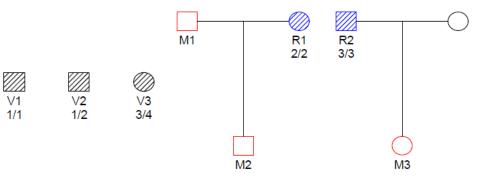


ISFG Summer School 2023 – Workshop 4.2

Lecture 6. Disaster victim identification

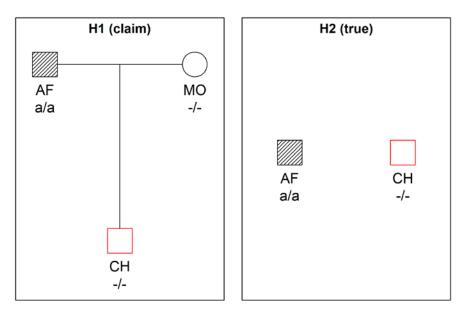


Thore Egeland Norwegian University of Life Sciences (NMBU) & Department of Forensic Medicine, Norway

Disaster Victim Identification (DVI)

• DVI

- Match list of unidentified persons against a list of missing persons
- Special case:
 - Missing Person Identification


Cases

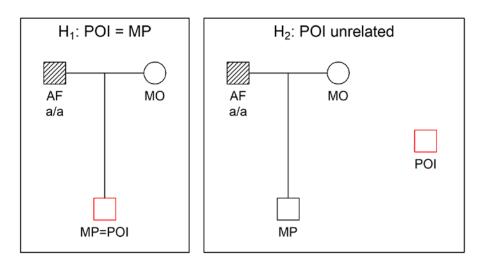
- Missing grandchildren of Argentina
- World Trade Center attack
- Spitsbergen civil aircraft disaster
- Balkan conflicts
- Drowned immigrants
- Thailand tsunami
- Traditional methods and software
 - Exclusion and inclusion
 - Treat *each* victim (PM approach) or *each* family (AM approach) at a time
 - Manual sequential approach
 - Joint approach
 - library(dvir)

Exclusion power

The exclusion power (EP) of a kinship test is the probability that H₁ ('claim') can be excluded, given that H₂ is true

 $EP = P(\text{data incompatible with } H_1 | H_2)$ $= P(CH \text{ does not have a } | H_2)$ $= (1 - p_a)^2 = (1 - 0.1)^2 = 0.81$

