Kinship and pedigree analysis: Methods and applications

Magnus Dehli Vigeland and Thore Egeland

Solutions for exercise set III. Kinship testing

Some answers are given in the exercise. Here we add some comments and remaining answers.

The **pedsuite** R packages are used in several solutions:

library(pedsuite)

Exercise III-1

- a) The marker is an autosomal STR marker. Reasons: allele labels; more than two alleles.
- b) Five alleles (13, 14, 15, 21 and 22) are observed. The alleles names indicate the number of repeats.
- c) Both 4 and 5 have genotype 13/14 (because of their parents).
- d) Individual 3 has genotype 21/22 (because his children must have gotten 13 from their mother).
- e) The possible genotypes are 13/13, 13/14, 13/15 and 14/15, each with probability $\frac{1}{4}$.

Exercise III-2

- a) The natural hypotheses are:
 - H1: The alleged father (AF) is the biological father.
 - H2: The alleged father and the child are unrelated.

The corresponding pedigrees can be created in R as follows:

H1 = nuclearPed(fa = "AF", mo = "MO", child = "CH")
H2 = singletons(c("AF", "CH"))

b) Possible plot command:

plotPedList(list(H1, H2), hatched = c("AF", "CH"))

c) We follow the approach given in the lecture:

d) We find $LR = \frac{2p_a p_b \frac{1}{2} p_c}{2p_a p_b 2p_a p_c} = \frac{1}{4p_a} = 25.$

Exercise III-3

```
a) See exercise.
```

```
b) See exercise. Summary:
```

List of 2 singletons.
Labels: S1 (male), S2 (male).
15 attached markers.

c) We find the LRs as follows:

kinshipLR(H1, H2, H3, H4, source = 4)

H1:H4 H2:H4 H3:H4 H4:H4 ## 569.3989 805.1175 805.1175 1.0000

Comment: The argument **source = 4** secures that marker data from H4 are transferred to the other pedigrees. However, it was not actually needed in this case, since, as stated in the documentation: "*If exactly one of the pedigrees have attached markers, these are transferred to the others.*" In our case this would apply since only H4 contains data.

- d) This is not a coincidence. Since the relationships half siblings (H2) and uncle-nephew (H3) have identical IBD coefficients, $(\kappa_0, \kappa_1, \kappa_2) = (0.5, 0.5, 0)$, they are indistinguishable with unlinked markers.
- e) We add the new pedigree and find the LRs:

```
H5 = relabel(cousinPed(1), old = 7:8, new = ids)
lr = kinshipLR(H1, H2, H3, H4, H5, source = 4, ref = 4)
lr
```

H1:H4 H2:H4 H3:H4 H4:H4 H5:H4 ## 569.3989 805.1175 805.1175 1.0000 110.0958