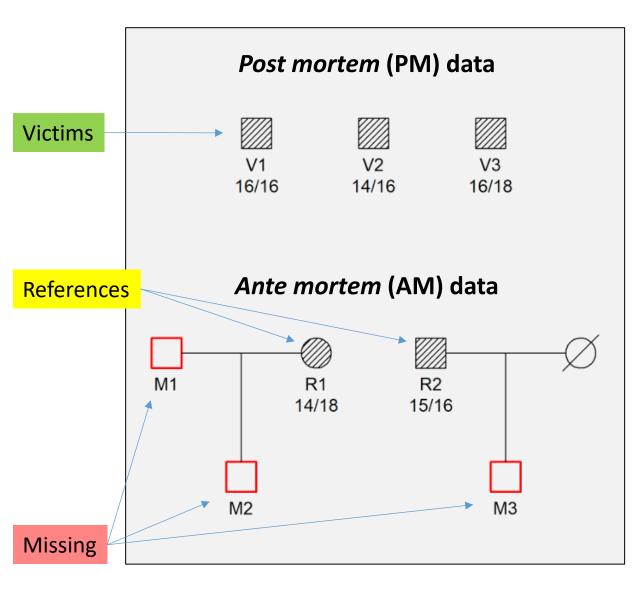


Lecture 8: Complex DVI cases with DIVIANA

ISFG-GHEP Online School 2024

Kinship and pedigree analysis: Methods and applications

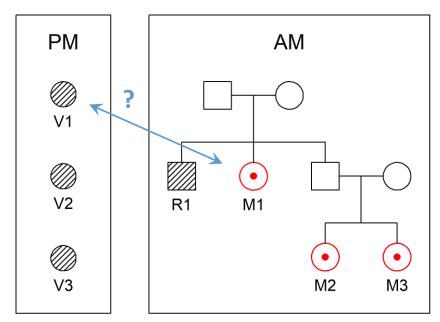

X/José Ballesta

Plan

- Disaster victim identification
 - Terminology and standard methods
- Challenging cases
 - Families with multiple missing
- New statistical tools
 - Generalised likelihood ratio (GLR)
 - Relatedness triangle
- New software: DIVIANA

Disaster victim identification (DVI)

Computational approaches

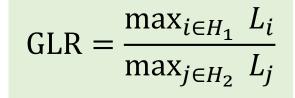

		M1	M2	M3
	V1	1	0	0.39
Pairwise LR	V2	1	16142	0
	V3	1	0	6266

Joint / global

 \succ

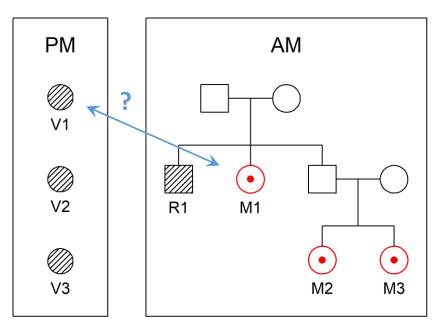
Vigeland & Egeland (Scientific Reports, 2021): Joint DNA-based disaster victim identification

Joint analysis of DVI data


Victims and R1 typed with 23 STRs.

	Pairwise LR					
	M1	M2	M3			
V1	[121.3	398.6	398.6			
V2	0.6	36.6	36.6			
V3	0.00	1.3	1.3			

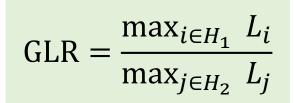
Joint likelihoods


	V1	V2	V3	loglik
1	M1	M2	M3	-257.7
2	M1	M3	M2	-257.7
3	*	M2	M3	-268.9
4	*	M3	M2	-268.9
5	M2	M1	M3	-272.6
6	M3	M1	M2	-272.6
7	M1	*	M2	-276.5
8	M1	*	M3	-276.5
9	M2	M3	M1	-276.6
:				
32	*	*	*	-286.0
33	*	M1	*	-286.5
34	*	*	M1	-292.2

A tool for interpreting joint results: Generalised likelihood ratio (GLR)

