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Text as Data

I Text data is a sequence of characters called documents.
I The set of documents is the corpus.
I Text data is unstructured:

I the information we want is mixed together with (lots of) information we don’t.
I All text data approaches will throw away some information:

I The trick is figuring out how to retain valuable information.
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1. Read text documents as data:
¶ Convert texts to features – words, phrases, syntactic/semantic relations.

¶ Feature selection / dimension reduction to exclude irrelevant information.

2. Dictionary methods for targeted studies:
¶ e.g. sentiment analysis

3. Unsupervised learning techniques for interpreting corpora:
¶ topic models, document embeddings

4. Supervised learning with text:
¶ applying regressors and classifiers to text features.

5. Word embedding for isolating dimensions of language:
¶ Analyze values, attitudes, and ideology
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Outline
Reading Text Documents as Data

Corpora
Quantity of Text as Data
Dictionary Methods
Featurization

Document Distance/Similarity

Machine Learning with Text

Topic Models

Word Embeddings

Document Embeddings

Syntactic and Semantic Parsing

In-Depth Application: Demszky et al (2019)

Social Science Research with Text
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Corpus cleaning

I Pre-Processing Steps:
I Remove HTML markup, extra white space, and unicode

I But HTML markup is often valuable:
I HTML markup for section header names.
I e.g., legal database web sites often have HTML tags for citations to other cases.

I Other cleaning steps:
I page numbers
I hyphenations at line breaks
I table of contents, indexes, etc.

I These are all corpus-specific, so inspect ahead of time.
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OCR (Optical Character Recognition)

I Your data might be in PDF’s or images. Needs to be converted to text
I The best solution (that I know of) is ABBYY FineReader, which is expensive but

might be available at your university library.
I My colleague Joe Sutherland at Columbia has a nice open-source package for

OCR:
I https://github.com/jlsutherland/doc2text

https://github.com/jlsutherland/doc2text
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Other Languages

I All of the tools that we discuss in this class are available in many languages.
I See, e.g., https://spacy.io/usage/models.

I Can also translate (e.g., API links to google translate and DeepL).
I The machine learning models are language-independent.

https://spacy.io/usage/models
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What counts as a document?

The unit of analysis (the “document”) will vary depending on your question.
I needs to be fine enough to fit the relevant metadata variation
I should not be finer – would make dataset more high-dimensional without

empirical benefit.
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Judge Age and Writing Style
Ash, Goessmann, and MacLeod (2021)
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Optimal Legal Complexity (Katz and Bommarito 2014)
I More legal detail is needed to properly specify rules and target incentives to

activities and groups.
I but there are costs to understanding/following/maintaining complex laws, so there is

a trade o�.

I Katz and Bommarito measure complexity/detail from the text – number of words
for code title, and also word entropy ¥ diversity of the vocabulary.
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Overview of Dictionary-Based Methods

I Dictionary-based text methods use a pre-selected list of words or phrases to
analyze a corpus.
I use regular expressions for this task (see notebook)

I Corpus-specific: counting sets of words or phrases across documents
I (e.g., number of times a judge says “justice” vs “e�ciency”)

I General dictionaries: WordNet, LIWC, MFD, etc.
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Measuring uncertainty in macroeconomy
Baker, Bloom, and Davis (QJE 2016)

For each newspaper on each day since 1985,
submit the following query:

1. Article contains “uncertain” OR
“uncertainty”, AND

2. Article contains “economic” OR
“economy”, AND

3. Article contains “congress” OR
“deficit” OR “federal reserve” OR
“legislation” OR “regulation” OR
“white house”

Normalize resulting article counts by total
newspaper articles that month.
I but see Keith et al (2020), showing some big problems with this measure

(https://arxiv.org/abs/2010.04706).

https://arxiv.org/abs/2010.04706
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Sentiment Analysis

Extract a “tone” dimension – positive, negative, neutral
I standard approach is lexicon-based, but they fail easily: e.g., “good” versus “not

good” versus “not very good”

I flair’s pre-trained sentiment model uses a context-sensitive neural net
I O�-the-shelf scores designed for online writing – may not work for legal text, for

example.
I Hamilton et al (2016) and Zorn and Rice (2019) show how to make domain-specific

sentiment lexicons using word embeddings (more on this later).
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General Dictionaries

I WordNet: English word database: 118K nouns, 12K verbs, 22K adjectives, 5K
adverbs. Synonym sets (synsets) are a group of near-synonyms, plus a gloss
(definition).
I also contains information on antonyms (opposites), holonyms/meronyms

(part-whole).

