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Context
Today

What is statistical learning?
Statistics in social science – causality.
Statistics in machine learning – prediction.
Accuracy v. interpretability.
Model accuracy.
The bias-variance tradeoff.

Next
Supervised learning

Classi�cation
Regression

Unsupervised learning
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Machine Learning: overview and examples
Supervised vs. unsupervised learning
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Supervised learning
Estimating functions with known observations and outcome data.

We observe data on  and 

We want to learn the mapping 

Classi�cation when  discrete

Regression when  continuous

𝑌 𝑋

= (𝑋)𝑌 ̂  𝑓 ̂ 

𝑌 ̂ 

𝑌 ̂ 
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Unsupervised learning
Estimating functions without the aid of outcome data.

We only observe  and want to learn something about its structure

Clustering: Partition data into homogeneous groups based on X

Dimensionality reduction (e.g. PCA)

𝑋
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The Machine learning landscape
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Examples: Studies using ML for p rediction
 use images from Google Street View to

measure block-level income in New York City and Boston
 train a neural net to predict local economic outcomes from satellite

data in African countries
 predict shootings among high-risk youth so that

mentoring interventions can be appropriately targeted
 predict the crime

probability of defendants released from investigative custody to improve judge
decisions

 use restaurant reviews on Yelp.com to predict
the outcome of hygiene inspections

use machine learning to detect bid-rigging cartels in
Switzerland

predict volatility of �rms from market-
risk disclosure texts (annual 10-K forms)

Glaeser, Kominers, Luca, and Naik (2016)

Jean et al. (2016)

Chandler, Levitt, and List (2011)

Kleinberg, Lakkaraju, Leskovec, Ludwig, and Mullainathan (2018)

Kang, Kuznetsova, Luca, and Choi (2013)

Huber and Imhof (2018) 

Kogan, Levin, Routledge, Sagi, and Smith (2009) 
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What is statistical learning?


11 /  58



Setting
Input variables 

AKA features, independent variables, predictors
Output variables 

AKA dependent variables, outcomes, etc.
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Statistical learning theory

𝑓 :  → 

 ∈ ,  ∈ℝ
𝑛×𝑝

ℝ
𝑝

SL= approaches for �nding a function that
accurately maps the inputs  to outputs  
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Statistical model
Concretely, �nding  s.t.

 is an unknown function of a matrix of predictors 
,

: a scalar outcome variable
an error term  with mean zero.
While  and  are known,  is unknown.

Goal of statistical learning: to utilize a set of approaches to estimate
the “best”  for the problem at hand.

𝑓(. )

𝑌 = 𝑓(𝑋) + 𝜖

𝑓(𝑋)

𝑋 = ( , · · ·, )𝑋1 𝑋𝑝

𝑌

𝜖

𝑋 𝑌 𝑓(·)

𝑓(·)
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Example: income as a function of education
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Why estimate ?𝑓(𝑋)
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Prediction
Predict  by 
When do we care about "pure prediction"?

 readily available but  is not
 can be a black box:

the only concern is accuracy of the prediction

𝑌 = (𝑋)𝑌 ̂  𝑓 ̂ 

𝑋 𝑌

𝑓 ̂ 
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Inference
Understanding the way that  is affected as  change

Which predictors are associated with the response?
What is the relationship between the response and each
predictor?

 is cannot be a black box anymore

𝑌 , . . . ,𝑋1 𝑋𝑝

⇒ 𝑓 ̂ 
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Example: prediction or inference paradigm?
Two policy makers :

one facing a drought:

must decide whether to invest in a rain dance to increase the
chance of rain.

one seeing clouds:

must deciding whether to take an umbrella to work to avoid
getting wet on the way home

 Both decisions could bene�t from an empirical analysis on rain

Which one relates to a causality / prediction problem?

→
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Approach in social science
Objective: Understanding the way that  is affected as 
change
The goal not necessarily to make predictions for 
Often linear function to estimate : 
Assume 
Parameters  are estimated by minimizing the sum of squared
errors

𝑌 , . . . ,𝑋1 𝑋𝑝

𝑌

𝑌 𝑓(𝑋) = ∑𝑝

𝑖=1
𝛽𝑖𝑥𝑖

𝜖 ∼ 𝑁(0, )𝜎2

𝛽

𝑌 = + 𝜖∑
𝑖=1

𝑝

𝛽𝑖𝑥𝑖
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Approach in social science: causality

Interested in the values of one or two parameters and whether they
are causal or not.
Framework to interpret statistical causality: Rubin (1974)

 measures the extent to which  will affect 

𝑌 = + 𝑇 + + 𝜖𝛽0 𝛽1 ∑
𝑖=1

𝑝−1

𝛽𝑖𝑥𝑖

𝛽1 Δ𝑋𝑡 Δ𝑌𝑡+1
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Approach in social science: causality
Causal inference requires that  or 

 can be achieved through randomization of 

This implies that we are not really all that interested in choosing an
optimal 
(We want to estimate unbiased coef�cients)

