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Unsupervised Learning

So far, supervised learning methods such as regression

Unlike for supervised learning, there is no known goal

No labeled data,
Not a prediction exercise

The algorithm discovers patterns in the data

We (human) interpret the results

More subjective than supervised learning

Hard to assess the results
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Setting

Features  measured on  observations, but no
associated labeled variable 

Dimensionality reduction methods are needed

ML pbs often involve thousands of features.
Especially in the case of text data,
Not just for computational tractability, but also to help �nd a
good solution.

Can be use as a descriptive tool

Can we extract information from the data and visualize it?
Can we discover subgroups among the variables or among the
observations?

, , . . .𝑋1 𝑋2 𝑋𝑝 𝑛

𝑌
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Examples

Dimension reduction for pre-processing

Costumer segmentation in marketing
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Dimensionality Reduction
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Principal Component Analysis (PCA)

Popular dimension reduction technique.

Identi�es the axis that accounts for the largest amount of variance
in the data.

Finds a second axis, orthogonal to the �rst, that accounts for the
largest amount of the remaining variance, and so on

The unit vector de�ning the  axis is called the  principal
component.

𝑖
𝑡ℎ

𝑖
𝑡ℎ
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Objectives

Summarize a large set of feature variables with a smaller number of
representative variables

collectively explain most of the variability in the original dataset

Find a low-dimensional representation of the data that captures as
much of the information possible

If we can obtain a 2-dimensional representation, then we can plot
the observations in 2D.
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Principal Components

What we are after

Each of the dimensions found by the PCA is a linear combination of
the  features.

The First Principal Component of a set of features 

 the normalized linear combination of the features:

that has the largest variance

Normalized means that 

 is the loading vector of the �rst principal
component

𝑝

, , . . . ,𝑋1 𝑋2 𝑋𝑝

=
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Computing the First Principal Component

We solve:

Re-writen :

as  (mean zero property)

max , ,...,𝜙11 𝜙21 𝜙
𝑝1

(1
𝑛

∑𝑛

𝑖=1 ∑𝑝

𝑗=1 𝜙𝑗1𝑥𝑖𝑗)
2

  

Sample variance of 𝑍1

 subject to = 1∑𝑝

𝑗=1 𝜙2
𝑗1

 subject to = 1max
, ,...,𝜙11 𝜙21 𝜙𝑝1

1

𝑛 ∑
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𝑛

𝑧
2
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𝑛

∑𝑛

𝑖=1 𝑥𝑖𝑗


10 /  36



Computing the First Principal Component

Using eigen decomposition (outside the scope of the class)

 are the *scores *of the �rst principal component

Solved using Singular Value Decomposition (SVD) [a standard linear
algebra tool]

, . . . ,𝑧11 𝑧𝑛1
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Finding the second principal component 

 is the linear combination of :

With maximal variance out of all linear combinations that are
uncorrelated with 

 uncorrelated with    is orthgonal to 

𝑍2

𝑍2 , , . . . ,𝑋1 𝑋2 𝑋𝑝

= + +. . . . +𝑍2 𝜙12𝑋1 𝜙22𝑋2 𝜙𝑝2𝑋𝑝

𝑍1

𝑍2 𝑍1 ⇔ 𝜙2 𝜙1
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Illustration in 3D, projected on a 2D space

Left: simulated data in 3 dimensions 
Right: projection on the �rst 2 principal components (plan
represented on the left)
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Alternative Interpretation

The  principal component score vectors +  principal component
loading vectors:

can give a good approximation to the data when  is suf�ciently
large.