I Function words (e.g. for, rather, than)
I also called stopwords
I can be used to get at non-topical dimensions, identify authors.

I LIWC (pronounced “Luke”): Linguistic Inquiry and Word Counts
I 2300 words 70 lists of category-relevant words, e.g. “emotion”, “cognition”, “work”,

“family”, “positive”, “negative” etc.
I Mohammad and Turney (2011):

I code 10,000 words along four emotional dimensions: joy–sadness, anger-fear,
trust-disgust, anticipation-surprise

I Warriner et al (2013):
I code 14,000 words along three emotional dimensions: valence, arousal, dominance.
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Goals of Featurization

I The goal: produce features that are
I predictive in the learning task
I interpretable by human investigators
I tractable enough to be easy to work with
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Pre-processing

I An important piece of the “art” of text analysis is deciding what data to throw
out.
I Uninformative data add noise and reduce statistical precision.
I They are also computationally costly.

I Pre-processing choices can a�ect down-stream results, especially in unsupervised
learning tasks (Denny and Spirling 2017).
I some features are more interpretable

I Standard pre-processing steps:
I drop capitalization, punctuation, numbers, stopwords (e.g. “the”, “such”)
I remove word stems (e.g., “taxes” and “taxed” become “tax”)
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Say we want to convert a corpus D to a matrix X :
I In the “bag-of-words” representation, a row of X is just the frequency distribution

over words in the document corresponding to that row.

More generally:
I Document counts: number of documents where a token appears.
I Term counts: number of total appearances of a token in corpus.
I Term frequency:

Term Frequency in document k = Term count in document k

Total tokens in document k
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Building a vocabulary

I An important featurization step is to build a vocabulary of words:
I Compute document frequencies for all words
I Inspect low-frequency words and determine a minimum document threshold.

I e.g., 10 documents, or .25% of documents.

I Can also impose more complex thresholds, e.g.:
I appears twice in at least 20 documents
I appears in at least 3 documents in at least 5 years

I Assign numerical identifiers to tokens to increase speed and reduce disk usage.
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TF-IDF Weighting

I TF/IDF: “Term-Frequency / Inverse-Document-Frequency.”
I The formula for word w in document k:

Count of w in k

Total word count of k¸ ˚˙ ˝
Term Frequency

◊ log( Number of documents in D

Count of documents containing w
)

¸ ˚˙ ˝
Inverse Document Frequency

I The formula up-weights relatively rare words that do not appear in all documents.
I These words are probably more distinctive of topics or di�erences between

documents.
I Example: A document contains 100 words, and the word appears 3 times in the document. The TF

is .03. The corpus has 100 documents, and the word appears in 10 documents. the IDF is

log(100/10) ¥ 2.3, so the TF-IDF for this document is .03 ◊ 2.3 = .07. Say the word appears in 90

out of 100 documents: Then the IDF is 0.105, with TF-IDF for this document equal to .003.
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N-grams

I N-grams are phrases, sequences of words up to length N.
I bigrams, trigrams, quadgrams, etc.

I capture information and familiarity from local word order.
I e.g. “estate tax” vs “death tax”
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scikit-learn’s TfidfVectorizer

https://scikit-learn.org/stable/modules/feature_extraction.html#text-feature-extraction

https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.TfidfVectorizer.html

I corpus is a sequence of strings, e.g. pandas data-frame columns.
I pre-processing options: strip accents, lowercase, drop stopwords,
I n-grams: can produce phrases up to length n (words or characters).
I vocab options: min/max frequency, vocab size
I post-processing: binary, l2 norm, (smoothed) idf weighting, etc

https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.TfidfVectorizer.html


30/155

scikit-learn’s TfidfVectorizer

https://scikit-learn.org/stable/modules/feature_extraction.html#text-feature-extraction

https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.TfidfVectorizer.html

I corpus is a sequence of strings, e.g. pandas data-frame columns.
I pre-processing options: strip accents, lowercase, drop stopwords,
I n-grams: can produce phrases up to length n (words or characters).
I vocab options: min/max frequency, vocab size
I post-processing: binary, l2 norm, (smoothed) idf weighting, etc

https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.TfidfVectorizer.html


31/155

Filtering the Vocabulary

I N-grams will blow up your feature space: filtering out uninformative n-grams is
necessary.
I Google Developers recommend vocab size = m =20,000; I have gotten good

performance from m =2,000.

