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Linear Regression as a Predictive Model
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Linear Regression

 one of the simplest algorithms for doing supervised learning

A good starting point before studying more complex learning methods

𝑌 = + +⋯ + + 𝜖𝛽0 𝛽1𝑋1 𝛽𝑝𝑋𝑝

=
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Estimation by Ordinary Least Squares

Minimizing RSS gives a closed form solution for the 

Most ML models do not have a a colsed form solution

𝑅𝑆𝑆 = Residual sum of squares = ( −∑𝑛

𝑖=1 𝑦𝑖 𝑦 ̂ 
𝑖)
2

,⋯𝛽 ̂ 
1 𝛽 ̂ 

𝑝
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Extensions of the Linear Model
Going further model's assumptions:

the additive: the effect of changes in a predictor  on the response
 is independent of the values of the other predictors

linearity: the change in the response  due to a one-unit change in 
 is constant

𝑋𝑗

𝑌

𝑌

𝑋𝑗
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Interactions
Adding interacted variable can help
Should respect the hierarchy principle:

if an interaction is included, the model should always include the
main effects as well
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Non Linearity
Include transformed versions of the predictors in the model

 Including polynomials in  may provide a better �t⇒ 𝑋
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Linear Models: pros and cons

:

Interpretability
Good predictive performance
Accuracy measures for

coef�cient estimates (standard errors and con�dence
intervals)
the model

:

When 
Tend to over-�t training data.
Cannot handle multicollinearity.

Pros

Cons

𝑝 > 𝑛
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Generalization of the Linear Models

Classi�cation problems: logistic regression, support vector
machines

Non-linearity: nearest neighbor methods

Interactions: Tree-based methods, random forests and boosting

Regularized �tting: ridge regression and lasso
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Regularized Regressions
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Why Regularization?

Solution against over-�tting

Allow High-Dimensional Predictors

: OLS no longer has a unique solution
 "high-dimensional" i.e. very many regressors
pixels on a picture

𝑝 >> 𝑛

𝑥𝑖
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Adding a Regularization Term to the Loss Function 

 = regularization function

 for  the penalty function

 is a hyperparameter where higher values increase regularization

𝐿(. )

= 𝑎𝑟𝑔𝑚𝑖 𝐿(ℎ( , 𝛽), ) + 𝜆𝑅(𝛽)𝛽 ̂  𝑛𝛽

1

𝑛 ∑
𝑖=1

𝑛

𝑥𝑖 𝑦𝑖

𝑅(𝛽)

𝑅(𝛽) = 𝑝( )∑𝑛

𝑖=1
𝛽𝑖 𝑝(. )

𝜆
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Different Penalty Functions 

Ridge (L2): 

LASSO (L1): 

Elastic Net: 

Subset selection: 

𝑝()

𝑝( ) =𝛽𝑗 𝛽2

𝑗

𝑝( ) = | |𝛽𝑗 𝛽𝑗

𝑝( ) = 𝛼| | + (1 − 𝛼)𝛽𝑗 𝛽𝑗 𝛽2
𝑗

𝑝( ) = 1{ ≠ 0}𝛽𝑗 𝛽𝑗
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How to Solve Without a Closed-form Solution? Gradient
Descent

Gradient descent measures the local gradient of the error function,
and then steps in that direction.

 Minimum in 0→


18 /  74



Stochastic Gradient Descent

�. Picks a random instance in the training set

�. Computes the gradient only for that single instance 

: SGD is much faster to train,

: bounces around even after it is close to the minimum.

 Compromise: mini-batch gradient descent, selects a sample of rows
(a “mini-batch”) for gradient compute

Pro

Cons

→
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Varients of Gradient Descent
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Ridge Regression

Where

 = penalty parameter
covariates can be high-dimensionnal 

Trade-off, from the minimization of the sum of

�. RSS
�. shrinkage penalty: decreases with 

 relative importance given by 

𝑚𝑖 ( − + 𝜆𝑛𝛽 ∑𝑛

𝑖=1
𝑦𝑖 𝑦 ̂ 𝑖)