Exclusion power with the pedsuite

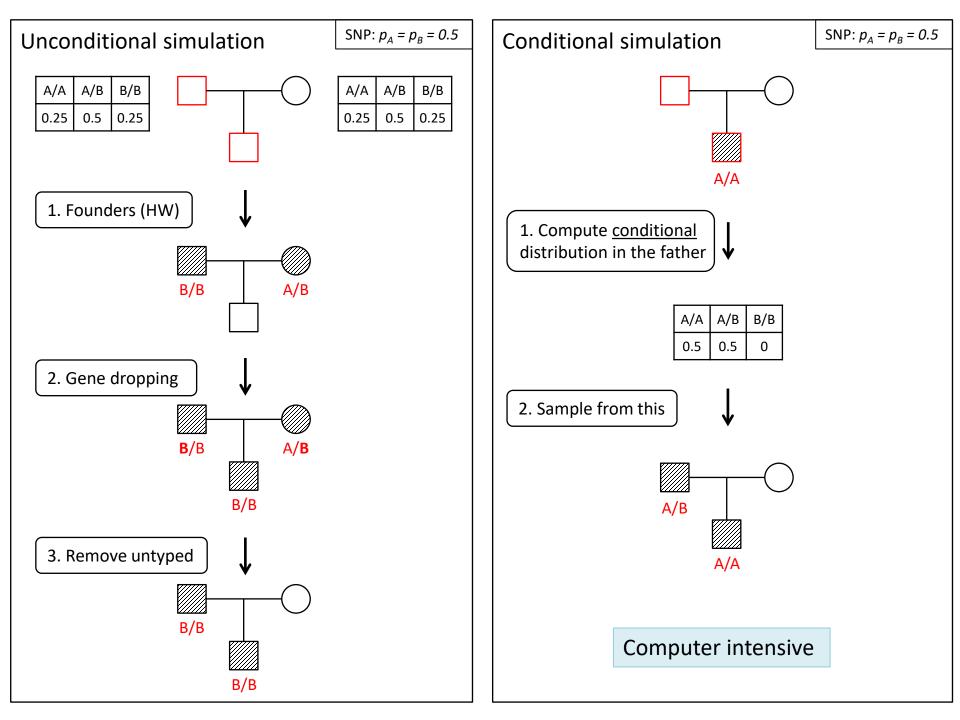

- The general function is
 - exclusionPower(claimPed, truePed, ids)
- If H₂ (true) is 'unrelated', we can use the simpler

– randomPersonEP(claimPed, id)

> afr = c(a = 0.1, b = 0.9)
> nuclearPed(fa = "AF", child = "CH") |>
 addMarker(AF = "a/a", afreq = afr) |>
 randomPersonEP("CH")

```
Potential mismatches: 1 (1)
Expected mismatches: 0.81
P(at least 1 mismatch): 0.81
```

Inclusion power



- Do we enough data to give a positive match if POI = MP?
- **Inclusion power** (or *exceedance probability*):

 $IP_{10000} = P(LR > 10000 | POI = MP)$

- Can be computed by simulation!
 - Unconditional \rightarrow <u>average</u> for all pedigrees of this type
 - Conditional \rightarrow probability for <u>this particular case</u>

In forrel: > missingPersonIP()

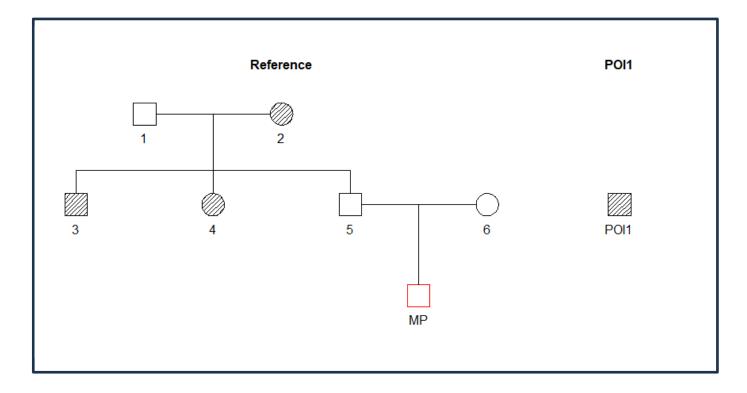
Special case: missing person identification

Argentina 1976 – 1983: Dirty War

- Military dictatorship
- War against guerrillas

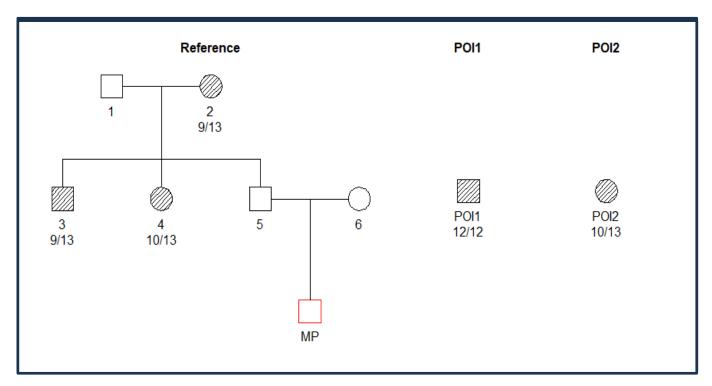
• Opponents killed or disappeared

- About 500 children abducted
 - kidnapped with their parents or born in captivity
 - parents killed
 - raised by police or military families


