Weighted Minwise Hashing Beats Linear Sketching

for Inner Product Estimation

Christopher Musco

Inner Products and Sketches

- Inner products are used in many applications, e.g., computing document similarity, evaluate classification models, estimate join sizes
-For large vectors, inner product computation can be prohibitively expensive: $O(n)$ - Sketching methods have been proposed to address this challenge:

$$
\mathcal{F}(\mathcal{S}(\mathbf{a}), \mathcal{S}(\mathbf{b})) \approx\langle\mathbf{a}, \mathbf{b}\rangle
$$

- Sketching simultaneously reduces storage, communication, and runtime complexity

Prior Work

Linear Sketching for Inner Products [Arriaga and Vempala, 2006] Let $\epsilon, \delta \in(0,1)$ be accuracy and failure probability parameters respectively and let $m=O\left(\log (1 / \delta) / \epsilon^{2}\right)$. Let $\boldsymbol{\Pi} \in \mathbb{R}^{m \times n}$ be a random matrix with each entry set independently to $+\sqrt{1 / m}$ or $-\sqrt{1 / m}$ with equal probability. For length n vectors $\mathbf{a}, \mathbf{b} \in \mathbb{R}^{n}$, let $\mathcal{S}(\mathbf{a})=\Pi \mathbf{a}$ and $\mathcal{S}(\mathbf{b})=\boldsymbol{\Pi} \mathbf{b}$. With probability at least $1-\delta$, $|\langle\mathcal{S}(\mathbf{a}), \mathcal{S}(\mathbf{b})\rangle-\langle\mathbf{a}, \mathbf{b}\rangle| \leq \epsilon\|\mathbf{a}\|\|\mathbf{b}\|$
where $\|\mathbf{x}\|$ denotes the standard Euclidean norm.
Main Result
Let $\epsilon, \delta \in(0,1)$ be accuracy and failure probability parameters and $\operatorname{let} m=O\left(\log (1 / \delta) / \epsilon^{2}\right)$. There is an algorithm \mathcal{S} based on Weighted MinHash sampling that produces size- m sketches, along with an estimation procedure \mathcal{F}, such that for any $\mathbf{a}, \mathbf{b} \in \mathbb{R}^{n}$, with probability at least $1-\delta$, $\mathcal{F}(\mathcal{S}(\mathbf{a}), \mathcal{S}(\mathbf{b}))-\langle\mathbf{a}, \mathbf{b}\rangle \mid \leq \epsilon \max \left(\left\|\mathbf{a}_{\mathcal{I}}\right\|\|\mathbf{b}\|,\|\mathbf{a}\|\left\|\mathbf{b}_{\mathcal{I}}\right\|\right)$
Above, $\mathcal{I}=\{i: \mathbf{a}[i] \neq 0$ and $\mathbf{b}[i] \neq 0\}$ is the intersection of $\mathbf{a}^{\prime} \mathrm{s}$ and \mathbf{b} 's supports. $\mathbf{a}_{\mathcal{I}}$ and $\mathbf{b}_{\mathcal{I}}$ denote \mathbf{a} and \mathbf{b} restricted to indices in \mathcal{I}.

Low Overlap and Data Sparsity: Why do we care?
Error-bound improvement hinges on data sparsity, a common trait in practice. The provided Errage demonstrates how exploiting this sparsity significantly reduces errors.

MinHash Algorithm

- MinHash Sampling:
 .Map indexes i of non-zero entries to $[0,1]$ with a hash function h :

3. Repeat m times with different hashing functions h

- Store selected values $\mathbf{a}[i]$ and $\mathbf{b}[i]$ in $H_{\mathbf{a}}, H_{\mathbf{b}}$
- Estimate the inner product as:

$$
\frac{\tilde{U}}{m} \sum_{i=1}^{m} \mathbb{1}\left[H_{\mathbf{a}}^{\text {hash }_{[i]}}=H_{\mathbf{b}}^{\text {hash }}[i]\right] \cdot H_{\mathbf{a}}^{\text {val }}[i] \cdot H_{\mathbf{b}}^{\text {val }}[i]
$$

Applications

Weighted MinHash sketches enable efficient estimation of inner products for numerous applications, including (1) estimating the size of join of two tables, (2) estimating the similarity of text documents, and (3) estimating statistics (e.g. sum, covariance and correlation) of columns generated after a join without materializing table joins.

Figure 2. Across all three plots, the Weighted MinHash method clearly outperforms or matches the accuracy of competing approaches. The anticipated substantial performance gap between $J L$ and Weighted MinH ash is

Summary

