
Lean 4 Cheatsheet

In the following tables, name always refers to a name already known to Lean while new_name is a new
name provided by the user; expr means an expression, for example the name of an object in the context, an
arithmetic expression that is a function of such objects, a hypothesis in the context, or a lemma applied to any
of these; proposition is an expression of the type Prop (e.g. 0 < x) When one of these words appears twice in
the same cell, the appearances do not designate the same name or the same expression.

Logical symbol Appears in goal Appears in hypothesis

∃ (there exists) use expr obtain ⟨new_name , new_name⟩ := expr

∀ (for all) intro new_name apply expr or specialize name expr

¬ (not) intro new_name apply expr or specialize name expr

→ (implies) intro new_name apply expr or specialize name expr

↔ (if and only if) constructor rw [expr] or rw [� expr]

∧ (and) constructor obtain ⟨new_name , new_name⟩ := expr

∨ (or) left or right cases expr with

| inl new_name => ...

| inr new_name => ...

In the left-hand column of the following table, the parts in parentheses are optional. The e�ect of these
parts is also in parentheses in the right-hand column.

Tactic E�ect

exact expr the goal is satis�ed by expr

refine expr similar to exact but allows to leave any number of ?_ in the expr
to denote holes that will be �lled later (creates goals)

convert expr prove the goal by transforming it to an existing fact expr and
create goals for propositions used in the transformation that were
not proved automatically

convert_to proposition transform the goal into the goal proposition and create additional
goals for propositions used in the transformation that were not
proved automatically

have new_name : proposition introduce a name new_name asserting that proposition is true;
at the same time, create and focus a goal for proposition

unfold name (at hyp) unfold the de�nition name in the goal (or in the hypothesis hyp)

rw [(�) expr] (at hyp) in the goal (or in the hypothesis hyp), replace (all occurrences of)
the left-hand side (or the right-hand side, if � is present) of the
equality or equivalence expr by its other side

rw [expr , expr , expr] (at hyp) do more rewrites in the given order (any number of � possible)

calc start a proof by calculation (uses transitivity)

by_cases new_name : proposition split the proof into two cases depending on whether proposition is
true or false, using new_name as name for this hypothesis

exfalso apply the rule �False implies anything� a.k.a. �ex falso quodlibet�
(replaces the current goal by False)

by_contra new_name start a proof by contradiction, using new_name as name for the
hypothesis that is the negation of the goal

push_neg (at hyp) push negations in the goal (or in the hypothesis hyp); e.g. change
¬ ∀ x, proposition to ∃ x, ¬ proposition

linarith prove the goal by a linear combination of hypotheses

ring prove the goal by combining the axioms of a (semi)ring

simp (at hyp) simplify the goal (or the hypothesis hyp) using standard equalities

exact? search for a single existing lemma which closes the goal, also using
local hypotheses

apply? search for lemmas whose conclusion matches the goal; suggest
those that may be used with apply or refine

aesop try to solve the goal using magic