When , then the representation is exact

𝑀 𝑀

𝑀

𝑀 = 𝑚𝑖𝑛(𝑛 − 1, 𝑝)
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Pre-processing the variables

Variables should

be centered to have mean zero

have the same variance 1

the results obtained depend on whether the variables have been
individually scaled

Step done by default in python
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Proportion of the Variance Explained (PVE)
How much of the information in a given data set is lost by projecting
the observations onto the �rst few PC?

 plot the proportion of the variance explained by each PC→

𝑃𝑉 =𝐸𝑚

componentVariance exeplained by the m 𝑡ℎ

Total variance


16 /  36



PVE
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Choosing the number of dimensions
No criteria for deciding how many PC are required, but some rules of
thumb:

Choose the smallest number of PC required to explain a sizable
amount of the variation in the data

For 

Explaining 95% of the variance is a good objective

For :

Focus on a small number of axis that you can interpret

Do not interpret the components explaining less than 10%

dimensionality reduction

data visualization
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Clustering Methods
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Objective
When performing clustering, the aim is to group data into subsets so
that:

the objects grouped in each subset are similar, close to one another,
homogeneous

and  from the objects in other groups.

 �nd some structure in the data.

different

⇒
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2 possibilities
We can

Cluster observations on the basis of the features in order to identify
subgroups among the observations,

or we can cluster features on the basis of the observations in order
to discover subgroups among the features

Equivalent: simply transpose the data matrix
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K-means clustering
Partitioning the data into a pre-speci�ed number ( ) of clusters

The partitioning corresponds to an optimization problem which
consists in:

partitioning the data into  clusters of equal variance

so that it minimizes the within-cluster sum-of-squares [inertia]:

Each cluster is represented by the central vector or centroïd 

𝑘

𝑘

(|| − | )∑
𝑖=0

𝑘

min
𝜇𝑗

𝑥𝑖 𝜇𝑗 |2

𝜇𝑗
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K-means clustering

Simulated data
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K-means clustering

4 clusters and their centroïds
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K-means algorithm

�. Randomly assign a number (  to ) to each of the observations.

 initial cluster assignments

�. Iterate until the cluster assignments stop changing:

�. For each of the  clusters,

compute the cluster centroid.
The  cluster centroid is the vector of the  feature means
for the observations in the  cluster.

�. Assign each observation to the cluster whose centroid is closest

where closest is de�ned using Euclidean distance

 The algorithm aims to choose centroids that minimise the inertia
(=within-cluster sum-of-squares criterion)

1 𝑘

=

𝑘

𝑘𝑡ℎ 𝑝

𝑘𝑡ℎ

→
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K-means algorithm: example
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Finding the optimal number of clusters

Most of the time, the number of clusters does not stand out from
looking at the data

Why not picking the model with the lowest inertia?

Because inertia decreases with the number of clusters

Rule of thumb: choose the number of clusters at the “elbow”
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Finding the optimal number of clusters

Can pick the optimal number of clusters with the silhouette score:

 mean distance to members of ’s cluster

 mean distance to members of ’s second-closest cluster

−𝑏𝑖 𝑎𝑖

𝑚𝑎𝑥( , )𝑎𝑖 𝑏𝑖

𝑎𝑖 𝑖

𝑏𝑖 𝑖
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Hierarchical Clustering

Alternative to -means

No pre-existing choice of 

Tree-based representation of the observation = dendogram

Methodology:

agglomerative clustering (bottom-up)
Euclidean distance

𝑘

𝑘
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Dendrogram
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Hierarchical Clustering
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Identifying Clusters

One single dendrogram can be used to obtain any number of
clusters

Common practice: select by eye a sensible number of clusters

Dissimilarity measure between each pair of observations

E.g. Euclidean distance
Concept extended to a pair of groups of observations

Commonly-used linkages: Complete/single/average/centroïd
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Hierarchical Clustering Algorithm

�. Bottom: each observation = 1 clusters

�. Measure pairwise dissimilarities
�. Fuse the most similar observations  clusters

�. For :

Examine all pairwise inter-cluster dissimilarities among their
clusters and
Identify the pair of clusters that are least dissimilar $ fuse
them
Compute the new pairwise inter-cluster dissimilarities among the

 remaining clusters

→ 𝑛 − 1

𝑖 = 𝑛, 𝑛 − 1,⋯ , 2

→

𝑖 − 1
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Results Depend on the Type of Linkage
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Other Clustering Algorithms

DBSCAN de�nes clusters as continuous regions of high density

Works well if all the clusters are dense enough and if they are
very well separated by low-density regions

Detects and excludes outliers automatically
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