdot \exp(\eta_g \cdot \Delta_g) - (\mathbf{1} - \hat{\mathbf{g}}) \cdot \exp(-\eta_g \cdot \Delta_g)}{\hat{\mathbf{g}} \cdot \exp(\eta_g \cdot \Delta_g) + (\mathbf{1} - \hat{\mathbf{g}}) \cdot \exp(-\eta_g \cdot \Delta_g)}$ 24: 25: $x_{adv} \leftarrow \prod_{\mathcal{B}_{\infty}(x,\epsilon)} (x_{adv} + \eta \cdot sign(\mathbf{g}))$ end if 26: $x_{adv} \leftarrow Clip(x_{adv}, 0, 1)$ 27: 28: end for 29: return x_{adv}

Results

Untargeted Attack in CIFAR-10/CIFAR-100

Dataset	Norm	Attack	ck Attack Success Rate					Avg. Qu	iery		Median Query				
			PyramidNet-272	GDAS	WRN-28	WRN-40	PyramidNet-272	GDAS	WRN-28	WRN-40	PyramidNet-272	GDAS	WRN-28	WRN-40	
		NES [19]	99.5%	74.8%	99.9%	99.5%	200	123	159	154	150	100	100	100	
		RGF [31]	100%	100%	100%	100%	216	168	153	150	204	152	102	152	
	P	P-RGF [8]	100%	100%	100%	100%	64	40	76	73	62	20	64	64	
	ϵ_2	Meta Attack [12]	99.2%	99.4%	98.6%	99.6%	2359	1611	1853	1707	2211	1303	1432	1430	
		Bandits [20]	100%	100%	100%	100%	151	66	107	98	110	54	80	78	
CIFAR-10		Simulator Attack	100%	100%	100%	100%	92	34	48	51	52	26	34	34	
	ℓ_{∞}	NES [19]	86.8%	71.4%	74.2%	77.5%	1559	628	1235	1209	600	300	400	400	
		RGF [31]	99%	93.8%	98.6%	98.8%	955	646	1178	928	668	460	663	612	
		P-RGF [8]	97.3%	97.9%	97.7%	98%	742	337	703	564	408	128	236	217	
		Meta Attack [12]	90.6%	98.8%	92.7%	94.2%	3456	2034	2198	1987	2991	1694	1564	1433	
		Bandits [20]	99.6%	100%	99.4%	99.9%	1015	391	611	542	560	166	224	228	
		Simulator Attack	96.5%	99.9%	98.1%	98.8%	779	248	466	419	469	83	186	186	
		NES [19]	92.4%	90.2%	98.4%	99.6%	118	94	102	105	100	50	100	100	
		RGF [31]	100%	100%	100%	100%	114	110	106	106	102	101	102	102	
	Pa	P-RGF [8]	100%	100%	100%	100%	54	46	54	73	62	62	62	62	
	62	Meta Attack [12]	99.7%	99.8%	99.4%	98.4%	1022	930	1193	1252	783	781	912	913	
		Bandits [20]	100%	100%	100%	100%	58	54	64	65	42	42	52	53	
CIFAR-100		Simulator Attack	100%	100%	100%	100%	29	29	33	34	24	24	26	26	
		NES [19]	91.3%	89.7%	92.4%	89.3%	439	271	673	596	204	153	255	255	
		RGF [31]	99.7%	98.8%	98.9%	98.9%	385	420	544	619	256	255	357	357	
	ø	P-RGF [8]	99.3%	98.2%	98%	97.8%	308	220	371	480	147	116	136	181	
	€∞0	Meta Attack [12]	99.7%	99.8%	97.4%	97.3%	1102	1098	1294	1369	912	911	1042	1040	
		Bandits [20]	100%	100%	99.8%	99.8%	266	209	262	260	68	57	107	92	
		Simulator Attack	100%	100%	99.9%	99.9%	129	124	196	209	34	28	58	54	