Joint likelihoods

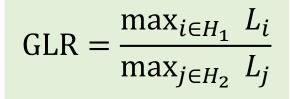
					-
	V1	V2	V3	loglik	_
1	M1	M2	M3	-257.7	$\overline{\mathbf{A}}$
2	M1	M3	M2	-257.7	\checkmark
3	*	M2	M3	-268.9	×
4	*	M3	M2	-268.9	×
5	M2	M1	M3	-272.6	×
6	M3	M1	M2	-272.6	×
7	M1	*	M2	-276.5	\checkmark
8	M1	*	M3	-276.5	\checkmark
9	M2	M3	M1	-276.6	×
÷					
32	*	*	*	-286.0	×
33	*	M1	*	-286.5	×
34	*	*	M1	-292.2	×
					-

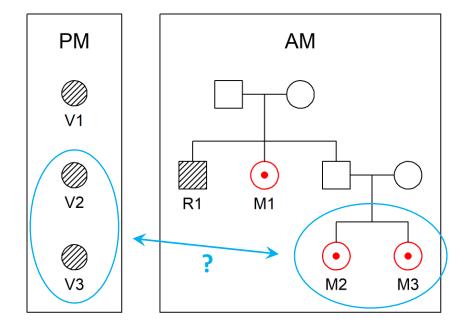


Victims and R1 typed with 23 STRs.

$$GLR = \frac{L_1}{L_3} = \frac{e^{-257.7...}}{e^{-268.9...}} = 70582$$
Strong evidence

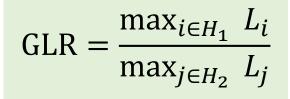
 $H_1: V1 = M1$

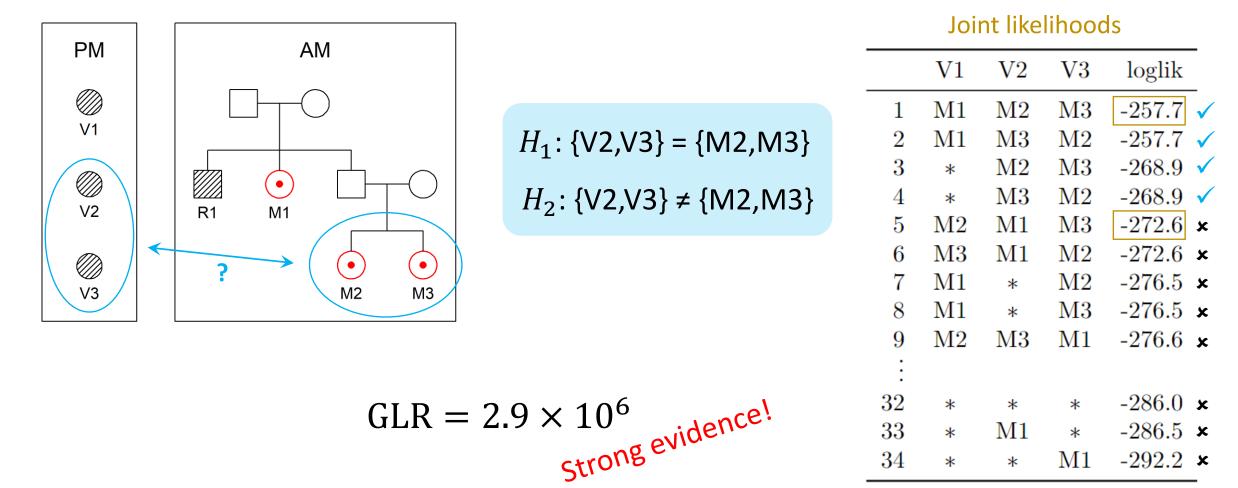

 $H_2: V1 \neq M1$


Interpretation of GLR = x

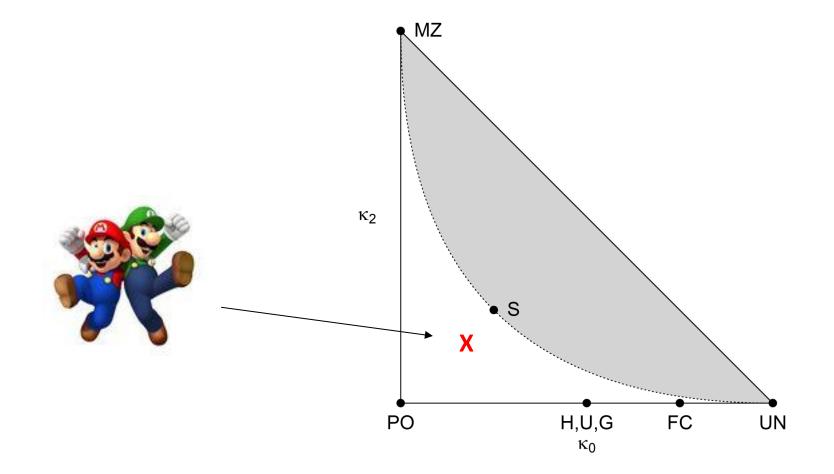
The best explanation of the data given H1 is **X** times more likely than the best explanation given H2

