
Kinship and pedigree analysis:
Methods and applications

Teachers

Magnus Dehli Vigeland, PhD

Thore Egeland, PhD

Department of Forensic Sciences,

Oslo University Hospital, Norway

ISFG-GHEP Online School 2024
October 7,14,21,28

Home page
https://magnusdv.github.io/pedsuite/
articles/web_only/course-ghep2024.html

Lecture 1:
Introduction to Pedigrees, QuickPed and R

Magnus Dehli Vigeland

ISFG-GHEP Online School 2024

Kinship and pedigree analysis: Methods and applications

Outline

• Now: Pedigrees

– Conventions and terminology

– QuickPed

– Pedsuite (including a crash course in R)

• Later today: Measures of relatedness

– Identity by descent (IBD)

– Coefficients of kinship and inbreeding

– The relatedness triangle

– Relationships beyond the triangle ...

Pedigrees

Conventions and terminology

= male

= female

= unknown

Conventions and terminology

= male

= female

= unknown

Founders
No parents included

in the pedigree

Nonfounders
Parents are included

Conventions and terminology

= male

= female

= unknown

Founders
No parents included

in the pedigree

Nonfounders
Parents are included

Leaves
No children included

Conventions and terminology

Founders
No parents included

in the pedigree

Nonfounders
Parents are included

Leaves
No children included

Inbred
Children of related

parents

= male

= female

= unknown

Alternative ways of drawing pedigrees

Standard

1

3

5

Simplified Directed acyclic graph

Some common relationships

(and some less common...)

Full relationships

Full siblings

First cousins

Second cousins

Full relationships

First cousins
once removed

Uncle - nephew
(avuncular)

Full relationships

Grand-uncle
(or great uncle)

Half relationships

Half siblings

Half first cousins

Half second cousins

Half relationships

Half first cousins
once removed

Half-uncle - half-nephew
(half avuncular)

More complicated relationships

First cousins + half siblings = 3/4 siblings

Double relationships

Double first cousins

Quadruple half first cousins!

The connoisseur's favourite

What software
exists to create
pedigrees?

It depends!
• medical genetics
• forensic genetics
• animal pedigrees
• amateur genealogy

In this course:
• QuickPed
• R

https://magnusdv.shinyapps.io/quickped/

DEMO!

What software
exists to create
pedigrees?

It depends!
• medical genetics
• forensic genetics
• animal pedigrees
• amateur genealogy

In this course:
• QuickPed
• R

Crash course in

What is R? (And why should you care?)

• A framework for statistical computing

– calculator

– data handling and numerical analysis

– flexible plotting

– programming language

– external packages

▪ anyone can make one

▪ thousands!

Cons
• learning curve
• packages come and go

Pros
• free!
• very widely used
• anything is possible (but not always easy)

• scripting --> reproducibility

Oh boy, that
sounds great!

I which I knew R ...

Don't worry!

It's not that hard.

Here is a quick intro to R
that contains most of
what you need

RStudio

Write your code here,
and save the file!

Basic calculations

> 2 + 3

[1] 5

> 2+ 3

[1] 5

> (1 + 2) * 3

[1] 9

> 4^2

[1] 16

> log(100)

[1] 4.60517

> log(100, base = 10)

[1] 2

> log10(100)

[1] 2

𝑒4.60517 ≈ 100

Spaces don't matter

Variables

Two (mostly synonymous) ways to assign values: = or <-

> a = 5 or a <- 5

> b = 2 or b <- 2

> a

[1] 5

> a - 2*b

[1] 1

Changing a variable:
> a = a+1

> a

[1] 6

Creating new variables from old:
> newVar = a^b

> newVar

[1] 36

I use this

Most programmers stick to either
camelCase or snake_case

when naming their variables

Common beginners' mistake:
forgetting to assign after change

Vectors

> c(3, 2, 6, -1)

[1] 3 2 6 -1

> 4:20

[1] 4 5 6 7 8 9 10 11 12

[10] 13 14 15 16 17 18 19 20

> 5:7 - 4

[1] 1 2 3

> c(10,20,30,40) + c(1,3,8,0)

[1] 11 23 38 40

> seq(from = 2, to = 15, by = 3)

[1] 2 5 8 11 14

Character vectors:
> c("Alice", "Bob")

Logical vectors:

> c(TRUE, FALSE, T, F)

[1] TRUE FALSE TRUE FALSE

There is a help page
for every function!
> ?seq

The c() operator!

The ':' operator
(shortcut for consecutive numbers)

Built-in logcial constants:
TRUE short form: T
FALSE short form: F

Matrix-like containers

Data frames: Collects vectors of the same length
> x = data.frame(Name = c("Ali", "Bob", "Joe"),

 Weight = c(75, 81, 70))

> x

Name Weight

1 Ali 75

2 Bob 81

3 Joe 70

Matrices:
> x = matrix(1:12, nrow = 3, ncol = 4)

> x

 [,1] [,2] [,3] [,4]

[1,] 1 4 7 10

[2,] 2 5 8 11

[3,] 3 6 9 12

Faster, but less flexible. Good for all-numeric (or all-character) data

Use $ to refer to columns: x$Name

Note: No $ for matrices!

First column: x[, 1]
First row: x[1,]

Lists

> a = list(good = 1:3, bad = 0)

> a

$good

[1] 1 2 3

$bad

[1] 0

> a$good

[1] 1 2 3

Easy to change lists:
> a$bad = NULL (delete item)

> a$ok = -1 (add new item)

> a$good = c(a$good, 10) (modify item)

> a

$good

[1] 1 2 3 10

$ok

[1] -1

Alternative to $:
a[["good"]]

Basic plotting

Let's plot the graph of y = x2 !