2 ∑𝑝

𝑗=1
𝛽2

𝑗

𝜆 > 0

𝑝 >> 𝑁

𝛽𝑗

→ 𝜆
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Ridge Regression: shrinkage to 0
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Ridge: Variance-Bias Trade-Off

Squared bias (black), variance (green), [test] MSE (red)
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Ridge vs. Linear Models
when outcome and predictors are close to having a linear
relationship, the OLS will have low bias but potentially high variance

small change in the training data  large change in the
estimates
worse with  close tp 
if , OLS do not have a unique solution

 ridge regression works best in situations where the least squares
estimates have high variance

→

𝑝 𝑛

𝑝 > 𝑛

→
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LASSO
Overcome an important drawback of Ridge (all  predictors are
included in the �nal model)

LASSO proposes a method to build a model which just includes the
most important predictors.

Better for interpretability than Ridge!

𝑝
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Lasso Coefficients
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Lasso: Variance-Bias Trade-Off

Squared bias (black), variance (green), [test] MSE (red)
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Constrained Regression
The minimization problem can be written as follow:

Where

Ridge:   equation of a circle
Lasso:   equation of a diamond

( − 𝛽  s.t.  𝑝( ) ≤ 𝑠,∑
𝑖=1

𝑛

𝑦𝑖 𝑥
′

𝑖 )2 ∑
𝑗=1

𝑝

𝛽𝑗

< 𝑠∑𝑝

𝑗=1
𝛽2

𝑗 →

| | < 𝑠∑𝑝

𝑗=1
𝛽𝑗 →
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Constraint Regions
Lasso Ridge
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Elastic Net = Lasso + Ridge

,   strength of L1 (Lasso) penalty and L2 (Ridge) penalty

𝑀𝑆𝐸(𝛽) + | | +𝜆1 ∑
𝑗=1

𝑝

𝛽𝑗 𝜆2 ∑
𝑗=1

𝑝

𝛽2

𝑗

𝜆1 𝜆2 =


30 /  74



Selecting Elastic Net Hyperparameters

Elastic net hyperparameters should be selected to optimize out-of-
sample �t (measured by mean squared error or MSE).

“Grid search”

scans over the hyperparameter space ( ),
computes out-of-sample MSE for all pairs  ,
selects the MSE-minimizing model.

≥ 0, ≥ 0𝜆1 𝜆2

( , )𝜆1 𝜆2


31 /  74



Evaluating Regression Models: 
MSE is good for comparing regression models, but the units depend
on the outcome variable and therefore are not interpretable

Better to use  in the test set, which has same ranking as MSE but it
more interpretable.

𝑅
2

𝑅
2
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Classifications
Reference:

: chap 2.2.3, 4JWHT
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Classification Framework

Response/target variable  is qualitative (or categorical):

2 categories  binary classi�cation

More than 2 categories  multi-class classi�cation

Features :

can be high-dimensional

We want to assign a class to a quantitative response

 probability to belong to the class

Classi�er: An algorithm that maps the input data to a speci�c
category.

Performance measures speci�c to classi�cation

𝑦

→

→

𝑋

→
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Application examples

In business:

Loan default prediction

Type of costumer

In public economics:

Tax evasion prediction

In political sciences:

political af�liation of author of texts

In medical sciences:

Diagnostic diseases, drug choice

Other:

email �ltering, speech recognition...
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Why not fitting a linear regression?

Technically possible to �t a linear model using a categorical
response variable but it implies

an ordering on the outcome

a scale in the class difference

 If the response variable was coded differently, the results could be
completely different

Less problematic if the response variable is binary

The result of the model would be stable

But prediction may lie outside of : hard to interpret them in
terms of probabilities

→

[0, 1]
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Example
We predict , the occupation of individuals:

based on their characteristics  (gender, wage, contract duration,
experience, age...)

𝑦

𝑦 = {
0

1

 if blue-collar

 if white-collar

𝑋
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Linear Regression vs Binary Classifier

We model the probability of belonging to a category

We can rely on this probability to assign a class to the observation.

For example, we can assign the class yes for all observations
where 

But we can also select a different threshold.

𝑃 (𝑦 = 1 ∣ 𝑋)

𝑃 (𝑦 = 1|𝑥) > 0.5


38 /  74



Performance measures
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Confusion Matrix

For comparing the predictions of the �tted model to the actual
classes.