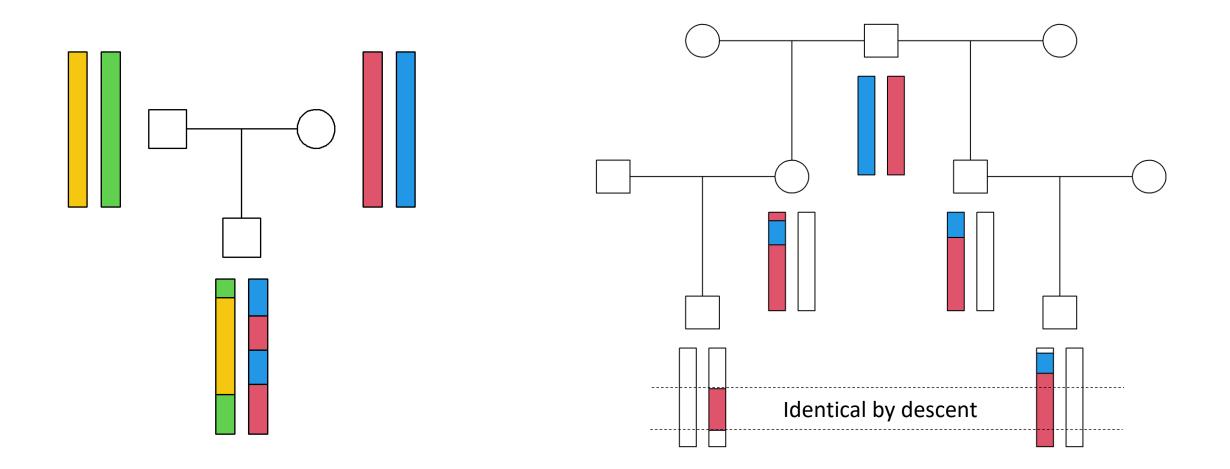
Symmetric matches



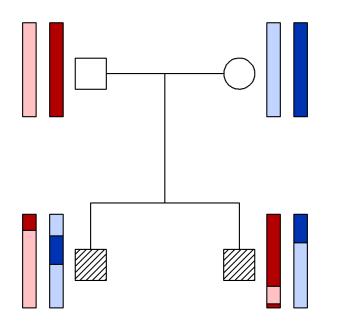

Joint likelihoods

W 9	
V3	loglik
M3	-257.7
M2	-257.7
M3	-268.9
M2	-268.9
M3	-272.6
M2	-272.6
M2	-276.5
M3	-276.5
M1	-276.6
*	-286.0
*	-286.5
M1	-292.2
	M2 M3 M2 M2 M2 M3 M1 *