1. Drop phrases that appear in few documents, or in almost all documents.
2. filter on parts of speech (keep nouns, adjectives, and verbs).
3. filter on pointwise mutual information to get collocations (Ash JITE 2017, pg. 2)
4. supervised feature selection: select phrases that are predictive of outcome.
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Feature selection using univariate comparisions

I ‰2 is a fast feature selection routine for classification tasks
I features must be non-negative
I works on sparse matrices
I works on multi-class problems

I With negative predictors:
I use f_classif.

I For regression tasks:
I use f_regression or OLS coe�cients.
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Hashing Vectorizer
I Rather than make a one-to-one lookup for each

n-gram, put n-grams through a hashing
function that takes an arbitrary string and
outputs an integer in some range (e.g. 1 to
10,000).

Pros:
I can have arbitrarilly small feature space
I handles out-of-vocabulary words – any word or n-gram gets assigned to an

arbitrary integer based on the hash function.
Cons:
I harder to interpret features, at least not directly – but the eli5 implementation

keeps track of the mapping
I collisions – n-grams will randomly be paired with each other in the feature map.

I usually innocuous, but could sum outputs of two hashing functions to minimize this.
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Named Entity Recognition

I refers to the task of identifying named entities such as “ETH Zurich” and “Marie
Curie”, which can be used as tokens.
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Parts of speech

I Parts of speech (POS) tags provide useful word categories corresponding to their
functions in sentences:
I Content: noun (NN), verb (VB), adjective (JJ), adverb (RB)
I Function: determinant (DT), preposition (IN), conjunction (CC), pronoun (PR).

I Parts of speech vary in their informativeness for various functions:
I For categorizing topics, nouns are usually most important
I For sentiment, adjectives are usually most important.
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A decent baseline for featurization

I Tag parts of speech: keep nouns, verbs, and adjectives.
I Drop stopwords, capitalization, punctuation.
I Run snowball stemmer to drop word endings.
I Make bigrams from the tokens.
I drop bigrams appearing in more than half of documents, then take top 10,000

bigrams by term frequency.
I Represent documents as tf-idf frequencies over these bigrams.
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Application: What Drives Media Slant?
Gentzkow and Shapiro (2010)

I Corpora:
I news text from large sample of US daily newspapers.
I congressional text is 2005 Congressional Record.

I Pre-process text, stripping away prepositions, conjunctions, pronouns, and
common words
I get bigrams and trigrams

I Identify polarizing phrases using ‰2 metric.
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Consumers drive media slant (GS 2010)



40/155

Outline
Reading Text Documents as Data

Corpora
Quantity of Text as Data
Dictionary Methods
Featurization

Document Distance/Similarity

Machine Learning with Text

Topic Models

Word Embeddings

Document Embeddings

Syntactic and Semantic Parsing

In-Depth Application: Demszky et al (2019)

Social Science Research with Text



41/155

Text Re-Use

I Text Re-Use algorithms (like “Smith-Waterman”) measure similarity by finding
and counting shared sequences in two texts above some minimum length, e.g. 10
words.
I useful for plagiarism detection, for example.

I precise but slow
I shortcut: look at proportion of shared (hashed) 5-grams across texts
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Cosine Similarity

I We represent each document i as a vector xi , for example xi = term counts or
xi = IDF-weighted term frequencies.

I Each document is a non-negative vector in an nx -space, where nx = vocabulary
size.
I that is, documents are rays, and similar documents have similar vectors.

I Can measure similarity between documents i and j by the cosine of the angle
between xi and xj :
I With perfectly collinear documents (that is, xi = –xj , – > 0), cos(0) = 1
I For orthogonal documents (no words in common), cos(fi/2)=0

Cosine similarity is computable as the nor-
malized dot product between the vectors:

cos_sim(x1,x2) = x1 · x2

||x1||||x2||

from sklearn.metrics.pairwise import
cosine_similarity
# between two vectors:
sim = cosine_similarity(x, y)[0,0]
# between all rows of a matrix:
sims = cosine_similarity(X)
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Burgess et al, “Legislative Influence De-
tectors”
I Compare bill texts across states in

two-step process:
(1) find candidates using elasticsearch
(tf-idf similarlity);
(2) compare candidates using text reuse
score.
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1. What is the research question?
2. Why is it important?
3. What is the problem solved?

