
Data Management
GIT: A version control system

HEC Liège |

Malka Guillot

ECON2306

1 / 49

https://malkaguillot.github.io/
https://gitlab.uliege.be/mguillot/econ2306-data-management-2021-22/

Table of contents
�.

�.

�.

�.

�.

�.

The importance of version control

Git(Hub)

Getting started on a project

Backbone of git: Commits & branches

The �esh of git: Collaborating

Epilogue

2 / 49

The importance of version control

3 / 49

What is version control?
Version control is a way to keep track of changes to code, text, and
documents. And data and outputs.

It gives you an organized revision history
It lets you experiment without fear
It lets you go back and forth between many different versions of the
same �le, and see a list of the differences
It makes (the technical aspects of) collaboration a breeze
It lets you and your collaborators work on different versions and
then merge them

4 / 49

From local to distributed version control system
Local: everything is on your computer

 No collaboration

 Not possible to retrieve �les if the local machine crashes

−

−

5 / 49

file:///Users/malka/dox/econ2306-dm/lectures/1-git.html
file:///Users/malka/dox/econ2306-dm/lectures/1-git.html

From local to distributed version control system
Centralized:

all �les on 1 server
many collaborators checkout �les

 Collaboration

 Not possible to retrieve �les if the central server crashes

+

−

6 / 49

file:///Users/malka/dox/econ2306-dm/lectures/1-git.html
file:///Users/malka/dox/econ2306-dm/lectures/1-git.html

From local to distributed version control system
Distributed:

one or more servers
many collaborators

 Collaboration

 Each user has their own repository and a working copy

+

+

7 / 49

file:///Users/malka/dox/econ2306-dm/lectures/1-git.html
file:///Users/malka/dox/econ2306-dm/lectures/1-git.html

Why bother?

Also git vs. Dropbox from a researcher's perspective

8 / 49

https://michaelstepner.com/blog/git-vs-dropbox/

[CCL] Version control system
Enables coordinatation no code change is lost or accidentally
overwriten.

Provides an organized sharing platform open source &
documentation

 key tool from our project management perspective

 widely used in a companies / not enough in research:

Software development
Scienti�c researcher
Anything involving coding (even latex)

→

→

⇒

⇒

9 / 49

Git(Hub)

10 / 49

This is Git

Source: https://xkcd.com/1597/

11 / 49

https://xkcd.com/1597/

Git(Hub): a solution

:Git

Git is a distributed version control system. (Wait, what?)

Okay, try this: Imagine if Dropbox and the "Track changes" feature
in MS Word had a baby. Git would be that baby.

most popular open source version control system out there.

GitHub

GitHub = that provides an array of
services built on top of the Git system.

(Similar platforms include Bitbucket and GitLab.)

online hosting platform

12 / 49

https://git-scm.com/
https://github.com/

Git vs. Github

It's important to realize that Git and GitHub are distinct things.

We don't need GitHub to use Git... But it will make our lives so much
easier.

 There is a learning curve, but I promise you it's worth it.→

13 / 49

Git model
�. You do work in your working directory
�. Then you add it to your staging area
�. Once you've staged , commit a

snapshot of the staging area
�. If you have a remote repository, push your commit

all you changes for one discrete task

14 / 49

file:///Users/malka/dox/econ2306-dm/lectures/1-git.html

Getting started on a project
Where we create our �rst repository!

15 / 49

[Task 1] Setup
Navigate to + "Sign Up"

Go through the account setting steps ("Verify your email
address"...)

Navigate to GitHub's homepage. Navigate to "Sign Up" in the top right
hand side of the page.

GitHub account
GitHub's homepage

16 / 49

https://github.com/
https://github.com/

[Task 2] Getting started with Git(Hub)

�. Install (Linux, Mac, Windows) if not already installed

�. Git comes with a command line interface (powerful!).