Results Targeted Attack in CIFAR-10/CIFAR-100

Dataset	Norm	Attack	Attack Success Rate					Avg. Qu	ery		Median Query			
			PyramidNet-272	GDAS	WRN-28	WRN-40	PyramidNet-272	GDAS	WRN-28	WRN-40	PyramidNet-272	GDAS	WRN-28	WRN-40
		NES [19]	93.7%	95.4%	98.5%	97.7%	1474	1515	1043	1088	1251	999	881	882
		Meta Attack [12]	92.2%	97.2%	74.1%	74.7%	4215	3137	3996	3797	3842	2817	3586	3329
	ℓ_2	Bandits [20]	99.7%	100%	97.3%	98.4%	852	718	1082	997	458	538	338	399
		Simulator Attack (m=3)	99.1%	100%	98.5%	95.6%	896	718	990	980	373	388	217	249
CIFAR-10		Simulator Attack (m=5)	97.6%	99.9%	96.4%	94%	815	715	836	793	368	400	206	245
		NES [19]	63.8%	80.8%	89.7%	88.8%	4355	3942	3046	3051	3717	3441	2535	2592
	ø	Meta Attack [12]	75.6%	95.5%	59%	59.8%	4960	3461	3873	3899	4736	3073	3328	3586
	έœ	Bandits [20]	84.5%	98.3%	76.9%	79.8%	2830	1755	2037	2128	2081	1162	1178	1188
		Simulator Attack (m=3)	80.9%	97.8%	83.1%	82.2%	2655	1561	1855	1806	1943	918	1010	1018
		Simulator Attack (m=5)	78.7%	96.5%	80.8%	80.3%	2474	1470	1676	1660	1910	917	957	956
		NES [19]	87.6%	77%	89.3%	87.6%	1300	1405	1383	1424	1102	1172	1061	1049
		Meta Attack [12]	86.1%	88.7%	63.4%	43.3%	4000	3672	4879	4989	3457	3201	4482	4865
	ℓ_2	Bandits [20]	99.6%	100%	98.9%	91.5%	1442	847	1645	2436	1058	679	1150	1584
		Simulator Attack (m=3)	99.3%	100%	98.6%	92.6%	921	724	1150	1552	666	519	779	1126
CIFAR-100		Simulator Attack (m=5)	97.8%	99.6%	95.7%	83.9%	829	679	1000	1211	644	508	706	906
		NES [19]	72.1%	66.8%	68.4%	69.9%	4673	5174	4763	4770	4376	4832	4357	4508
	ø	Meta Attack [12]	80.4%	81.2%	57.6%	40.1%	4136	3951	4893	4967	3714	3585	4609	4737
	έœ	Bandits [20]	81.2%	92.5%	72.4%	56%	3222	2798	3353	3465	2633	2132	2766	2774
		Simulator Attack (m=3)	89.4%	94.2%	79%	64.3%	2732	2281	3078	3238	1854	1589	2185	2548
		Simulator Attack (m=5)	83.7%	91.4%	74.2%	60%	2410	2134	2619	2823	1754	1572	2080	2270

Results

Attack	Attack	Succes	s Rate	Av	g. Que	ery	Median Query			
	D ₁₂₁	R ₃₂	R ₆₄	D_{121}	R ₃₂	R ₆₄	D ₁₂₁	R ₃₂	R ₆₄	
NES [19]	74.3%	45.3%	45.5%	1306	2104	2078	510	765	816	
RGF [31]	96.4%	85.3%	87.4%	1146	2088	2087	667	1280	1305	
P-RGF [8]	94.5%	83.9%	85.9%	883	1583	1581	448	657	690	
Meta Attack [12]	71.1%	33.8%	36%	3789	4101	4012	3202	3712	3649	
Bandits [20]	99.2%	94.1%	95.3%	964	1737	1662	520	954	1014	
Simulator Attack	99.4%	96.8%	97.9%	811	1380	1445	431	850	878	

