Pedigree analysis: Advanced

Magnus Dehli Vigeland and Thore Egeland

Exercise set IV. Missing person identification and DVI

To get started, open RStudio and load the **pedsuite** packages used in these exercises:

```
library(pedsuite)
library(dvir) # not a core package; must be loaded separately
```

If needed, download the datasets with the following command:

```
download.file("https://magnusdv.github.io/pedinr/datasets/data.zip", dest = "data.zip")
unzip("data.zip")
```

Exercise IV-1 (MPI case study)

In this exercise we will work through a case study in missing person identification. Genotypes and allele frequencies are given in the files mpi-example.ped and mpi-example.freq, included in the data folder.

a) Load the data in R with the code below, and inspect it using summary() and plotPedList().

```
mpi = readPed("data/mpi-example.ped")
mpi = setFreqDatabase(mpi, "data/mpi-example.freq")
```

b) Use the following code to plot the hypotheses. How many reference individuals have been typed, and what are their relationships to the missing person?

```
ref = mpi$Reference
missingPersonPlot(ref, missing = "MP")
```

c) We want to test if POI1 is the missing person. Find the LR and give a conclusion after running

```
poi1 = mpi$POI1
mpiTest1 = missingPersonLR(ref, missing = "MP", poi = poi1)
mpiTest1
```

d) Use the code below to plot the LR for each marker. Which markers have LR = 0?

```
lr1 = mpiTest1$LRperMarker
cols = ifelse(lr1 > 1, 8, 2)
barplot(lr1, col = cols, ylab = "LR", las = 2, cex.names = 0.8)
abline(h = 1, lty = 2)
```

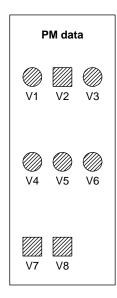
e) Find the LR for POI2. Which marker gives the largest LR?

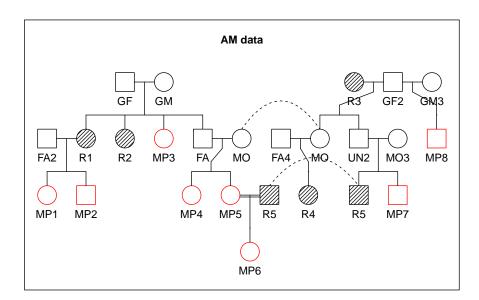
- f) Explain why marker D18S51 gives a high LR for POI2, but not for POI1.

 Hint: Look at plotPedList(mpi, marker = "D18S51") and afreq(mpi, marker = "D18S51").
- g) Find the exclusion power by running the code below. Interpret the output.

```
ep = missingPersonEP(ref, missing = "MP")
ep
```

h) Find the inclusion power by running the code below. Interpret the output.


```
ip = missingPersonIP(ref, missing = "MP", nsim = 1000, threshold = 10000, seed = 17)
ip
```


i) Present the two power analyses in a power plot and comment on the output.

```
powerPlot(ep, ip)
```

Exercise IV-2 (DVI analysis)

We will analyse the DVI dataset grave included in the dvir package. This is a complex case and some commands may take a few minutes to run. Here is an overview of the data:

a) Familiarise yourself with the dataset by printing the grave object to the console, and also its main components pm, am and missing.

```
grave
grave$pm
grave$am
grave$missing
```

Finally, use the function plotDVI() to reproduce the plot shown above.

b) Find the total number of *a priori* possible solutions, using the ncomb() function as follows. Explain the input to the function.

```
ncomb(5, 5, 3, 3)
```

- c) Describe the relationship between the parents of MP6. Find the inbreeding coefficient of MP6.
- d) Use pairwiseLR() to compute the matrix of pairwise likelihood ratios. Explain what the entries of this matrix are. What is the LR for the pairing V1 = MP1?

```
prw = pairwiseLR(grave)
prw$LRmatrix
```

e) Explain the output from

```
excl = findExcluded(grave)
excl$exclusionMatrix
```

f) Explain the output from

```
und = findUndisputed(grave)
und$undisputed
```

- g) Use jointDVI() to find the optimal (joint) solution, and inspect the top five alternatives. Comment on your findings.
- h) Use the function plotSolution() to visualise the best joint solution.