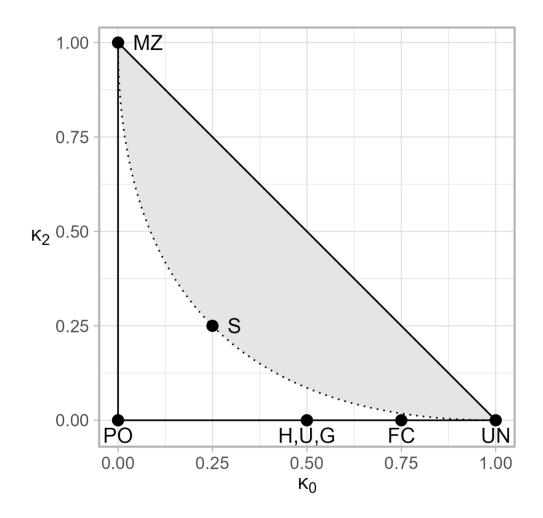

Symmetric matches



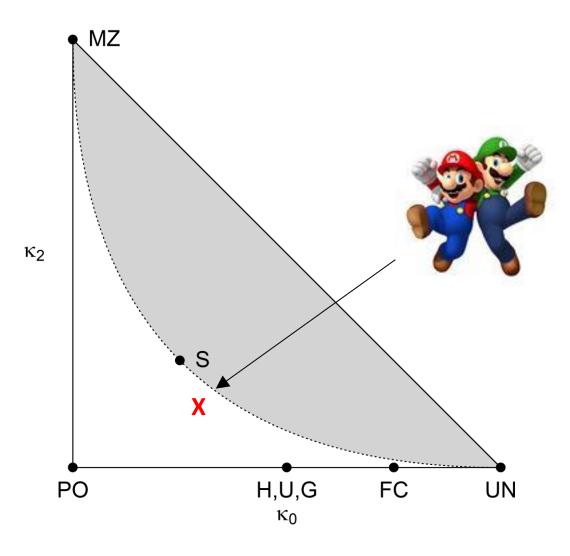
Conclusion: V2 and V3 are M2 and M3 (but we don't know who-is-who)


The relatedness triangle

Identity by descent



The "kappa" coefficients


 K_0 = proportion of genome with IBD=0 K_1 = proportion of genome with IBD=1 K_2 = proportion of genome with IBD=2

$$K_0 + K_1 + K_2 = 1$$

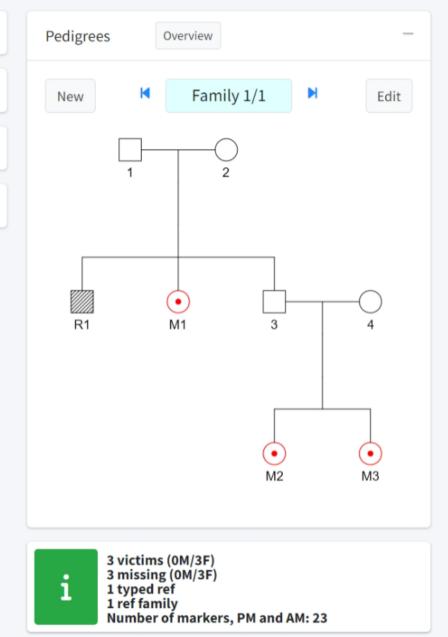
Maximum likelihood estimation

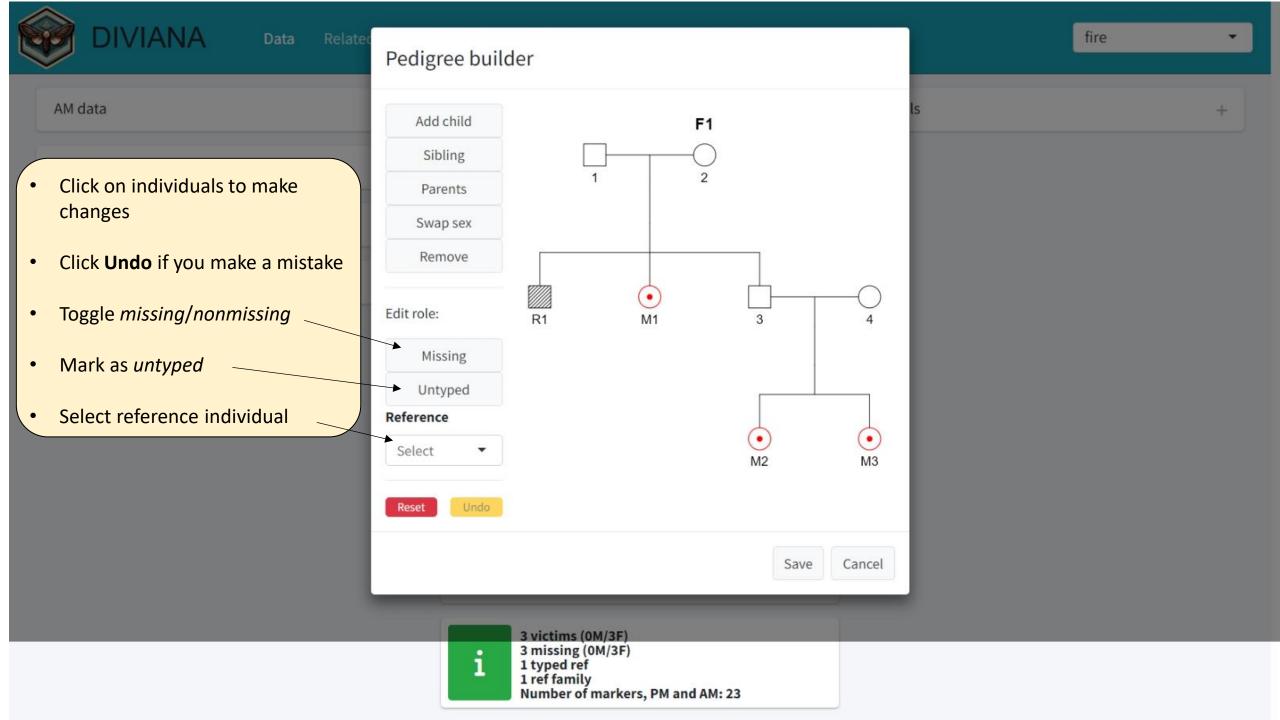
- Thompson (1975)
- Input: Genotypes from two individuals
- Output: Most likely point in the triangle

