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Outline

• Now: Pedigrees

– Conventions and terminology

– QuickPed

– Pedsuite (including a crash course in R)

• Later today: Measures of relatedness

– Identity by descent (IBD)

– Coefficients of kinship and inbreeding

– The relatedness triangle

– Relationships beyond the triangle ...



Pedigrees
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Alternative ways of drawing pedigrees

Standard

1

3

5

Simplified Directed acyclic graph



Some common relationships

(and some less common...)



Full relationships

Full siblings

First cousins

Second cousins



Full relationships

First cousins 
once removed

Uncle - nephew
(avuncular)



Full relationships

Grand-uncle
(or great uncle)



Half relationships

Half siblings

Half first cousins

Half second cousins



Half relationships

Half first cousins 
once removed

Half-uncle - half-nephew
(half avuncular)



More complicated relationships

First cousins + half siblings = 3/4 siblings



Double relationships

Double first cousins



Quadruple half first cousins!

The connoisseur's favourite



What software 
exists to create 
pedigrees?

It depends!
• medical genetics
• forensic genetics
• animal pedigrees
• amateur genealogy

In this course:
• QuickPed
• R



https://magnusdv.shinyapps.io/quickped/

DEMO!
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Crash course in



What is R? (And why should you care?)

• A framework for statistical computing

– calculator

– data handling and numerical analysis

– flexible plotting

– programming language

– external packages

▪ anyone can make one

▪ thousands! 

Cons
• learning curve
• packages come and go

Pros
• free!
• very widely used
• anything is possible (but not always easy)

• scripting --> reproducibility



Oh boy, that 
sounds great! 

I which I knew R ...

Don't worry!

It's not that hard.

Here is a quick intro to R 
that contains most of 
what you need



RStudio

Write your code here, 
and save the file!



Basic calculations

> 2 + 3

[1] 5

> 2+      3

[1] 5

> (1 + 2) * 3

[1] 9

> 4^2

[1] 16

> log(100)

[1] 4.60517

> log(100, base = 10)

[1] 2

> log10(100)

[1] 2

𝑒4.60517 ≈ 100

Spaces don't matter



Variables

Two (mostly synonymous) ways to assign values:   =    or  <-

> a = 5     or   a <- 5

> b = 2     or   b <- 2

> a

[1] 5

> a - 2*b

[1] 1

Changing a variable:
> a = a+1

> a

[1] 6

Creating new variables from old:
> newVar = a^b

> newVar

[1] 36

I use this

Most programmers stick to either 
camelCase or snake_case

when naming their variables

Common beginners' mistake: 
forgetting to assign after change



Vectors

> c(3, 2, 6, -1)

[1]  3  2  6 -1

> 4:20

[1]  4  5  6  7  8  9 10 11 12

[10] 13 14 15 16 17 18 19 20

> 5:7 - 4

[1] 1 2  3

> c(10,20,30,40) + c(1,3,8,0)

[1] 11 23 38 40

> seq(from = 2, to = 15, by = 3)

[1]  2  5  8 11 14

Character vectors:
> c("Alice", "Bob")

Logical vectors:

> c(TRUE, FALSE, T, F)

[1] TRUE FALSE TRUE FALSE

There is a help page 
for every function!
> ?seq

The c() operator!

The ':' operator
(shortcut for consecutive numbers)

Built-in logcial constants: 
TRUE  short form: T
FALSE short form: F



Matrix-like containers

Data frames: Collects vectors of the same length
> x = data.frame(Name   = c("Ali", "Bob", "Joe"), 

                  Weight = c(75, 81, 70))

> x

Name Weight

1  Ali     75

2  Bob     81

3  Joe     70

Matrices:
> x = matrix(1:12, nrow = 3, ncol = 4)

> x

 [,1] [,2] [,3] [,4]

[1,]    1    4    7   10

[2,]    2    5    8   11

[3,]    3    6    9   12

Faster, but less flexible. Good for all-numeric (or all-character) data

Use $ to refer to columns: x$Name

Note: No $ for matrices!

First column:   x[, 1]
First row:         x[1, ]



Lists

> a = list(good = 1:3, bad = 0)

> a

$good

[1] 1  2  3

$bad

[1] 0

> a$good 

[1] 1  2  3

Easy to change lists:
> a$bad = NULL           (delete item)

> a$ok = -1  (add new item)

> a$good = c(a$good, 10) (modify item)

> a

$good

[1] 1  2  3  10

$ok

[1] -1

Alternative to $: 
a[["good"]]



Basic plotting

Let's plot the graph of y = x2 !