�. You might want to add a graphical interface to make things easier:

You can link it with your GitHub account

Git

GitHub desktop

17 / 49

https://git-scm.com/downloads
https://desktop.github.com/

[Task 3] Your first (local) repository
Let's look at an example using

�. Open GitHub Desktop and select File/New repository
�. Choose the name and the local directory to use
�. Start working in the directory, i.e.

Create some .txt �le with some text
Commit it
Make a modi�cation, and commit again: look at the changes!

GitHub desktop

18 / 49

file:///Users/malka/dox/econ2306-dm/lectures/1-git.html

[Hint] What actually is the Git repository?
The Git local repository is associated with a particular directory
Open the directory in your Git interface to see your options
Git stores all its workings in that directory in a hidden subfolder
called “.git”

3 special options:

README.md: description of the directory
.gitignore: what should be ignored by the tracking systel
licence open source?→

19 / 49

[Hint] What should I include?
�. At a minimum:

Code (.do, .py, .R, .m, .jl, and so on)
Text �les (.txt)
LATEX documents (.tex)

�. I also recommend:
Raw .csv datasets, if small (<10 MB)

�. These are binary �les, so you can’t see differences between
versions. I recommend including them anyway.

PDF �les
Word, Excel, PowerPoint �les

�. Some people also include all datasets.
Note that GitHub doesn’t allow �les larger than 100 MB, or
projects with total size larger than 1 GB.

For datasets, look into Git Large File Storage.

20 / 49

[Hint] What should I exclude?
In order to avoid driving your collaborators crazy, you must tell Git to
ignore the junk �les using a �le called .gitignore. It looks like this:

Junk created by LaTeX:
Junk created by Python:

Best practice: use .gitignore to explicitly exclude everything that you
don’t want to include, and commit .gitignore like any other regular �le.

GitHub maintains a list of standard .gitignore �les for many common
languages.

*.synctex.gz, *.out *.log

*.pyc

21 / 49

Backbone of git: Commits & branches
Where we commit ourselves (locally)!

22 / 49

Commits: saving a snapshot
"One discrete task" = a collection of changes, across multiple �les (or
not), that does one thing.

Examples:

Change the formatting of a variable from string to numeric, and
treat it properly across multiple scripts
Change your regression speci�cation in code, in the output, and in
your paper and supporting documentation
Add a new function

23 / 49

Before you commit
Your code should run properly run tests
No compilation erros (in Latex for example)
Output should be consistent inside the commit (including
comments)

But it’s better to have frequent commits (that might have small
mistakes) than to have giant, infrequent commits.

→

24 / 49

Viewing changes when committing

25 / 49

Commit message
Examples:

“Change the formatting of start date variable from string to date
format”
“Add year dummies to regression speci�cation”

 The more detail, the more your future self will thank you.→

26 / 49

Commit message: example

27 / 49

Viewing commit history

28 / 49

When things go wrong: go back in time
What happens when a commit was a mistake? Revert it, to make a new
commit that undoes it.

29 / 49

This can happen!

Source: https://xkcd.com/1296/

30 / 49

https://xkcd.com/1296/

Branches: trying things out
Branches are the most powerful part of Git

By default, all the work you do goes into the “master” branch

Want to experiment? Start a new branch

You can switch between branches, and make commits to either
branch

If your experiment works out, commit and merge back into the
master branch

If there are con�icts between the commits you’ve made on the
two branches, Git will ask you to resolve them
This is easiest with a graphical interface like GitKraken
Only works with binary �les
If your experiment doesn’t work out, delete the new branch
painlessly

31 / 49

Keeping it local vs. using a remote repository
Git doesn’t require a remote repository. You can run it 100% on your
computer, with no connection to an outside server.

Useful if you have restrictions on your code (e.g. con�dential health
data)
A remote repository helps

keep things backed up seamlessly,
collaborate with others

You can push all your branches to the remote repository, or only
some of them
Big companies often have an internal git server

32 / 49

Collaborating
Where we open ourselves to others and go remote!