Data Relatedness Analysis

Labels

-


+


 AM data
 +

 PM data
 +

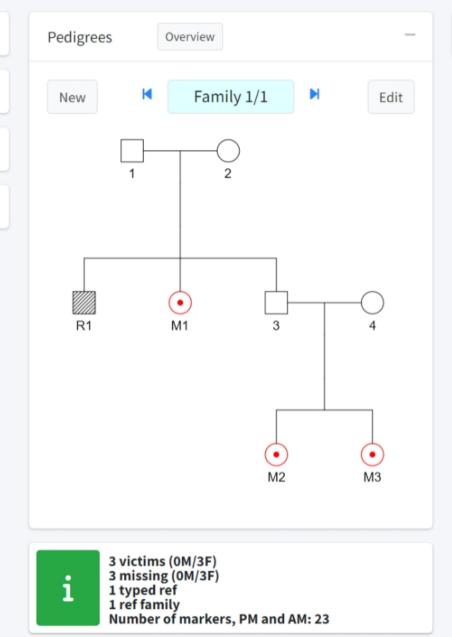
 Mutation model
 +

 Frequency database
 +

Data Relatedness Analysis

Labels

-


+

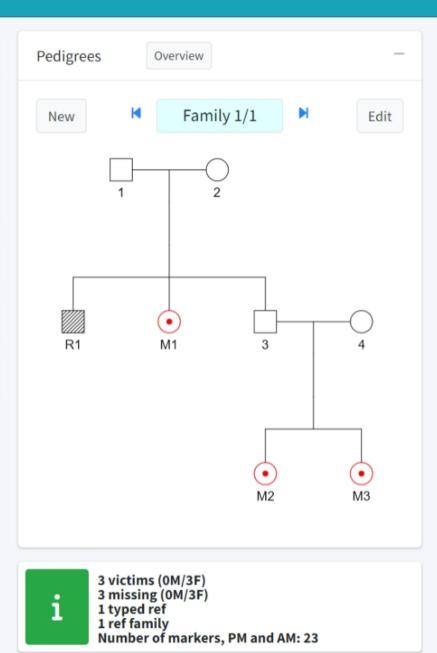
 AM data
 +

 PM data
 +

 Mutation model
 +

 Frequency database
 +

Data Relatedness Analysis


r				
٠		r	\circ	
L	L			

Labels

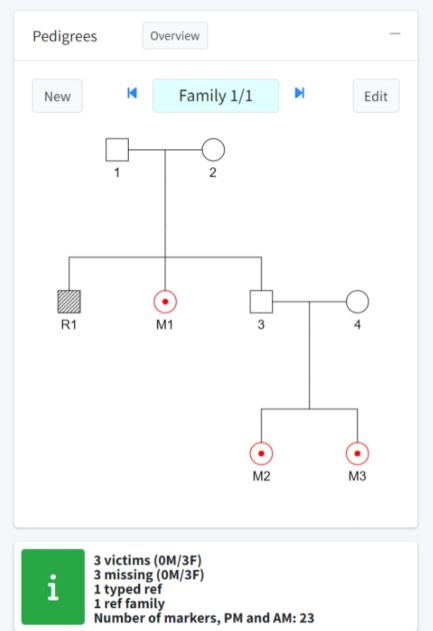
•

+

AIV	l data						-
F	amilias	•	Bro	owse	No file	selecte	d
	D3S1358	TH01	D21S11	D18S51	PENTA_E	D5S818	D135317
R1	16/17	6/9.3	29/31	14/16	7/12	11/11	10/13
							-
PM	l data						-
	I data Itation m	odel					