> x = seq(-2, 2, length = 100)

> y = x^2

> plot(x, y)

Many options to play with...

> plot(x, y, type="l", lwd = 3, col = "red", 

 ylab = "x squared", main = "My plot!")



The pipe:  |>

• Enables function chaining. Often easier to read. 

Consider this code:
> a = exp(2)

> b = log(a, base = 10)

> rep(b, times = 3)

[1] 0.868589 0.868589 0.868589

One-liner producing the same:
> rep(log(exp(2), base = 10), times = 3)

[1] 0.868589 0.868589 0.868589

With piping:
> exp(2) |> log(base = 10) |> rep(times = 3)

[1] 0.868589 0.868589 0.868589

Purists: Line break after each pipe

exp(2) |> 

 log(base = 10) |> 

 rep(times = 3)

Introduced in
R version 4.1



R stuff skipped in this brief introduction

• User-defined functions

• Loops, apply(), lapply(), etc.

• Basic statistics, linear models + +

• Random numbers

• The "tidyverse" for data science

• ... and LOTS of other things... 



Installing packages

To access the functions of an external package, you must:

• install the package 

– downloads it to your computer

– this is done only once

– install.packages()

• load it into R

– every new session

– library()

To check if a package is installed, simply try to load it:
> library(pedsuite)

If you get an error, do:
> install.packages("pedsuite")



Home page: 
https://magnusdv.github.io/pedsuite

Source code available on GitHub: 
https://github.com/magnusdv

The pedsuite: A collection of packages for pedigree analysis in R

https://magnusdv.github.io/pedsuite
https://github.com/magnusdv


The pedsuite: A collection of packages for pedigree analysis in R



Building pedigrees

> library(pedsuite)

> x = nuclearPed()

> plot(x)

Names and sex:
> y = nuclearPed(father = "Fa", 

mother = "Mo", 

child = c("Bro", "Sis"), 

sex = 1:2)

> plot(y)

Many ways to tweak the plot!
> plot(y, 

deceased = c("Fa", "Mo"), 

hatched = c("Bro", "Sis"), 

col = list(blue = c("Bro", "Sis")), 

cex = 1.5)



• singleton
• nuclearPed
• linearPed
• halfSibPed
• avuncularPed
• cousinPed

Create: basic
• addSon
• addDaugher
• addParents
• addChildren

• swapSex
• relabel
• removeIndividuals

• branch
• subset

• mergePed
• breakLoops

Manipulate

• founders
• nonfounders
• leaves
• males
• females
• typedMembers
• untypedMembers

Member subsets

• father
• mother
• children
• siblings
• grandparents
• spouses

• ancestors
• descendants
• unrelated

Relatives

• ancestralPed
• doubleCousins
• quadHalfFirstCousins
• fullSibMating
• randomPed

Create: complex

Some useful functions



> x = cousinPed(2)

> plot(x)

Change gender:
> x = swapSex(x, 12)

> plot(x)

Add inbred child
> x = addSon(x, parents = 11:12)

> plot(x)

Another example

Remember
• Store the result after each change! 
• It is OK to use the same name 

(if you don't need the previous object)
Shortcut command for this pedigree
> x = cousinPed(2, child = TRUE)



> peds = list(linearPed(3), 

            singleton("NN"),

            cousinPed(1))

> plotPedList(peds, 

            widths = c(2, 1, 3),

            hatched = leaves)

List of pedigrees



Columns
famid = family ID   (optional)
id        = individual ID
fid       = ID of father
mid    = ID of mother
sex      = 1 (male), 2 (female) or 0 (unknown)

Alternative pedigree creation: .ped file

famid id fid mid sex
1 1 0 0 1
1 2 0 0 2
1 3 0 0 1
1 4 1 2 2
1 5 3 4 2
1 6 3 4 1

In pedtools:
> x = readPed("example.ped")

> plot(x)

A text file describing a pedigree structure. 0 if founder

Contents of example.ped



Oh my! Do I have 
to write these ped-

files by hand?

No, that is tedious 
and error-prone!

Better: QuickPed



Now: Exercises!
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