Untargeted attack under ℓ_{∞} norm attack in TinyImageNet dataset

Attack	Attack	Succes	s Rate	Av	g. Que	ery	Median Query			
	D ₁₂₁	R ₃₂	R ₆₄	D ₁₂₁	R ₃₂	R ₆₄	D ₁₂₁	R ₃₂	R ₆₄	
NES [19]	88.5%	88%	88.2%	4625	4959	4758	4337	4703	4440	
Meta Attack [12]	24.2%	21%	18.2%	5420	5440	5661	5506	5249	5250	
Bandits [20]	85.1%	72.2%	72.4%	2724	3550	3542	1860	2700	2854	
Simulator Attack	89.8%	84.9%	83.9%	1959	2558	2488	1399	1966	1982	

Targeted attack under ℓ_2 norm attack in TinyImageNet dataset

Comparisons with SOTA Methods under different maximum queries

Results of attacks on defensive models

Dataset	Attack Attack Success Rate					Av	g. Query		Median Query				
		CD [21]	PCL [30]	FD [25]	Adv Train [28]	CD [21]	PCL [30]	FD [25]	Adv Train [28]	CD [21]	PCL [30]	FD [25]	Adv Train [28]
	NES [19]	60.4%	65%	54.5%	16.8%	1130	728	1474	858	400	150	450	200
	RGF [31]	48.7%	82.6%	44.4%	22.4%	2035	1107	1717	973	1071	306	768	510
CIEAP 10	P-RGF [8]	62.8%	80.4%	65.8%	22.4%	1977	1006	1979	1158	1038	230	703	602
CIFAR-10	Meta Attack [12]	26.8%	77.7%	38.4%	18.4%	2468	1756	2662	1894	1302	1042	1824	1561
	Bandits [20]	44.7%	84%	55.2%	34.8%	786	776	832	1941	100	126	114	759
	Simulator Attack	54.9%	78.2%	60.8%	32.3%	433	641	391	1529	46	116	50	589
	NES [19]	78.1%	87.9%	77.6%	23.1%	892	429	1071	865	300	150	250	250
	RGF [31]	50.2%	95.5%	62%	29.2%	1753	645	1208	1009	765	204	408	510
CIEAD 100	P-RGF [8]	54.2%	96.1%	73.4%	28.8%	1842	679	1169	1034	815	182	262	540
CIFAR-100	Meta Attack [12]	20.8%	93%	59%	27%	2084	1122	2165	1863	781	651	1043	1562
	Bandits [20]	54.1%	97%	72.5%	44.9%	786	321	584	1609	56	34	32	484
	Simulator Attack	72.9%	93.1%	80.7%	35.6%	330	233	250	1318	30	22	24	442
	NES [19]	69.5%	73.1%	33.3%	23.7%	1775	863	2908	945	850	250	1600	200
	RGF [31]	31.3%	91.8%	9.1%	34.7%	2446	1022	1619	1325	1377	408	765	612
TinyImagaNat	P-RGF [8]	37.3%	91.8%	25.9%	34.4%	1946	1065	2231	1287	891	436	985	602
TinyImageNet	Meta Attack [12]	4.5%	75.8%	3.7%	20.1%	1877	2585	4187	3413	912	1792	2602	2945
	Bandits [20]	39.6%	95.8%	12.5%	49%	893	909	1272	1855	85	206	193	810
	Simulator Attack	43%	84.2%	21.3%	42.5%	377	586	746	1631	32	148	157	632

Untargeted attack under ℓ_{∞} norm attack in TinyImageNet dataset **CD:** ComDefend **PCL:** prototype conformity loss **FD:** Feature Distillation

Conclusions

• A novel black-box attack

- Improving the query efficiency by training a generalized substitute model.
- A new type of security threat upon eliminating the target model in training.
 - The adversary with the minimal information about the target model can also counterfeit this model.

• A new way to use meta-learning

- The mean square error (MSE)-based knowledge-distillation loss carries out the inner and outer loops of meta-learning.
- A query-sequence level partition strategy is adopted to divide each task into meta-train and meta-test sets.