4. What is being measured?
5. How does the measurement help answer

the research question?
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Text analysis of patent innovation
Kelly, Papanikolau, Seru, and Taddy (AERI 2020)

“Measuring technological innovation over the very long run”
I Data:

I 9 million patents since 1840, from U.S. Patent O�ce and Google Scholar Patents.
I date, inventor, backward citations
I text (abstract, claims, and description)

I Text pre-processing:
I drop HTML markup, punctuation, numbers, capitalization, and stopwords.
I remove terms that appear in less than 20 patents.
I 1.6 million words in vocabulary.
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Measuring Patent Similarity

I Each patent i = xi= TF-IDF word features (vector with 1.6m entries)
I Compute (roughly) TF-IDF cosine similarity flij between patents i and j .

I 9m◊9m similarity matrix = 30TB of data.
I enforce sparsity by setting similarity < .05 to zero (93.4% of pairs).

I Validation:
I For pairs with higher flij , patent j more likely to cite patent i .
I Within technology class (assigned by patent o�ce), similarity is higher than across

class.
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I “Novelty” is defined by dissimilarity (negative similarity) to previous patents:

Noveltyj = ≠
ÿ

iœB(j)
flij

where B(j) is the set of previous patents (in, e.g., last 20 years).

I “Impact” is defined as similarity to subsequent patents:

Impacti =

ÿ

jœF (i)
flij

where F (i) is the set of future patents (in, e.g., next 100 years).

I A patent has high quality if it is
novel and impactful:

logQualityk = log Impactk +logNoveltyk

I Higher quality patents get more cites:
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Most Innovative Firms
Kelly, Papanikolau, Seru, and Taddy (2018)
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Breakthrough patents: citations vs quality
Kelly, Papanikolau, Seru, and Taddy (2018)



50/155

Breakthrough patents and firm profits
Kelly, Papanikolau, Seru, and Taddy (2018)



51/155

Outline
Reading Text Documents as Data

Corpora
Quantity of Text as Data
Dictionary Methods
Featurization

Document Distance/Similarity

Machine Learning with Text

Topic Models

Word Embeddings

Document Embeddings

Syntactic and Semantic Parsing

In-Depth Application: Demszky et al (2019)

Social Science Research with Text



52/155

Machine Learning with Text Data

I We have a corpus (or dataset) D of nD Ø 1 documents (or data points), whose
features can be represented as a matrix of vectors x with nx Ø 1 features.

I Each document has an associated outcome or label y with dimensions ny Ø 1
I Some documents are unlabeled æ we would like to train a model to

machine-classify them.
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XGBoost

I Feurer et al (2018) find that XGBoost beats a sophisticated AutoML procedure
with grid search over 15 classifiers and 18 data preprocessors.

I A good starting point for any machine learning task.

I easy to use
I actively developed
I e�cient / parallelizable
I provides model explanations
I takes sparse matrices as input
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Interpreting Tree Ensembles

XGBoost’s Feature Importance Metric:
I At each decision node, compute

information gain for feature j

(change in predicted probability).
I Average across all nodes for each j .

Ranks predictors by their relative contribu-
tions.

from xgboost import plot_importance
plot_importance(xgb_reg, max_num_features=10)
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Objectives of Machine Learning Project

1. What is the question or problem?

2. Corpus and Data:
I obtain, clean, preprocess, and link.
I Produce descriptive visuals and statistics on the text and metadata

3. Machine learning:
I Select a model and train it.
I Fine-tune hyperparameters for out-of-sample fit.
I Interpret predictions using model explanation methods.

4. Empirical analysis
I Produce statistics or predictions with the trained model.
I Answer the question / solve the problem.
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Application: Predicting Political Party from Text
Andrew Peterson and Arthur Spirling, “Classification accuracy as a substantive
quantity of interest: Measuring polarization in Westminster systems,” Political
Analysis (2018).

I Machine Learning Problem:
I Corpus D = 3.5M U.K. parliament speeches, 1935-2013.
I Label Y = party of speaker (Conservative or Labour)

In years that classifier is more accurate, speech is more polarized:
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A baseline for machine learning using text

1. Take tf-idf-weighted POS-filtered bigrams (from above) as inputs X .

2. Train a machine learning model predict outcome y :
I For classification, regularized logistic regression or xgboost classifier.
I For regression, use elastic net or xgboost regressor.