After applying a classi�er to a data set with known labels Yes and
No:

Predicted class
no yes

True class no TN FP
yes FN TP
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Precision and Recall

Precision

accuracy of positive predictions.

decreases with false positives.

Recall

true positive rate.

decreases with false negatives.

True Positives

True Positives+False Positives

True Positives

True Positives+False Negatives
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F1 Score

The  score provides a single combined metric it is the harmonic
mean of precision and recall

The harmonic mean gives more weight to low values.

The F1 score values precision and recall symmetrically.

𝐹1

𝐹1 = = 2 ×
2

+1

precision

1

recall

precision × recall

precision + recall

=
Total Positives

Total Positives + (False Negatives + False Positives)1

2
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The Precision/Recall Trade-off
 favors classi�ers with similar precision and recall,

but sometimes you want asymmetry:  

�. low recall + high precision is better

e.g. deciding “guilty” in court, you might prefer a model that
lets many actual-guilty go free (high false negatives  low
recall)...
... but has very few actual-innocent put in jail (low false positives 

 high precision

�. high recall + low precision is better

𝐹1

↔

↔
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The Precision/Recall Trade-off
 favors classi�ers with similar precision and recall,

but sometimes you want asymmetry:  

�. low recall + high precision is better

�. high recall + low precision is better

e.g classi�er to detect bombs during �ight screening, you might
prefer a model that:
has many false alarms (low precision)...
... to minimize the number of misses (high recall).

𝐹1
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ROC Curve and AUC
Plots true positive rate (recall) against the false positive rate (

):𝐹𝑃

𝐹𝑃+𝑇𝑁
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ROC Curve and AUC

The area under the ROC curve (AUC) is a popular metric ranging
between:

0.5

random classi�cation
ROC curve  �rst diagonal

and 1

perfect classi�cation
 area of the square

better classi�er  ROC curve toward the top-left corner

Good measure for model comparison

=

=

→
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Binary Classifier
Logistic Regressions
K-Nearest Neighbors
Support Vector Machine
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Logistic Regression

Like OLS, logistic “regression” computes a weighted sum of the
input features to predict the output.

But it transforms the sum using the logistic function.

where  is the sigmoid function

= Pr( = 1) = 𝜎( 𝑥)𝑝 ̂  𝑌𝑖 𝜃
′

𝜎(⋅)

𝜎(𝑎) =
1

1 + exp(−𝑎)
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Logistic Regression

Prediction:

= {𝑦 ̂ 
0

1

 if  < .5𝑝 ̂ 

 if  ≥ .5𝑝 ̂ 
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Logistic Regression Cost Function

The cost function to minimize is

this does not have a closed form solution

but it is convex, so gradient descent will �nd the global
minimum.

Just like linear models, logistic can be regulared with L1 or L2
penalties, e.g.:

(𝜃) = 𝐽(𝜃) +𝐽2 𝛼2
1

2 ∑
𝑖=1

𝑛

𝜃
2

𝑖
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Naive Bayes Classifier

Relies on the observed conditional probabilities (and the Bayes
theorem)

For a 2-class problem for a given observation :

Predict class 1 if 

Predict class 0 if 

Relies on the independence assumption

𝑋 = 𝑥0

𝑃 (𝑌 = 1|𝑋 = ) ≥ 0.5𝑥0

𝑃 (𝑌 = 1|𝑋 = ) < 0.5𝑥0
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Naive Bayes Classifier
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K-Nearest Neighbors

With real data, we do not know the conditional distribution of Y
given X.

computing the Bayes classi�er is not possible.

The K-nearest neighbors (KNN) classi�er estimates the conditional
distribution of Y given X.

