# Kinship and pedigree analysis: Methods and applications

Magnus Dehli Vigeland and Thore Egeland

# Solutions for exercise set V: Realised relatedness

# Exercise V-1

a) Pedigree:



- b)  $f = \frac{1}{8} = 0.125$ , obtained e.g. by the command inbreeding(x, 6).
- c) (Answer given in the exercise.)
- d) The code given in the exercise produces the following karyogram:

# Autozygous segments



## e) Haplotype plot:



f) The histogram shows that there is substantial natural variation around the expected value f = 1/8.



#### Realised inbreeding

- g) The standard deviation is 3.3%. R command: sd(fReal).
- h) The number of segments in each simulation is contained in the nSeg column of r\$perSimulation. A summary of these numbers show that the numbers range from 8 to 32, with an average of 20 segments:

summary(r\$perSimulation\$nSeg)

| ## | Min. | 1st Qu. | Median | Mean 3 | 3rd Qu. | Max.  |
|----|------|---------|--------|--------|---------|-------|
| ## | 8.00 | 17.00   | 20.00  | 19.72  | 23.00   | 32.00 |

#### Exercise V-2

- a) (Omitted.)
- b) (Omitted.)
- c) The distribution of number of segments peaks around 15-20 segments.
- d) The second distribution peaks around 20-25 segments. The difference occurs because the second pedigree has more female meioses, which on average recombine more and therefore give more (but shorter) segments.

#### Exercise V-3

```
a) x = linearPed(10)
sims = ibdsim(x, N = 500, ids = c(1, 21))
z = zeroIBD(sims)
z
## $zeroprob
## [1] 0.622
##
## $stErr
## [1] 0.02168483
```

1 - z\$zeroprob

## [1] 0.378

The simulation estimates a probability of 0.38 that some of of Napoleon's DNA survived down to you. *Comment.* Your answers may differ slightly because of the random number generation. To ensure reproducible results, you should set an explicit random number seed in the simulation command, e.g., ibdsim(..., seed = 1234).

b) To simulate a female line, we add sex = 2 to the linearPed() call. Note also that we use the female founder (2) instead of the male (1) in the ids argument.

```
x = linearPed(10, sex = 2)
sims2 = ibdsim(x, N = 500, ids = c(2, 21))
zz = zeroIBD(sims2)
1 - zz$zeroprob
```

## [1] 0.514

This gives an estimate of 0.51 of some surviving IBD in the female line. The probability is higher in this case because of the higher recombination rate in females.

### Exercise V-4 Bonus exercise: Fly forensics

Complete R code:

```
# Ptot
showInTriangle(kFly$perSimulation)
```



The points cover almost the entire triangle! The short fly genome gives much more variation than for humans. Thus, among flies, siblings are much more difficult to recognize as such.