Data Relatedness

Analysis


fire

•

+

AM data	+
PM data	+
Mutation model	+
Frequency database	+

DIVIANA

Labels

Data Relatedness

Apply to all markers

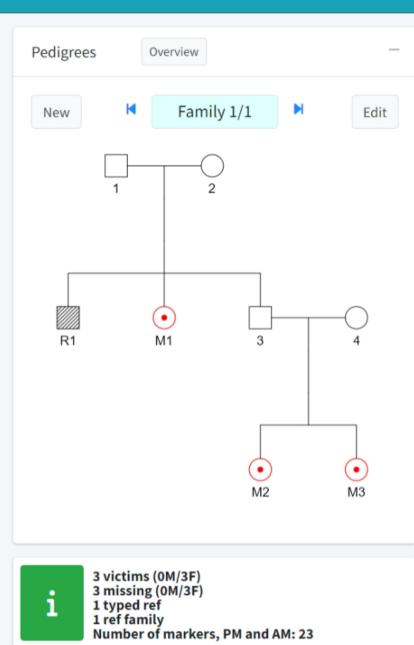
+

Analysis

Labels

-

+

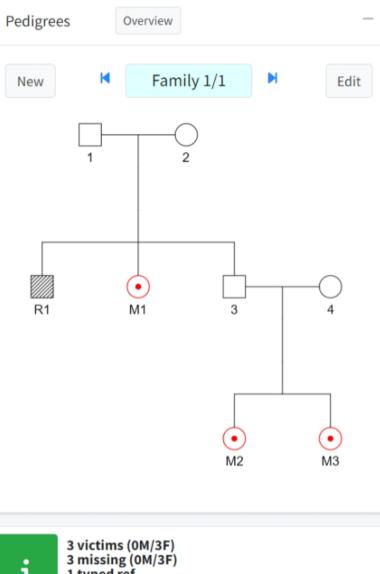

	IANA	D	ata	Relatedr	iess
AM data					+
PM data					+
Mutation mo	odel				_
н	Marker	1/23: D3S1	358	н	
$^{\bigcirc}$ No model	\odot Equal	Prop	○ Ste	pwise	
Female:	<i>Rate</i> 0,001	Rate2		Range	

Male:

Apply to this marker

Frequency database

0,001



DIVIANA Data Relatedness Analysis

•

+

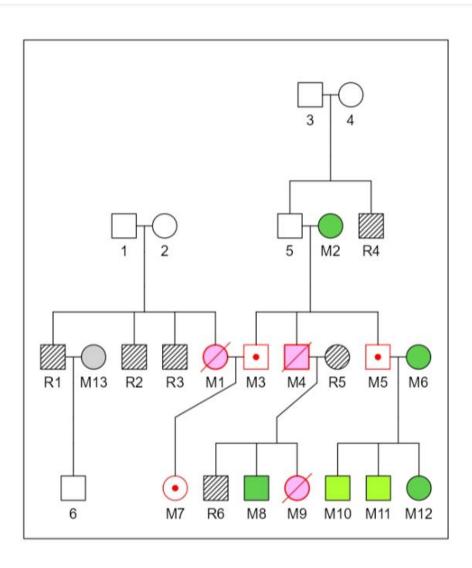
AM data	+
PM data	+
Mutation model	+
Frequency database	+

Labels

3 victims (0M/3F) 3 missing (0M/3F) 1 typed ref 1 ref family Number of markers, PM and AM: 23 i

	/IANA	Data	Relatedness Analysis		fire 🝷
SOLVE	Identifications	АМ	PM log	Result plot	
Settings LR threshold 10000	FamilyMissingF1M1F1M2F1M3	Sample V1 V2/V3 V2/V3	1.21 × 1027.06 × 104Match (GLR)Joint analysis {M1,M2,I2.95 × 106Symmetric matchFull siblings: {M2, M3}		