3. Use cross-validation grid search in training set to select model hyperparameters.
4. Evaluate model in held-out test set:

I For classification, use F1 score and confusion matrix.
I For regression, use R squared and calibration plot.

5. Interpret the model predictions:
I for gradient boosting, use feature importance ranking.
I for linear models, examine coe�cients
I look at highest and lowest ranked documents for ŷ

6. Answer the research question!
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Topic Models in Social Science

I Core methods for topic models were developed in computer science and statistics
I summarize unstructured text
I use words within document to infer subject
I useful for dimension reduction

I Social scientists use topics as a form of measurement
I how observed covariates drive trends in language
I tell a story not just about what, but how and why
I topic models are more interpretable than other dimension reduction methods,

such as PCA.
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I Latent Dirichlet Allocation (LDA):
I Each topic is a distribution over words.
I Each document is a distribution over topics.

I Input: N ◊M document-term count matrix X

I Assume: there are K topics (tunable hyperparameter, use coherence).
I Like PCA or NMF, LDA works by factorizing X into:

I an N ◊K document-topic matrix
I an K ◊M topic-term matrix.
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Using an LDA Model

Once trained, can easily get topic proportions for a corpus.
I for any document – doesn’t have to be in training corpus.
I main topic is the highest-probability topic

I documents with highest share in a topic can work as representative documents for
the topic.

Can then use the topic proportions as variables in a social science analysis.

I e.g., Catalinac (2016) shows that after a
Japanese political reform that reduced
intraparty competition, candidate platforms
reduced local pork and increased national
policy.
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Topic modeling Federal Reserve Bank transcripts
Hansen, McMahon, and Prat (QJE 2017)

I Analyze speech transcripts from FOMC (Federal Open Market Committee).
I private discussions among committee members at Federal Reserve (U.S. Central

Bank)
I 150 meetings, 20 years, 26,000 speeches, 24,000 unique words.

I Pre-processing:
I drop stopwords, stems; vocab = 10,000 words

I LDA:
I K = 40 topics selected for interpretability / topic coherence.
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Pro-Cyclical Topics
Hansen, McMahon, and Prat (QJE 2017)
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Counter-Cyclical Topics
Hansen, McMahon, and Prat (QJE 2017)
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E�ect of Transparency
Hansen, McMahon, and Prat (QJE 2017)

I In 1993, there was an unexpected transparency shock where transcripts became
public.

I Increasing transparency results in:
I higher discipline / technocratic language (probably beneficial)
I higher conformity (probably costly)

I Highlights tradeo�s from transparency in bureaucratic organizations.
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Structural Topic Model = LDA + Metadata
Roberts, Stewart, and Tingley

STM provides two ways to include contextual information:
I Topic prevalence can vary by metadata

I e.g. Republicans talk about military issues more then Democrats

I Topic content can vary by metadata
I e.g. Republicans talk about military issues more patriotically than Democrats.

I Structural topic model is not a prediction model:
I it will tell you which topics or features correlate with an outcome, but it will not

provide an in-sample or out-of-sample prediction for an outcome
I The main implementation is in R. gensim has a light-weight version called “author

topic model”.
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Outline
Reading Text Documents as Data

Corpora
Quantity of Text as Data
Dictionary Methods
Featurization

Document Distance/Similarity

Machine Learning with Text

Topic Models

Word Embeddings

Document Embeddings

Syntactic and Semantic Parsing

In-Depth Application: Demszky et al (2019)

Social Science Research with Text
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Word2Vec & GloVe

I “Word embeddings” often refer to Word2Vec or GloVe – these are particular
(popular) models for producing word embeddings.
I the goal: represent the meaning of words by the neighboring words – their contexts.

I rather than predicting some metadata (such as classifying topic labels) they predict
the co-occurence of neighboring words.

I “You shall know a word by the company it keeps”:
I “He filled the wampimuk, passed it around and we all drunk some.”
I “We found a little, hairy wampimuk sleeping behind the tree.”
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Word Similarity
I Once words are represented as vectors {v1 = M [w1,:], v2 = M [w2,:], ...}, we can use

linear algebra to understand the relationships between words:
I Words that are geometrically close to each other are similar: e.g. “dog” and “cat”:

I The standard metric for comparing vectors is cosine similarity:

cos◊ = v1 · v2

||v1||||v2||
I alternatives include e.g. Jaccard similarity (Goldberg 2017)

I Thanks to linearity, can compute similarities between groups of words by
averaging the groups.
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Word2Vec

I When people mention “word2vec”, they are usually talking about a particular
word-embedding model with good performance on a range of analogy and
prediction tasks.

