ISFG-GHEP Online School 2024 October 7, 14, **21**, 28

Kinship and pedigree analysis: Methods and applications

Teachers

Magnus Dehli Vigeland, PhD

Thore Egeland, PhD Department of Forensic Sciences, Oslo University Hospital, Norway

Schedule

The course runs each Monday of October 2024, from 16 to 20 (CEST). The following schedule is tentative:

Oct 7: Theory of relatedness

- 16:00–17:00 Introduction to pedigrees, QuickPed and R (MDV)
- 17:00–17:45 Exercises I. (Solutions)
- 17:45-18:00 Break
- 18:00–19:00 Measures of relatedness (MDV)
- 19:00–19:45 Exercises II. (Solutions)
- 19:45-20:00 Wrap-up

Oct 14: Kinship testing

- 16:00-17:00 Introduction to forensic kinship testing (TE)
- 17:00–17:45 Exercises III. (Solutions)
- 17:45–18:00 Break
- 18:00–19:00 Kinship testing with Familias (TE)
- 19:00–19:45 Exercises IV. File needed: kinship-riddle.fam. (Solutions)
- 19:45-20:00 Wrap-up

Oct 21: Relatedness inference

- 16:00-17:00 Realised relatedness: Why are some siblings more alike than others? (MDV)
- 17:00-17:45 Exercises V
- 17:45–18:00 Break
- 18:00-19:00 Pedigree reconstruction (MDV)
- 19:00-19:45 Exercises VI
- 19:45-20:00 Wrap-up

Oct 28: Disaster victim identification

- 16:00-17:00 DNA-based disaster victim identification (TE)
- 17:00-17:45 Exercises VII
- 17:45-18:00 Break
- 18:00-19:00 Practical DVI with Diviana (MDV)
- 19:00–19:45 Exercises VIII
- 19:45–20:00 Wrap-up

Home page

https://magnusdv.github.io/pedsuite/ articles/web_only/course-ghep2024.html

Lecture 5: Realised relatedness or Why are some siblings more alike than others?

Magnus Dehli Vigeland

ISFG-GHEP Online School 2024

Kinship and pedigree analysis: Methods and applications

Meiotic recombination

- Genetic distance between two loci:
 - = average # crossovers per meiosis
- Units:
 - 1 Morgan (M) = 1 crossover per meiosis
 - 1 centiMorgan (cM) = 0.01 M
- The human genome: Ca 30 Morgan

Rule of thumb: One crossover per chromosome arm

Half first cousins, expected sharing:

$$\kappa_1 = 2 \cdot \left(\frac{1}{2}\right)^4 = \frac{1}{8} = 12.5\%$$

Realisert k1

Realised inbreeding

f_R = autozygous fraction of genome

Autozygous segments

Realised IBD coefficients

ibdsim2 Variation in realised IBD coefficients 1000 simulations • MZ Some siblings are more alike than others! k_2 library(pedsuite) > library(ibdsim2) > x = nuclearPed(2)> s = ibdsim(x, N = 1000)> k = realisedKappa(s, ids = 3:4) >PO H,Ŭ,G FC UN k_0 showInTriangle(k) >

Variation depends on the genome

Indistinguishable relationships?

Simulated IBD distributions

The probability of zero IBD

N'th cousins	P(zero IBD)
first	0.0 %
second	0.0 %
third	1.5 %
fourth	28 %
fifth	67 %

Third cousins

Expected fraction with IBD = 1:

$$k_1 = \frac{1}{64}$$

Two individuals can have a common ancestor without being genetically related

Distant cousins share either nothing or quite a bit

Reversely:

Is 100 % inbreeding possible?

- Continuous full-sib mating
- Easy to show:
 - inbreeding coefficient $f \rightarrow 1$
- In finite pedigree:
 - pedigree-based f will never reach 1

After ~30 generations, But: the realised inbreeding typically reaches 1

The importance of sex

- Rule of thumb:
 - $1 \,\mathrm{cM} \approx 1 \,\mathrm{Mb}$
- But: crossover rates vary
 - across the genome
 - males vs. females

Genetic map of chromosome 1

Females have a much longer genome!

Can we separate these??

Yes!

Napoleon Bonaparte (1769 - 1821)

Summary of genetic relatedness

- Pedigree-based measures:
 - the kinship/inbreeding coefficient arphi
 - the kappa coefficients $\kappa = (\kappa_0, \kappa_1, \kappa_2)$
- Each coefficient is
 - the probability of observing a certain IBD pattern in a random locus
 - the expected proportion of the genome in this state
- Realised relatedness:
 - IBD segments determined by meiotic recombination
 - females recombine more than males
 - may separate relationships with equal kappa's
 - 0% and 100% realised identity is possible!

So...what does it mean to be related?

- Pedigree based definition: φ > 0
 <u>potentially</u> having alleles IBD
- Genomic definition (**realised** relatedness): <u>actually</u> having alleles IBD