	/IANA	Data Relatedness Analysis	icmp 👻
SOLVE	Identifications	AM PM log	Result plot
Settings LR threshold 1e4	Family Missing F1 M1 F1 M2 F1 M3 F1 M4 F1 M5 F1 M6 F1 M7	Sample LR GLR Conclusion Comment	
≵ Download	F1M8F1M9F1M10F1M11F1M12F1M13		1 2 5 M2 R4 $1 2 5 M2 R4$ $1 2 6 M2 R4$ $1 1 2 6 M2 R4$
			6 M7 R6 M8 M9 M10 M11 M12


P	DIVIANA	Data	Relatedness	

SOLVE

Catting	Family	Missing	
Settings	F1	M1 M2	1
LR threshold	F1		
1e4	F1	M3	
104	F1	M4	
Ignore Sex	F1	M5	
Ignore Sex	F1	M6	
	F1	M7	
	F1	M8	9
	F1	M9	
*	F1	M10	i i
Download	F1	M11	2
	F1	M12	1

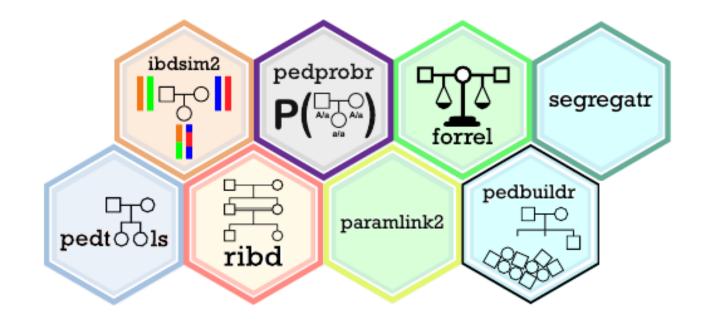
dentific	ations	AM	PM lo	g		
Family	Missing	Sample	LR	GLR	Conclusion	Comment
F1	M1			-	Excluded	5+ inconsistencies
F1	M2	V5	1.70×10^{3}	1.44×10^{6}	Match (GLR)	Joint analysis {M2,M3
F1	M3				Inconclusive GLR	
F1	M4				Excluded	3+ inconsistencies
F1	M5				Inconclusive GLR	
F1	M6	V1	1.00	7.72 × 10 ⁸	Match (GLR)	Joint analysis (M2,M3
F1	M7				Inconclusive GLR	
F1	M8	V4	2.85 × 106		Undisputed	Step 1
F1	M9				Excluded	3+ inconsistencies
F1	M10	V2		2.58 × 10 ⁶	Symmetric match	V2 also matches M11
F1	M11	V2		2.58 × 10 ⁶	Symmetric match	V2 also matches M10
F1	M12	V3	4.78	1.02 × 10 ⁷	Match (GLR)	Joint analysis (M2,M3
F1	M13				Nonidentifiable	Unrelated to R1, R2, F

Result plot

Beta version online

https://magnusdv.shinyapps.io/diviana

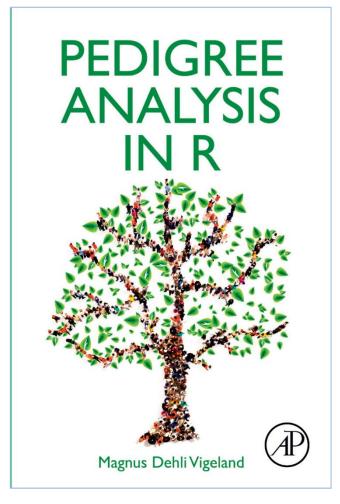
GitHub


https://github.com/magnusdv/diviana

Install dev versions of pedsuite packages
pkgs = c("pedtools", "ribd", "forrel", "dvir", "diviana")
for(pkg in pkgs)
 remotes::install_github(paste0("magnusdv/", pkg))

diviana::launchApp()

Paper about GLR: Kinship cases with partially specified hypotheses. Egeland & Vigeland (in review)


The **pedsuite**: A collection of packages for pedigree analysis in R

Home page: <u>https://magnusdv.github.io/pedsuite</u>

Source code: <u>https://github.com/magnusdv</u>

Developers: Magnus D. Vigeland, Thore Egeland

Diviana eudoreella