I How does it learn the meaning of the word “fox”?
I By comparing true instances of the word fox (“The quick brown fox jumps over the

lazy dog”)
I to fake (randomly sampled) ones (“The prescription of fox is advised for this

diagnosis”)
I Word2Vec learns embedding vectors for the target word (“fox”) and context words

(neighbors of “fox”) to distinguish true from false samples.
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GloVe Embeddings

I Pennington et al (2014) (GloVe = Global Vectors) take a di�erent
(non-neural-net) approach.

I Input: Cij = local co-occurrence counts between words i , j œ {1, ...,nw } within
some co-occurence window, e.g. ten words.

Learn word vectors w = (w1,...,wi , ...,wnw ), where wi œ (≠1,1)nE , to solve

min
w

ÿ

i ,j
f (Cij)

1
w

T
i wj ≠ log (Cij)

22

where f (·) is weighting function to down-weight frequent words.
I Minimizes squared di�erence between:

I dot product of word vectors, w
T
i wj

I empirical co-occurrence, log (Cij)
I Intuitively: words that co-occur should have high correlation (dot product)
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Similarity vs. Relatedness (Budansky and Hirst, 2006)

I Semantic similarity: words sharing salient attributes / features
I synonymy (car / automobile)
I hypernymy (car / vehicle)
I co-hyponymy (car / van / truck)

I Semantic relatedness: words semantically associated without necessarily being
similar
I function (car / drive)
I meronymy (car / tire)
I location (car / road)
I attribute (car / fast)

I Word embeddings will recover one or both of these relations, depending on how
contexts and associated are constructed.
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Most similar words to “dog”, depending on context window size

I Small windows pick up substitutable words; large windows pick up topics.
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The black sheep problem

I The trivial or obvious features of a word are not mentioned in standard corpora.

I For example, although most sheep are white, you rarely see the phrase “white
sheep”.
I so word2vec tells you sim(black,sheep) > sim(white,sheep).

I This is really important when we will use embeddings to anayze beliefs/attitudes.
I Relatedly, antonyms are often rated similarly, have to be careful with that.
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Vector Directions ¡ Meaning

I Intriguingly, word2vec algebra can depict conceptual, analogical relationships
between words:
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Word Embeddings for Analogies

vec(king)≠ vec(man)+ vec(woman) ¥ vec(queen)

I More generally: The analogy a1 : b1 :: a2 : b2 can be solved (that is, find b2 given
a1,b1,a2) by

arg max
b2œV

cos(b2,a2 ≠a1 +b1)

where V excludes (a1,b1,a2).
I Often works better with normalized vectors (so that one long vector doesn’t wash

out the others)
I Levy and Goldberg (2014) recommend the following “CosMul” metric which tends

to perform better:
arg max

b2œV
cos(b2,a2)cos(b2,b1)

cos(b2,a1)+ ‘

I requires normalized, non-negative vectors (can transform using (x +1)/2)
I ‘ is a small smoothing parameter.
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Tokenizing for Word Embeddings

I drop capitalization
I punctuation is optional
I don’t drop stopwords/function-words
I add special tokens for start of sentence and end of sentence
I for out-of-vocab words, substitute a special token or replace with part-of-speech

tag
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Can cluster word embeddings to produce topics

Clustered word embeddings in judicial opinions, from Ash and Nikolaus (2020)
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Pre-trained word embeddings

I In many settings (e.g. a small corpus), better to use pre-trained embeddings.

