{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [],
"source": [
"import pynasdaq as nas;\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Stock"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Current price of a stock"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"symbol AMZN\n",
"company Amazon.com, Inc. Common Stock\n",
"lastSalePrice 1806.33\n",
"dtype: object"
]
},
"execution_count": 2,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"nas.currentPrice(\"AMZN\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Stock summary quote"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"symbol IBM\n",
"company International Business Machines Corporation Co...\n",
"lastSalePrice $142.45\n",
"volume 367,370\n",
"MarketCap 126,192,916,684\n",
"dtype: object"
]
},
"execution_count": 3,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"nas.stockSummaryQuote(\"IBM\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Historical stock prices"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"
\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" high | \n",
" low | \n",
" open | \n",
" close | \n",
" volume | \n",
" dateTime | \n",
" value | \n",
"
\n",
" \n",
" \n",
" \n",
" | 0 | \n",
" 134.59 | \n",
" 132.9539 | \n",
" 133.04 | \n",
" 133.76 | \n",
" 3,011,993 | \n",
" 08/16/2019 | \n",
" 133.76 | \n",
"
\n",
" \n",
" | 1 | \n",
" 136.33 | \n",
" 134.88 | \n",
" 134.88 | \n",
" 135.04 | \n",
" 3,165,436 | \n",
" 08/19/2019 | \n",
" 135.04 | \n",
"
\n",
" \n",
" | 2 | \n",
" 135.28 | \n",
" 132.81 | \n",
" 135.24 | \n",
" 133 | \n",
" 3,018,934 | \n",
" 08/20/2019 | \n",
" 133 | \n",
"
\n",
" \n",
" | 3 | \n",
" 135.94 | \n",
" 133.8 | \n",
" 134.96 | \n",
" 134.25 | \n",
" 2,806,774 | \n",
" 08/21/2019 | \n",
" 134.25 | \n",
"
\n",
" \n",
" | 4 | \n",
" 135.68 | \n",
" 133.81 | \n",
" 134.69 | \n",
" 134.32 | \n",
" 2,695,009 | \n",
" 08/22/2019 | \n",
" 134.32 | \n",
"
\n",
" \n",
" | 5 | \n",
" 134.26 | \n",
" 128.83 | \n",
" 133.63 | \n",
" 129.57 | \n",
" 4,818,759 | \n",
" 08/23/2019 | \n",
" 129.57 | \n",
"
\n",
" \n",
" | 6 | \n",
" 131.3 | \n",
" 129.16 | \n",
" 131.05 | \n",
" 129.99 | \n",
" 2,836,837 | \n",
" 08/26/2019 | \n",
" 129.99 | \n",
"
\n",
" \n",
" | 7 | \n",
" 131.6961 | \n",
" 130.31 | \n",
" 131.2 | \n",
" 131.17 | \n",
" 4,728,392 | \n",
" 08/27/2019 | \n",
" 131.17 | \n",
"
\n",
" \n",
" | 8 | \n",
" 132.89 | \n",
" 130.04 | \n",
" 130.44 | \n",
" 132.76 | \n",
" 2,720,362 | \n",
" 08/28/2019 | \n",
" 132.76 | \n",
"
\n",
" \n",
" | 9 | \n",
" 135.69 | \n",
" 134.04 | \n",
" 134.18 | \n",
" 134.88 | \n",
" 2,972,842 | \n",
" 08/29/2019 | \n",
" 134.88 | \n",
"
\n",
" \n",
" | 10 | \n",
" 136.07 | \n",
" 134.3627 | \n",
" 135.58 | \n",
" 135.53 | \n",
" 2,960,594 | \n",
" 08/30/2019 | \n",
" 135.53 | \n",
"
\n",
" \n",
" | 11 | \n",
" 134.9013 | \n",
" 133.3301 | \n",
" 134.85 | \n",
" 134.1 | \n",