𝑇 ⊥ 𝜖 𝑇 |𝑋 ⊥ 𝜖

→ 𝑇

𝑓(. )
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Approach in machine learning: prediction

Objectives:
�nd the “best”  and the “best” set of ’s which give the best
predictions,
Accuracy: �nd the function that minimize the difference between
predicted and observed values
(We want to minimize prediction error)

= (𝑋)𝑌 ̂  𝑓 ̂ 

𝑓(·) 𝑋

𝑌 ̂ 
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Reducible and irreducible error
 estimated function

 true function

Reducible error:  is used to estimate f, but not perfect

Accuracy can be improved by adding more features

Irreducible error:  = all other features that can be used to predict 

Unobserved  irreducible

(𝑋) =𝑓 ̂  𝑌 ̂ 

𝑓(𝑋) + 𝜖 = 𝑌 ̂ 

𝑓 ̂ 

𝜖 𝑓

→
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Reducible and irreducible error

 Objective: estimating  with the aim of minimizing the reducible
error

𝐸(𝑌 − 𝑌 ̂ )
2

= 𝐸[𝑓(𝑋) + 𝜖 − (𝑋)𝑓 ̂  ]
2

= +  [𝑓(𝑋) − (𝑋)𝑓 ̂  ]2
  

𝑅𝑒𝑑𝑢𝑐𝑖𝑏𝑙𝑒

𝑉 𝑎𝑟(𝜖)
⏞

𝐼𝑟𝑟𝑒𝑑𝑢𝑐𝑖𝑏𝑙𝑒

⇒ 𝑓
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How do we estimate ?𝑓
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Context
We use observations to "teach" our ML algorithm to predict outcomes

Training data:  where 

Goal: use the training data to estimate the unknown function 

2 types of SL methods: parameteric vs. nonparametric

{( , ), ( , ), … , ( , )}𝑥1 𝑦1 𝑥2 𝑦2 𝑥𝑛 𝑦𝑛

= ( , , … ,𝑥𝑖 𝑥𝑖1 𝑥𝑖2 𝑥𝑖𝑝)𝑇

𝑓
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Parametric methods
Model-based approaches, 2 steps:

�. Specify a parametric (functional) form for , e.g. linear:

(Parametric means that the function depends on a �nitenumber of
parameters, here ).

�. Training: Estimate the parameters by OLS and predict  by

𝑓(𝑋)

𝑓(𝑋) = + + ⋯ +𝛽0 𝛽1𝑋1 𝛽𝑝𝑋𝑝

𝑝 + 1

𝑌

= (𝑋) = + + ⋯ +𝑌 ̂  𝑓 ̂  𝛽 ̂ 
0 𝛽 ̂ 

1𝑋1 𝛽 ̂ 
𝑝𝑋𝑝
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True function
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Linear estimate
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Parametric methods -- issues
Misspeci�cation of 

�. Rigid models (e.g. strictly linear) may not �t the data well
�. More �exible models require more parameter estimation 

over�tting

𝑓(𝑋)

→
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Non-parametric methods

No assumptions about the functional form of 

Estimates a function only based on the data itself.

Disadvantage: very large number of observations is required to
obtain an accurate estimate of 

𝑓

𝑓
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“Smooth” nonlinear estimate
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Rough nonlinear estimate with perfect fit  overfit⇒
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Accuracy and interpretability tradeoffs

More accurate models often require estimating more parameters
and/or having more �exible models

Models that are better at prediction generally are less interpretable.

 What we care about:

For inference: interpretability.
For prediction: accuracy.

⇒
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Model Accuracy
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Mean Squared Error (MSE)

Regression setting: the mean squared error is a metric of how well a
model �ts the data.

But it’s in-sample.

What we are really interested in is the out-of-sample �t!

𝑀𝑆𝐸 = ( − ( )
1

𝑛 ∑
𝑖=1

𝑛

𝑦𝑖 𝑓 ̂ 𝑥𝑖 )2
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Measuring fit (1)

We would like  to be small for some , not in our
training sample .

Assume we had a large set of observations  (a test sample),

then we would like a low

i.e a low average squared prediction error (test MSE)

( − ( )𝑦0 𝑓 ̂ 𝑥0 )2 ( , )𝑦0 𝑥0

( , )𝑥𝑖 𝑦𝑖
𝑛

𝑖=1

( , )𝑦0 𝑥0

𝐴𝑣𝑒( − ( )𝑦0 𝑓 ̂ 𝑥0 )2
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Measuring fit (2)
To estimate model �t we need to partition the data:

�. Training set: data used to �t the model
Training MSE: how well our model �ts the training data.