> x = seq(-2, 2, length = 100)

> y = x^2

> plot(x, y)

Many options to play with...

> plot(x, y, type="l", lwd = 3, col = "red",

 ylab = "x squared", main = "My plot!")

The pipe: |>

• Enables function chaining. Often easier to read.

Consider this code:
> a = exp(2)

> b = log(a, base = 10)

> rep(b, times = 3)

[1] 0.868589 0.868589 0.868589

One-liner producing the same:
> rep(log(exp(2), base = 10), times = 3)

[1] 0.868589 0.868589 0.868589

With piping:
> exp(2) |> log(base = 10) |> rep(times = 3)

[1] 0.868589 0.868589 0.868589

Purists: Line break after each pipe

exp(2) |>

 log(base = 10) |>

 rep(times = 3)

Introduced in
R version 4.1

R stuff skipped in this brief introduction

• User-defined functions

• Loops, apply(), lapply(), etc.

• Basic statistics, linear models + +

• Random numbers

• The "tidyverse" for data science

• ... and LOTS of other things...

Installing packages

To access the functions of an external package, you must:

• install the package

– downloads it to your computer

– this is done only once

– install.packages()

• load it into R

– every new session

– library()

To check if a package is installed, simply try to load it:
> library(pedsuite)

If you get an error, do:
> install.packages("pedsuite")

Home page:
https://magnusdv.github.io/pedsuite

Source code available on GitHub:
https://github.com/magnusdv

The pedsuite: A collection of packages for pedigree analysis in R

https://magnusdv.github.io/pedsuite
https://github.com/magnusdv

The pedsuite: A collection of packages for pedigree analysis in R

Building pedigrees

> library(pedsuite)

> x = nuclearPed()

> plot(x)

Names and sex:
> y = nuclearPed(father = "Fa",

mother = "Mo",

child = c("Bro", "Sis"),

sex = 1:2)

> plot(y)

Many ways to tweak the plot!
> plot(y,

deceased = c("Fa", "Mo"),

hatched = c("Bro", "Sis"),

col = list(blue = c("Bro", "Sis")),

cex = 1.5)

• singleton
• nuclearPed
• linearPed
• halfSibPed
• avuncularPed
• cousinPed

Create: basic
• addSon
• addDaugher
• addParents
• addChildren

• swapSex
• relabel
• removeIndividuals

• branch
• subset

• mergePed
• breakLoops

Manipulate

• founders
• nonfounders
• leaves
• males
• females
• typedMembers
• untypedMembers

Member subsets

• father
• mother
• children
• siblings
• grandparents
• spouses

• ancestors
• descendants
• unrelated

Relatives

• ancestralPed
• doubleCousins
• quadHalfFirstCousins
• fullSibMating
• randomPed

Create: complex

Some useful functions

> x = cousinPed(2)

> plot(x)

Change gender:
> x = swapSex(x, 12)

> plot(x)

Add inbred child
> x = addSon(x, parents = 11:12)

> plot(x)

Another example

Remember
• Store the result after each change!
• It is OK to use the same name

(if you don't need the previous object)
Shortcut command for this pedigree
> x = cousinPed(2, child = TRUE)

> peds = list(linearPed(3),

 singleton("NN"),

 cousinPed(1))

> plotPedList(peds,

 widths = c(2, 1, 3),

 hatched = leaves)

List of pedigrees

Columns
famid = family ID (optional)
id = individual ID
fid = ID of father
mid = ID of mother
sex = 1 (male), 2 (female) or 0 (unknown)

Alternative pedigree creation: .ped file

famid id fid mid sex
1 1 0 0 1
1 2 0 0 2
1 3 0 0 1
1 4 1 2 2
1 5 3 4 2
1 6 3 4 1

In pedtools:
> x = readPed("example.ped")

> plot(x)

A text file describing a pedigree structure. 0 if founder

Contents of example.ped

Oh my! Do I have
to write these ped-

files by hand?

No, that is tedious
and error-prone!

Better: QuickPed

Now: Exercises!

	Slide 1: Kinship and pedigree analysis: Methods and applications
	Slide 2
	Slide 3: Lecture 1: Introduction to Pedigrees, QuickPed and R Magnus Dehli Vigeland
	Slide 4: Outline
	Slide 5
	Slide 6: Conventions and terminology
	Slide 7: Conventions and terminology
	Slide 8: Conventions and terminology
	Slide 9: Conventions and terminology
	Slide 10: Alternative ways of drawing pedigrees
	Slide 11
	Slide 12: Full relationships
	Slide 13: Full relationships
	Slide 14: Full relationships
	Slide 15: Half relationships
	Slide 16: Half relationships
	Slide 17: More complicated relationships
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24: What is R? (And why should you care?)
	Slide 25
	Slide 26: RStudio
	Slide 27: Basic calculations
	Slide 28: Variables
	Slide 29: Vectors
	Slide 30: Matrix-like containers
	Slide 31: Lists
	Slide 32: Basic plotting
	Slide 33: The pipe: |>
	Slide 34: R stuff skipped in this brief introduction
	Slide 35: Installing packages
	Slide 36: The pedsuite: A collection of packages for pedigree analysis in R
	Slide 37: The pedsuite: A collection of packages for pedigree analysis in R
	Slide 38: Building pedigrees
	Slide 39: Some useful functions
	Slide 40: Another example
	Slide 41: List of pedigrees
	Slide 42: Alternative pedigree creation: .ped file
	Slide 43
	Slide 44: Now: Exercises!