" 2,828,242 | \n",
" 09/03/2019 | \n",
" 134.1 | \n",
"
\n",
" \n",
" | 12 | \n",
" 136.43 | \n",
" 135.15 | \n",
" 135.71 | \n",
" 136.32 | \n",
" 2,262,081 | \n",
" 09/04/2019 | \n",
" 136.32 | \n",
"
\n",
" \n",
" | 13 | \n",
" 141.695 | \n",
" 138.05 | \n",
" 138.3 | \n",
" 140.97 | \n",
" 5,012,914 | \n",
" 09/05/2019 | \n",
" 140.97 | \n",
"
\n",
" \n",
" | 14 | \n",
" 141.525 | \n",
" 140.46 | \n",
" 141.52 | \n",
" 140.57 | \n",
" 2,577,200 | \n",
" 09/06/2019 | \n",
" 140.57 | \n",
"
\n",
" \n",
" | 15 | \n",
" 143.02 | \n",
" 140.46 | \n",
" 140.59 | \n",
" 142.6 | \n",
" 4,226,944 | \n",
" 09/09/2019 | \n",
" 142.6 | \n",
"
\n",
" \n",
" | 16 | \n",
" 145.46 | \n",
" 142.96 | \n",
" 143 | \n",
" 145.05 | \n",
" 4,979,741 | \n",
" 09/10/2019 | \n",
" 145.05 | \n",
"
\n",
" \n",
" | 17 | \n",
" 145.12 | \n",
" 142.7051 | \n",
" 144.85 | \n",
" 143.6 | \n",
" 3,869,731 | \n",
" 09/11/2019 | \n",
" 143.6 | \n",
"
\n",
" \n",
" | 18 | \n",
" 144.04 | \n",
" 141.88 | \n",
" 144.03 | \n",
" 143.62 | \n",
" 2,505,432 | \n",
" 09/12/2019 | \n",
" 143.62 | \n",
"
\n",
" \n",
" | 19 | \n",
" 144.65 | \n",
" 143.26 | \n",
" 144.32 | \n",
" 143.67 | \n",
" 2,206,612 | \n",
" 09/13/2019 | \n",
" 143.67 | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" high low open close volume dateTime value\n",
"0 134.59 132.9539 133.04 133.76 3,011,993 08/16/2019 133.76\n",
"1 136.33 134.88 134.88 135.04 3,165,436 08/19/2019 135.04\n",
"2 135.28 132.81 135.24 133 3,018,934 08/20/2019 133\n",
"3 135.94 133.8 134.96 134.25 2,806,774 08/21/2019 134.25\n",
"4 135.68 133.81 134.69 134.32 2,695,009 08/22/2019 134.32\n",
"5 134.26 128.83 133.63 129.57 4,818,759 08/23/2019 129.57\n",
"6 131.3 129.16 131.05 129.99 2,836,837 08/26/2019 129.99\n",
"7 131.6961 130.31 131.2 131.17 4,728,392 08/27/2019 131.17\n",
"8 132.89 130.04 130.44 132.76 2,720,362 08/28/2019 132.76\n",
"9 135.69 134.04 134.18 134.88 2,972,842 08/29/2019 134.88\n",
"10 136.07 134.3627 135.58 135.53 2,960,594 08/30/2019 135.53\n",
"11 134.9013 133.3301 134.85 134.1 2,828,242 09/03/2019 134.1\n",
"12 136.43 135.15 135.71 136.32 2,262,081 09/04/2019 136.32\n",
"13 141.695 138.05 138.3 140.97 5,012,914 09/05/2019 140.97\n",
"14 141.525 140.46 141.52 140.57 2,577,200 09/06/2019 140.57\n",
"15 143.02 140.46 140.59 142.6 4,226,944 09/09/2019 142.6\n",
"16 145.46 142.96 143 145.05 4,979,741 09/10/2019 145.05\n",
"17 145.12 142.7051 144.85 143.6 3,869,731 09/11/2019 143.6\n",
"18 144.04 141.88 144.03 143.62 2,505,432 09/12/2019 143.62\n",
"19 144.65 143.26 144.32 143.67 2,206,612 09/13/2019 143.67"
]
},
"execution_count": 4,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"nas.historicalStockQuote('ibm',fromdate='2019-08-16',todate='2019-09-16')\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Batch quotes"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" companyName | \n",
" lastSalePrice | \n",
" netChange | \n",
