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Introduction Method

Experimental Results

The goal of this paper is to reduce the high query complexity of black-

box attack by using a simulator. The contributions of this work are:

 We focus on training a generalized substitute model (named 

Simulator) without the target model requirement. 

 The queries of the black-box attack are used as training data, thus 

allowing the Simulator to learn how to distinguish the subtle 

differences among queries.

 The training uses a knowledge-distillation loss to carry out the meta-

learning between the Simulator and the many different existing 

classification networks.

 Once trained and fine-tuned, the Simulator can mimic the output of 

any target model that is unseen in training, enabling it to eventually 

replace the target model to transfer the query stress in the attack. 
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meta-predict interval: a difficult 

attack (targeted attack)  requires 

a small simulator-predict interval. 

warm-up iterations: more 

warm-up iterations cause 

higher average queries. 

ℓ∞ norm attack on  four defensive models: ComDefend (CD), 

Feature Distillation (FD), prototype conformity loss (PCL) and Adv

Train. Simulator Attack performs the best among all methods.
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