The missing grandchildren

- 1977: Grandmothers of Plaza de Mayo
 - weekly marches ever since
 - <u>https://www.abuelas.org.ar</u>
- 1983: Mary-Claire King, US geneticist
 - Collaboration with the Grandmothers
 - HLA typing + blood groups
 - First grandchild recovered using genetics
- 1987: National Genetic Data Bank (BNDG)
- 2007: Argentine Forensic Anthropology Team
- 2021: In total 130 reunifications by BNDG

BANCO NACIONAL DE DATOS GENÉTICOS Data


Standard marker kits:

- 15 24 autosomal STRs
- unlinked (mostly)

Sometimes also:

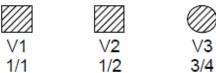
- X, Y, mtDNA markers
- Sex
- Age

Exclusion and inclusion

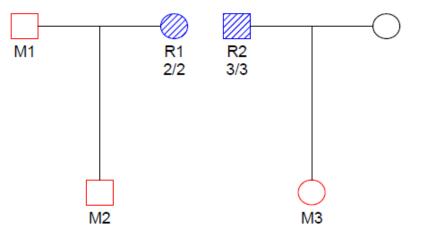
- POI1 = 12/12 is excluded if mutations are ignored since the alleles of his father are among 9/10/13
- POI2 is
 - ✓ not excluded
 - ✓ included if LR > 10,000 say.

Tailor made functions

- missingPersonPlot()
- missingPersonLR()
- missingPersonEP()
- missingPersonIP()
- Exemplified in exercise

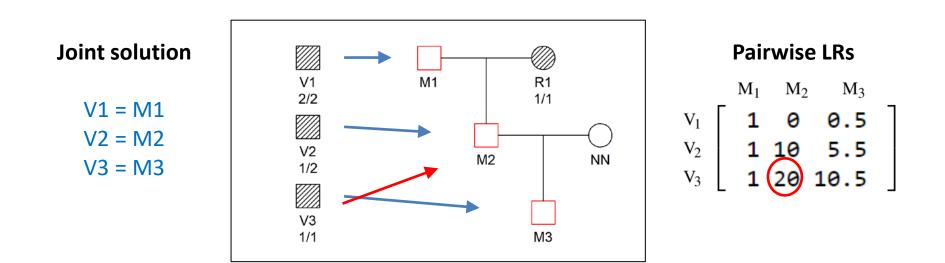

Pairwise approach

PM data ۰

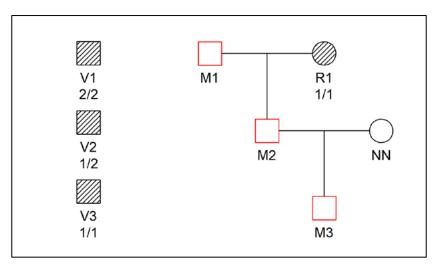

- Victims V1, V2,..., Vs —
- Replicated samples merged —

AM data •

- Missing persons M1, M2, ..., Mm
- References R1, R2, ...


- $p_1 = \dots = p_{10} = 0.1$
- Compare $V_2 = M_2$ to unrelated: ٠

$$LR_{2,2} = \frac{p_2^2 \cdot p_1}{p_2^2 \cdot 2p_1 p_2} = \frac{1}{2p_2} = 5$$

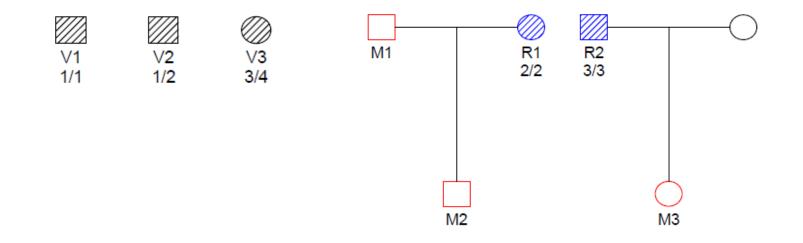

All pairwise comparisons:

	М1	м2	М3
٧1		0	
V2	1	6	0
V3		ō	5

Challenge: Sometimes pairwise fails

Possible solutions: assignments

- Assignment *a*
 - {V1 = M1, V2 = M2}
 - compact notation: (M1, M2, *)
 - 34 apriori possible assignments:


	٧1	V2	V3
1	М3	М1	М2
2	М2	*	М1
3	М2	*	М3
4	*	М1	М2
34	*	м2	*

The number of possible assignments

S_F								
m_F	0	1	2	3	4	5		
0	19081	3393	529	73	9	1		
1	9276	3922	1074	228	40	6		
2	4051	3135	1603	559	147	31		
3	1546	2004	1768	1054	438	136		
4	501	1045	1533	1533	1045	501		
5	136	438	1054	1768	2004	1546		
6	31	147	559	1603	3135	4051		
7	6	40	228	1074	3922	9276		
8	1	9	73	529	3393	19081		

5 victims and 8 MPs

Joint approach: example

The model

Example

 Assignments A 		V_1	V_2	V_3	loglik	LR	posterior
• Prior $\pi(a), a \in A$	1	M_1	M_2	M_3	-16.12	250.00	0.72
	2	M_1	M_2	*	-17.73	50.00	0.14
• Posterior $\pi(a PM and AM data)$	3	*	M_2	M_3	-18.42	25.00	0.07
	4	M_1	*	M_3	-20.03	5.00	0.01
	5	*	M_1	M_3	-20.03	5.00	0.01
Likelihood	6	*	M_2	*	-20.03	5.00	0.01
	7	*	*	M_3	-20.03	5.00	0.01
	8	M_1	*	*	-21.64	1.00	0.00
$L(a) = P(PM \text{ and } AM \text{ data } a, \Phi)$	9	*	M_1	*	-21.64	1.00	0.00
	→ 10	*	*	*	-21.64	1.00	0.00
	11	M_2	M_1	M_3	-Inf	0.00	0.00
 Frequentist: 	12	M_2	M_1	*	-Inf	0.00	0.00
	13	M_2	*	M_3	-Inf	0.00	0.00
$-LR = L(a)/L_0$	14	M ₂	*	*	-Inf	0.00	0.00
$-L_0$ = likelihood empty assignment							

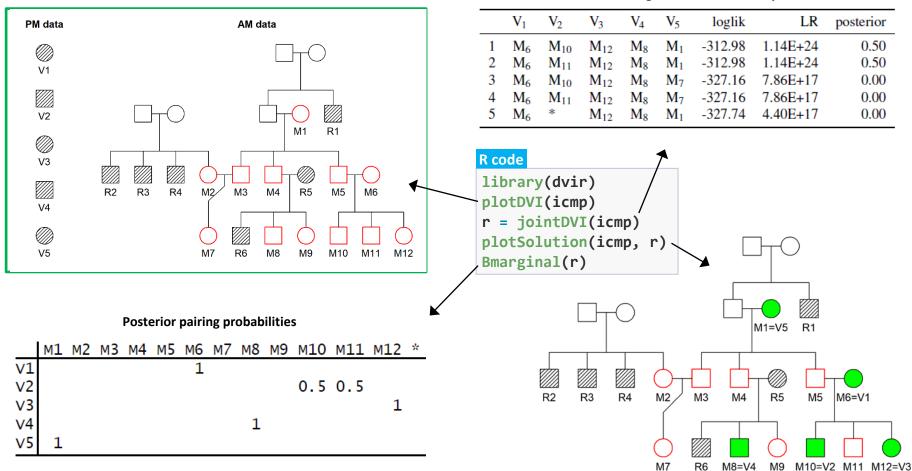
• From this, we get

 $-P(V_i = M_j | PM and AM data)$ $-P(V_i = * | PM and AM data)$

	M_1	M_2	M3	*
V_1	0.88	0.00	0.00	0.12
V_2	0.02	0.95	0.00	0.03
V_3	0.00	0.00	0.83	0.17

Numerical example

• The posterior with flat prior for the two first assignments:


$$\frac{250}{250+50+\dots+0} = 0.718$$
$$\frac{50}{250+50+\dots+0} = 0.144$$

Posterior pairing probability.
 Sum rows where V₁ = M₁:

 $P(V_1 = M_1 | PM and AM data) =$ 0.718+0.144+0.0144+0.003=0.88

	V_1	V_2	V_3	loglik	LR	posterior
1	M_1	M_2	M_3	-16.118	250.000	0.718
2	M_1	M_2	*	-17.728	50.000	0.144
3	*	M_2	M_3	-18.421	25.000	0.072
4	M_1	*	M_3	-20.030	5.000	0.014
5	*	M_1	M_3	-20.030	5.000	0.014
6	*	M_2	*	-20.030	5.000	0.014
7	*	*	M_3	-20.030	5.000	0.014
8	M_1	*	*	-21.640	1.000	0.003
9	*	M_1	*	-21.640	1.000	0.003
10	*	*	*	-21.640	1.000	0.003

	M_1	M ₂	M3	*
V_1	0.88	0.00	0.00	0.12
V_2	0.02	0.95	0.00	0.03
V_3	0.00	0.00	0.83	0.17

Large example (ICMP 2017)

Sorted assignments: 5 most likely solutions

Disaster Victim Identification in R: dvir package

- Key functions in exercise:
 - plotDVI()
 - pairwiseLR()
 - findExcluded()

>	excl\$exclusionMatrix								
	MP1	MP2	MP 3	MP4	MP 5	MP6	MP7	MP8	
V	L 0	NA	4	2	2	9	NA	NA	
VZ	2 NA	0	NA	NA	NA	NA	4	0	
VE	34	NA	0	2	2	9	NA	NA	
V۷	16	NA	4	0	0	5	NA	NA	
V	56	NA	4	0	0	7	NA	NA	
Ve	5 10	NA	5	1	1	0	NA	NA	
- V7	/ NA	12	NA	NA	NA	NA	0	0	
V	3 NA	9	NA	NA	NA	NA	2	0	
	1								

- findUndisputed

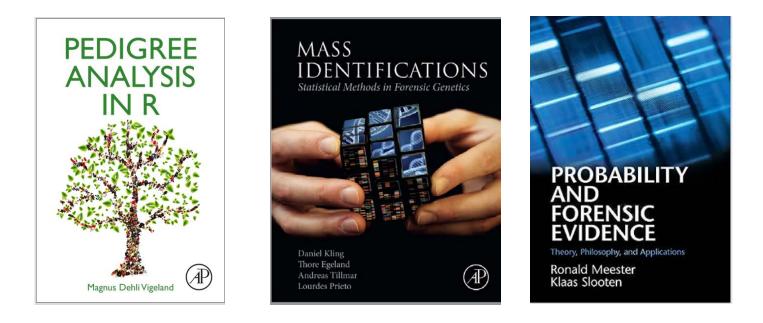
- jointDVI()

- plotSolution()

4 undisputed matches V1 = MP1 (LR = 4.8e+08) V2 = MP2 (LR = 6.78e+10) V3 = MP3 (LR = 6.41e+14) V6 = MP6 (LR = 8.82e+12)

Discussion

- What should be reported?
 - LR and, or posterior?
 - Joint or individual?
 - Use verbal scales?


• Extend model

- informative priors
- include non-genetic information in likelihood

 $L(a) = P(PM, AM, age|a, \Phi)$ = P(PM, AM|a, Φ)P(age|a, Φ)

beyond conventional forensic markers

Biased selection of references

Article | Open Access | Published: 01 July 2021

Joint DNA-based disaster victim identification

Magnus D. Vigeland 🗠 & Thore Egeland

Scientific Reports **11**, Article number: 13661 (2021) Cite this article