" percentageChange | \n",
" deltaIndicator | \n",
" lastTradeTimestamp | \n",
" volume | \n",
"
\n",
" \n",
" | symbol | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
"
\n",
" \n",
" \n",
" \n",
" | AAPL | \n",
" Apple Inc. Common Stock | \n",
" $219.77 | \n",
" +1.02 | \n",
" 0.47% | \n",
" up | \n",
" DATA AS OF Sep 16, 2019 3:20 PM ET | \n",
" 7,322,583 | \n",
"
\n",
" \n",
" | GOOG | \n",
" Alphabet Inc. Class C Capital Stock | \n",
" $1,231.29 | \n",
" -8.27 | \n",
" 0.67% | \n",
" down | \n",
" DATA AS OF Sep 16, 2019 3:20 PM ET | \n",
" 270,146 | \n",
"
\n",
" \n",
" | FB | \n",
" Facebook, Inc. Class A Common Stock | \n",
" $186.13 | \n",
" -1.065 | \n",
" 0.57% | \n",
" down | \n",
" DATA AS OF Sep 16, 2019 3:20 PM ET | \n",
" 2,593,937 | \n",
"
\n",
" \n",
" | IBM | \n",
" International Business Machines Corporation Co... | \n",
" $142.45 | \n",
" -1.22 | \n",
" 0.85% | \n",
" down | \n",
" DATA AS OF Sep 16, 2019 3:20 PM ET | \n",
" 367,370 | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" companyName lastSalePrice \\\n",
"symbol \n",
"AAPL Apple Inc. Common Stock $219.77 \n",
"GOOG Alphabet Inc. Class C Capital Stock $1,231.29 \n",
"FB Facebook, Inc. Class A Common Stock $186.13 \n",
"IBM International Business Machines Corporation Co... $142.45 \n",
"\n",
" netChange percentageChange deltaIndicator \\\n",
"symbol \n",
"AAPL +1.02 0.47% up \n",
"GOOG -8.27 0.67% down \n",
"FB -1.065 0.57% down \n",
"IBM -1.22 0.85% down \n",
"\n",
" lastTradeTimestamp volume \n",
"symbol \n",
"AAPL DATA AS OF Sep 16, 2019 3:20 PM ET 7,322,583 \n",
"GOOG DATA AS OF Sep 16, 2019 3:20 PM ET 270,146 \n",
"FB DATA AS OF Sep 16, 2019 3:20 PM ET 2,593,937 \n",
"IBM DATA AS OF Sep 16, 2019 3:20 PM ET 367,370 "
]
},
"execution_count": 5,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"nas.batchQuotes(['AAPL','GOOG',\"FB\",\"IBM\"])"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Dividend"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Dividend calendar for a given date "
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" companyName | \n",
" symbol | \n",
" dividend_Ex_Date | \n",
" payment_Date | \n",
" record_Date | \n",
" dividend_Rate | \n",
" indicated_Annual_Dividend | \n",
" announcement_Date | \n",
"
\n",
" \n",
" \n",
" \n",
" | 0 | \n",
" Altra Industrial Motion Corp. | \n",
" AIMC | \n",
" 09/17/2019 | \n",
" 10/02/2019 | \n",
" 09/18/2019 | \n",
" 0.170 | \n",
" 0.680 | \n",
" 07/22/2019 | \n",
"
\n",
" \n",
" | 1 | \n",
" Brookfield Real Assets Income Fund Inc. | \n",
" RA | \n",
" 09/17/2019 | \n",
" 09/26/2019 | \n",
" 09/18/2019 | \n",
" 0.199 | \n",
" 2.587 | \n",
" 07/05/2019 | \n",
"
\n",
" \n",
" | 2 | \n",
" Briggs & Stratton Corporation | \n",
" BGG | \n",
" 09/17/2019 | \n",
" 10/02/2019 | \n",
" 09/18/2019 | \n",
" 0.050 | \n",
" 0.200 | \n",
" 01/01/1900 | \n",
"
\n",
" \n",
" | 3 | \n",
" Brookfield Global Listed Infrastructure Income... | \n",