33 / 49

Interacting with the remote directory
The remote repository is on a server, and holds a record of your
commits and branches

You push to the remote repository to save all your commits

You pull from the remote repository to load all new commits
Always commit before pushing or pulling
If what you’re doing is an experiment, make a new branch to avoid
any trouble for your coauthor
If there are con�icts between your commits and your colleagues’s
commits, Git will ask you to resolve them

34 / 49

Basic workflow: push - pull

This is what happens between your computer (local) and your
repository (remote).

35 / 49

Pushing to the remote repository (GitHub Desktop)

Sending my commits to the internet!

36 / 49

Create a remote repository

Make sure you click the box to initialize it with a README
gitignore python template
licence

→

37 / 49

Create a remote repository

38 / 49

The README.md
Very important �le!

Objective: communicate important information about your
project

A markdown �le
Markdown?= lightweight markup language

Not only useful for README: for eg., these slides are written in
markdown!

The guide
The syntax

39 / 49

https://www.markdownguide.org/getting-started/
https://www.markdownguide.org/basic-syntax/

Basic work: clone or fork ?

40 / 49

Cloning a repo

41 / 49

Git Challenge 1

Create an example repository on your GitHub account (including a
readme).

git clone this repository to your computer. Go to this directory.

Create three �les named �le1.txt, �le2.txt, and �le3.txt in your local
repository.

Stage, commit, and push �le1.txt to your remote repository. Refresh
the URL on your GitHub page. Do you see your commit?

Stage, commit, and push �le2.txt and �le3.txt to your remote
repository as a single commit.

42 / 49

Navigating GitHub
Example: our

Noti�cation: Notify you when there are changes or conversations in
the repo.
Star: Add this repo to a list of repos that appear in your feed. Think
of this as "favoriting" a repo.
Fork: Make a copy of this repository in your own account. Useful
if you are not directly involved with a project but want to build on
top of someone else's code.

course repository

→

43 / 49

https://github.com/malkaguillot/ECON2206-Data-Management-2022

Git challenge 2 (using GitHub desktop):
Fork the
Change the upstream repository

In repository settings: change the "Primary remote repository" to
my

Create a folder sandbox: this is were you are going to work!
Open the .gitignore (you can create it still)
add on a new line: sandbox/* : this will ignore the content of the
sandbox when working with the remote => no con�ict !
create a toy �le in the sandbox
In the meantime, I make a commit
Then can you fetch my commit?

course repository

repo HTTPS addres

44 / 49

https://github.com/malkaguillot/ECON2206-Data-Management-2022
https://github.com/malkaguillot/ECON2206-Data-Management-2022.git

Epilogue

45 / 49

Want more of this?
Let's learn one day how to use the command line interface!

46 / 49

How to interact with the materials?
Set up GitHub
Fork the class repository (-> your remote repository)
Clone your repository on your computer (-> your local repository)
Add an upstream origin (mine)
Work in the sandbox folder

this way, you can fetch my updates

47 / 49

References
Extensive git manual:

github cheatsheet

interactive tutorial
interactive tutorial on git branching

In case it goes wrong:

https://happygitwithr.com/
git - the simple guide

https://education.github.com/git-cheat-sheet-
education.pdf

https://gitimmersion.com/index.html

https://learngitbranching.js.org/?locale=fr_FR
http://ohshitgit.com/

48 / 49

https://happygitwithr.com/
https://rogerdudler.github.io/git-guide/
https://education.github.com/git-cheat-sheet-education.pdf
https://gitimmersion.com/index.html
https://learngitbranching.js.org/?locale=fr_FR
http://ohshitgit.com/

For next week:
Get confortable with using Git(Hub)

practice with the challenges
go over references
work on the interactive tutorials

Python installation
Install , try out to run python in a Jupyter notebook and
spyder
See installation guide
Wait for next week's introduction by Michel!

Basics of python's syntax:
less Classes and Objects + Modules and Packages.

Anaconda

link

Learn Python

49 / 49

https://www.anaconda.com/products/individual
https://dox.uliege.be/index.php/s/nDh7bKGWhriRor2
https://www.learnpython.org/