Approximate Bayes decision rule in a subset of data around the
testing point

Non-parametric method often successful in classi�cation situations
where the decision boundary is very irregular
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K-Nearest Neighbors
For  and a test observation 

�. KNN classi�er �rst identi�es the  points in the training data that
are closest to  (i.e )

�. estimates the conditional probability for class  as the fraction of
points in  whose response values equal :

�. applies Bayes rule and classi�es the test observationx0tothe class
with the largest probability

𝐾 𝑥0

𝐾

𝑥0 𝑁0

𝑗

𝑁0 𝑗

𝑃 (𝑌 = 𝑗|𝑋 = ) = 𝐼( = 𝑗)𝑥𝑂

1

𝐾 ∑
𝑖∈𝑁𝑂

𝑦𝑖
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KNN: illustration

Assume 
Left: small training data set consisting of 6 blue and 6 orange
observations
Right: KNN approach at of the possible values for  and , and
corresponding KNN decision boundary

𝐾 = 3

𝑋1 𝑋2
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KNN: illustration

black curve: KNN decision boundary
dashed line: Bayes decision boundary
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KNN: choice of 

,the KNN training error rate is , but the test error rate may be
quite high

𝐾

𝐾 = 1 0
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Support Vector Machine

Context: developed in the mid-1990s

A generalization of the early logistic regression (1930s)

One of the best “out of the box” classi�ers

Core idea: hyperplane that separates the data as well as possible,
while allowing some violations to this separation
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Support Vector Machine: context and concepts

:

�. A maximal margin classi�er: requires that classes be separable
by a linear boundary.

�. A support vector classi�er: extension of the maximal margin
classi�er.

�. Support vector machine: further extension to accommodate non-
linear class boundaries.

For binary classi�cation, can be extended to multiple classes

Pieces of the puzzle
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Classification and Hyperplane
A perfectly separating linear hyperplan for a binary outcome

There are an in�nity of such separating hyperplan 
 we need to choose one→
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Maximum Margin
Maximum margin classi�er for a perfectly separable binary outcome
variable

Criterium for optimal choice: the separating hyperplane for which the
margin is the farthest from the observations 
i.e., to select the maximal margin hyperplane
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Support Vector
Support vector = the 3 observations from the training set that are
equidistant from the maximal margin hyperplane

 they “support” the maximal margin hyperplane (if they move, the
the maximal margin hyperplane also moves)
→
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Overcoming the perfectly separable hyperplan
assumption

We allow some number of observations to violate the rules so that
they can lie on the wrong side of the margin boundaries.

 �nd a hyperplane that almost separates the classes

The support vector classi�er generalizes the maximum margin
classi�er to the non-separable case.

→
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Support Vector Classifiers
Maximal margin classi�er (left) and support vector classi�er (right)
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Support Vector Classifiers: Details

A tuning parameter  determines the severity of the violation ot the
margin that the model tolerates

chosen by cross Validation
controls the bias-variance trade-off

 small  narrow margins, rarely violated

 large  wide margins, allow more violation

More bias classi�er, but lower variance

𝐶

𝐶 →

𝐶 →
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Shortcomings of the linearity assumption:
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Overcoming the linearity assumption:
Support vector machines

Idea 1: (polynomial) transformation of the features + StandardScaler
+ LinearSVC.

Idea 2: convert a linear classi�er into a classi�er that produced non-
linear decision boundaries.  using a Kernel such as:

Gaussian RBF kernel
Polynomial kernel

We do not open the kernel box.

Just think as them as a way to construct non-linear hyperplans
Try out different kernel and distance speci�cation

→
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Support vector machines

Left: polynomial kernel of degree 3;
Right: radial kernel
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Wrap-up
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Selecting the Tuning Parameter By Cross-Validation
�. Choose a grid of  values
�. Compute the CV error for each lambda
�. Select the tuning parameter value for which the CV error is smallest
�. Re-�t the model using all available observation and the best 

𝜆

𝜆
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Data Prep for Machine Learning

See Geron Chapter 2 for  and  syntax:

imputing missing values.
feature scaling (coef�cient size depends on the scaling)
encoding categorical variables.

Best practice

reproducible data pipeline
standardize coef�cients

pandas sklearn
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Other Supervised Machine Learning Methods
Forward Selection,
Backward Selection
Trees and Forests
Neural Networks
Boosting
Ensemble Methods
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Types of Classification Algorithms

Linear Classi�ers

Logistic regression

Naive Bayes classi�er

Support vector machines

Kernel estimation

k-nearest neighbor

Decision trees

Random forests
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“Essentially, all models are wrong, but some are
useful” -- George Box


74 /  74