" INF | \n",
" 09/17/2019 | \n",
" 09/26/2019 | \n",
" 09/18/2019 | \n",
" 0.082 | \n",
" 1.062 | \n",
" 07/05/2019 | \n",
"
\n",
" \n",
" | 4 | \n",
" Cohen & Steers Closed-End Opportunity Fund, Inc. | \n",
" FOF | \n",
" 09/17/2019 | \n",
" 09/30/2019 | \n",
" 09/18/2019 | \n",
" 0.087 | \n",
" 1.131 | \n",
" 06/11/2019 | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" companyName symbol dividend_Ex_Date \\\n",
"0 Altra Industrial Motion Corp. AIMC 09/17/2019 \n",
"1 Brookfield Real Assets Income Fund Inc. RA 09/17/2019 \n",
"2 Briggs & Stratton Corporation BGG 09/17/2019 \n",
"3 Brookfield Global Listed Infrastructure Income... INF 09/17/2019 \n",
"4 Cohen & Steers Closed-End Opportunity Fund, Inc. FOF 09/17/2019 \n",
"\n",
" payment_Date record_Date dividend_Rate indicated_Annual_Dividend \\\n",
"0 10/02/2019 09/18/2019 0.170 0.680 \n",
"1 09/26/2019 09/18/2019 0.199 2.587 \n",
"2 10/02/2019 09/18/2019 0.050 0.200 \n",
"3 09/26/2019 09/18/2019 0.082 1.062 \n",
"4 09/30/2019 09/18/2019 0.087 1.131 \n",
"\n",
" announcement_Date \n",
"0 07/22/2019 \n",
"1 07/05/2019 \n",
"2 01/01/1900 \n",
"3 07/05/2019 \n",
"4 06/11/2019 "
]
},
"execution_count": 6,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"nas.dividendCalendar(date=\"2019-09-17\").head()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Dividend history for a company given the symbol"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" exOrEffDate | \n",
" type | \n",
" amount | \n",
" declarationDate | \n",
" recordDate | \n",
" paymentDate | \n",
"
\n",
" \n",
" \n",
" \n",
" | 0 | \n",
" 08/09/2019 | \n",
" Cash | \n",
" $0.77 | \n",
" 07/30/2019 | \n",
" 08/12/2019 | \n",
" 08/15/2019 | \n",
"
\n",
" \n",
" | 1 | \n",
" 05/10/2019 | \n",
" Cash | \n",
" $0.77 | \n",
" 04/30/2019 | \n",
" 05/13/2019 | \n",
" 05/16/2019 | \n",
"
\n",
" \n",
" | 2 | \n",
" 02/08/2019 | \n",
" Cash | \n",
" $0.73 | \n",
" 01/29/2019 | \n",
" 02/11/2019 | \n",
" 02/14/2019 | \n",
"
\n",
" \n",
" | 3 | \n",
" 11/08/2018 | \n",
" Cash | \n",
" $0.73 | \n",
" 11/01/2018 | \n",
" 11/12/2018 | \n",
" 11/15/2018 | \n",
"
\n",
" \n",
" | 4 | \n",
" 08/10/2018 | \n",
" Cash | \n",
" $0.73 | \n",
" 07/31/2018 | \n",
" 08/13/2018 | \n",
" 08/16/2018 | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" exOrEffDate type amount declarationDate recordDate paymentDate\n",
"0 08/09/2019 Cash $0.77 07/30/2019 08/12/2019 08/15/2019\n",
"1 05/10/2019 Cash $0.77 04/30/2019 05/13/2019 05/16/2019\n",
"2 02/08/2019 Cash $0.73 01/29/2019 02/11/2019 02/14/2019\n",
"3 11/08/2018 Cash $0.73 11/01/2018 11/12/2018 11/15/2018\n",
"4 08/10/2018 Cash $0.73 07/31/2018 08/13/2018 08/16/2018"
]
},
"execution_count": 7,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"nas.dividendHistory(\"AAPL\").head()"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.7.1"
}
},
"nbformat": 4,
"nbformat_minor": 2
}