I e,g, spaCy’s GloVe embeddings:
I one million vocabulary entries, 300-dimensional vectors, trained on the Common

Crawl corpus
I Can initialize models with pre-trained embeddings, can fine-tune as needed.
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Implicit attitudes (Caliskan, Bryson, and Narayanan 2017)

"Attitudes that a�ect our understanding, actions, and decisions in an unconscious
manner" (Kirnan institute, OSU)

I Generally measured using Implicit Association Tests (IATs)
I Subjects asked to assign words to categories (Greenwald et al. 1998)

I Comparing reaction times across trials with di�erent word pairs:
I subjects tend to be slower and more error-prone in assignments against stereotype

(e.g. “Michelle” goes to “Female or Career”).
I IAT score = di�erence in reaction time between stereotype-consistent and

stereotype-inconsistent rounds.
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Caliskan, Bryson, and Narayanan (2017)

I “We replicated a spectrum of known biases, as measured by the Implicit
Association Test, using a widely used, purely statistical machine-learning model
trained on a standard corpus of text from the World Wide Web. . . “

Analogies
I king : queen :: man : woman
I walked : walking :: swam : swimming
I man : programmer :: woman : homemaker
I he : physician :: she : nurse
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Measuring Gender Stereotypes using Cosine Similarity
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Example Stimuli

I Targets:
I Flowers: aster, clover, hyacinth, marigold, poppy, azalea, crocus, iris, orchid, rose,

bluebell, da�odil, lilac, pansy, tulip, buttercup, daisy, lily, peony, violet, carnation,
gladiola, magnolia, petunia, zinnia.

I Insects: ant, caterpillar, flea, locust, spider, bedbug, centipede, fly, maggot,
tarantula, bee, cockroach, gnat, mosquito, termite, beetle, cricket, hornet, moth,
wasp, blackfly, dragonfly, horsefly, roach, weevil.

I Attributes:
I Pleasant: caress, freedom, health, love, peace, cheer, friend, heaven, loyal, pleasure,

diamond, gentle, honest, lucky, rainbow, diploma, gift, honor, miracle, sunrise,
family, happy, laughter, paradise, vacation.

I Unpleasant: abuse, crash, filth, murder, sickness, accident, death, grief, poison,
stink, assault, disaster, hatred, pollute, tragedy, divorce, jail, poverty, ugly, cancer,
kill, rotten, vomit, agony, prison.
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Results

I Pleasant vs. Unpleasant?
I Flowers vs. Insects
I Musical instruments vs. weapons.

I European-American names vs. African-American names
I Male names vs. Female names:

I Career words (e.g. professional, corporation, ...) vs. family words (e.g. home,
children, ...)

I Math/science words vs arts words
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What do we learn from this?
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Garg, Schiebinger, Jurafsky, and Zou (PNAS 2018)

Women’s occupation relative percentage vs. embedding bias in Google News vectors.
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Kozlowski, Evans, and Taddy (ASR 2019)
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Time Series Analysis of A�uence

“Among the 10 nouns most highly projecting on the a�uence dimension in the first decade of the

twentieth century are “fragrance,” “perfume,” “jewels,” and “gems,” ...”
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Measuring stereotypical beliefs in the judiciary (Ash, Chen, and Ornaghi 2021)

I We do not have IAT scores for sitting judges

I Proposed solution: proxy for IAT using large amounts of written text: judicial
opinions.

Adjectives associated with
Male and Female

in judicial opinion text.
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Gender Slant, by Judge Gender
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Distribution of the slant measure (cosine similarity between the gender and career-family dimensions), by judge gender. (p=0.012)
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Does Gender Stereotyping Matter? (Ash, Chen, and Ornaghi 2021)

1. It matters for decisions: More stereotyped judges tend to vote against expanding
women’s rights.

2. It matters for treatment of colleagues: More stereotyped judges more likely to
reverse female judges and less likely to cite them.

3. It reshapes the language of the law, which could influence culture and society.
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Outline
Reading Text Documents as Data

Corpora
Quantity of Text as Data
Dictionary Methods
Featurization

Document Distance/Similarity

Machine Learning with Text

Topic Models

Word Embeddings

Document Embeddings

Syntactic and Semantic Parsing

In-Depth Application: Demszky et al (2019)

Social Science Research with Text
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Vectorizing Documents

I Quantitative analysis of language requires that documents be transformed to
numbers – that is, vectors.

I We started with the baseline approach: documents become sparse vectors of
token counts/frequencies.