�. Test set: data used to test the �t
Test MSE: how well our model �ts new data

We are most concerned in minimizing test MSE
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Training MSE, test MSE and model flexibility

Red (grey) curve is test (train) MSE

Increasing model �exibility tends to decrease training MSE but will
eventually increase test MSE


40 /  58



Overfitting

As model �exibility increases, training MSE will decrease, but the
test MSE may not.

When a given method yields a small training MSE but a large test
MSE, we are said to be over�tting the data.

(We almost always expect the training MSE to be smaller than the
test MSE)

Estimating test MSE is important, but requires training data...
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The Bias-Variance Trade-Off
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Decomposing the expected (test) MSE

3 components:

�.  Variance of the predictions
how much would  change if we applied it to a different data set

�.  Bias of the predictions
how well does the model �t the data?

�.  variance of the error term

𝐸( − ( ) = 𝑉 𝑎𝑟( ( )) + [𝐵𝑖𝑎𝑠( ( )) + 𝑉 𝑎𝑟(𝜖)𝑦0 𝑓 ̂ 𝑥0 )2 𝑓 ̂ 𝑥0 𝑓 ̂ 𝑥0 ]2

𝑉 𝑎𝑟( ( )) =𝑓 ̂ 𝑥0

𝑓 ̂ 

[𝐵𝑖𝑎𝑠( ( )) =𝑓 ̂ 𝑥0 ]2

𝑉 𝑎𝑟(𝜖) =
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The bias-variance tradeoff

less �exibility  high bias and low variance

more �exibility  low bias and high variance

Models that are too �exible or expressive or complex over�t!!

→

→
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Accuracy in Classifications

MSE in the context of regression (continuous predictor).

Modi�cations in the setting in which we’re interested in prediction
classes

We are essentially interested in what % of classi�cations are correct.

For cross-validation we could also use the estimated test error rate

(training) error rate = 1( ≠ )
1

𝑛 ∑
𝑖=1

𝑛

𝑦𝑖 𝑦 ̂ 
𝑖

(test) error rate = 𝐴𝑣𝑒(1( ≠ ))𝑦0 𝑦 ̂ 
0
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How to choose training and test set?
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Resamling methods
Estimate the test error rate by

holding out a subset of the training observations from the �tting
process,

 then applying the statistical learning method to those held out
observations
+
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Validation set approach
Labeled data randomly into two parts: training and test (validation)
sets.
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Two concerns

Arbitrariness of split

Only use parts of the data for estimation

 we tend to overestimate test MSE because our estimate of  is
less precise
→ 𝑓(𝑥)
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Leave-One-Out Cross-Validation (LOOC)
Fit on  training observations, and a prediction the Last
Iterate  times
Assess the average model �t across each test set.

Estimate for the test MSE:

𝑛 − 1

𝑛

𝐶 = 𝑀𝑆𝑉𝑛 ∑
𝑖=1

𝑛

𝐸𝑖
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Leave-One-Out Cross-Validation (LOOC)

less bias than the validation set approach
always yield the same results
potentially too expensive to implement


51 /  58



-fold Cross-validation
Leave-One-Out Cross-Validation with 
Randomly dividing the data into the set of observations into 
groups
1st fold is treated as a validation set, and the method is �t on the
remaining  folds
Iterate  times

Estimate for the test MSE:

𝑘

𝑘 = 1

𝑘

𝑘 − 1

𝑘

𝐶 = 𝑀𝑆𝑉𝑘 ∑
𝑖=1

𝑘

𝐸𝑖
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-fold Cross-validation

 Arguably the contribution to econom(etr)ics: Cross-validation (to
estimate test MSE)!

𝑘

⇒
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Bias-Variance Trade-Off -Fold Cross-Validation
Bias

validation set approach can lead to overestimates of the test error
rate
1-fold validation: almost unbiased estimates of the test error
k-fold validation is in between

Variance

1-fold validation: higher variance
k-fold validation: lower variance

 or  is a good benchmark

𝑓

𝑘 = 5 𝑘 = 10
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Conclusion:
Econometrics vs. Machine Learning
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Econometrics vs. Machine Learning (1)
Common objective: to build a predictive model, for a variable of
interest, using explanatory variables (or features)
Different cultures:

E: probabilistic models designed to describe economic
phenomena
ML: algorithms capable of learning from their mistakes

  Charpentier A., Flachaire, E. & Ly, A. (2018). . Economics and Statistics, 505-506,
147–169.

Econometrics and Machine Learning
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Econometrics vs. Machine Learning (2)

Classical computer programming: humans input the rules and the
data, and the computer provides answers.

Machine learning: humans input the data and the answer, and the
computer learns the rules.
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The Machine learning workflow
�. Look at the big picture.
�. Get the data.
�. Discover and visualize the data to gain insights.
�. Prepare the data for Machine Learning algorithms.
�. Select a model and train it.
�. Fine-tune your model.
�. Present your solution.
�. Launch, monitor, and maintain your system

  Aurelien Geron, Hands-on machine learning with Scikit-Learn &
TensorFlow, Chapter 2
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