I high-dimensionality can cause issues, but sparsity mitigates.
I can use documents of arbitrary length
I can capture local word order with n-grams, but long-run word order is lost.
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From Word Vectors to Document Vectors

D̨ =
ÿ

wœD
aw w̨

I The “continuous bag of words” representation for document D is the sum, or the
average (potentially weighted by aw ), of the vectors w̨ for each word w in ahe
document.
I word vectors w̨ constructed using Word2Vec or GloVe (pre-trained or trained on the

corpus).
I “Document” could be sentence, paragraph, section, etc.
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Document Vectors

D̨ =
ÿ

wœD
aw w̨

I Can filter tokens:
I drop stopwords
I filter on parts of speech (e.g., keep only nouns, adjectives, and verbs)

I Token weighting:
I set aw to weight words by inverse term frequency or inverse document frequency

(that is, up-weight rare/informative words)
I Arora, Liang, and Ma (2016) provide a “tough to beat baseline”, the SIF-weighted

(“smoothed inverse frequency”) average of the vectors:

aw = –

– +pw

where pw is the probability (frequency) of the word and – = .001 is a smoothing
parameter.
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Doc2Vec (Le and Mikolov)

I Doc2Vec generalizes Word2Vec to documents:
I predict a word using both the immediate neighbors, as well as a bag-of-words

representation of the whole document.

I In Doc2Vec, both words and documents are assigned a learned vector
representation through an embedding layer.

I Just as directions in word space encode semantic information about the words,
directions in document space encode topical information about the documents.

I In topic models, each dimension has a topical interpretation; in document
embeddings, a direction (might) have a topical interpretation.
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Doc2Vec in gensim

I can train both document vectors and word vectors.
I can get similarity between documents, and use clustering to get groups of related

documents.
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Tagged Documents for Classifier Features

I Can add additional non-unique document “tags”; these will be embedded
separately from the unique doc ID:

I will improve performance if using the embeddings to classify the tag.
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Doc2Vec on Wikipedia
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Outline
Reading Text Documents as Data

Corpora
Quantity of Text as Data
Dictionary Methods
Featurization

Document Distance/Similarity

Machine Learning with Text

Topic Models

Word Embeddings

Document Embeddings

Syntactic and Semantic Parsing

In-Depth Application: Demszky et al (2019)

Social Science Research with Text
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Beyond Word Order

I The models we have seen so far have counted words and phrases, or embedded
sequences
I the only language structure used is the ordering of words.

I How to identify whether the defendant was negligent?
I “The negligent defendant”
I “The defendant was negligent”
I “The defendant, a driver, was negligent”

I Syntactic and semantic parsing will do this.
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Dependency Grammar
I The basic idea:

I Syntactic structure consists of words, linked by binary symmetric relations called
dependencies.

I Dependencies identify the grammatical relations between words.

I Dependency structures represent grammatical relations between words in a
sentence:
I head-dependent relations (directed arcs)

I functional categories (arc labels)

I structural categories (parts-of-speech)
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dependencies in spaCy

I For production, use spaCy processing pipelines
(https://spacy.io/usage/processing-pipelines)
I customizable and parallelizable

https://spacy.io/usage/processing-pipelines
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Unsupervised Discovery of Gendered Language

I This paper builds on the “gender bias” NLP papers by adding in syntactic
information:

I Corpus: dependency parse of 3.5 million books from Goldberg and Orwant (2013).

I 37 million noun-adjective pairs
I 41-million subject-verb pairs
I 14 million verb-object pairs
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Extracting gendered language

I Hoyle et al (2019) extract the set of adjectives and verbs attached to nouns that
are predictive of the gender of the noun.
I they use a regularized latent variable model
I the resulting metric is (almost) proportional to PMI.

I Interpreting the dimensions:
I categorize adjectives/verbs by sentiment (positive, negative, neutral)
I categorize adjectives/verbs as related to the body and emotions.
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Gendered Adjectives
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Gendered Verbs (as agent)
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Gendered Verbs (as patient)
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I Female nouns were correlated with adjectives/verbs related to the body and to
emotions.
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Extracting Modal Verb Structures in Labor Contracts (Ash et al 2020)

I Subject categories:
I worker, union, owner, and manager.

I In law, deontic modal verb structures create legal requirements (Kratzer 1991).
I strict (shall, will, must)
I permissive (may, can)

I Statements coded as negative (“shall not” rather than “shall”) and active (“shall
provide”) or passive (“shall be provided”).
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Most Frequent Subject-Modal-Verb Tuples

Subject - Modal - Verb

agreement_shall_be

arbitrator_shall_have

board_shall_have

case_may_be

committee_shall_meet

company_shall_pay

company_shall_provide

company_will_pay

company_will_provide

decision_shall_be

employee_may_request

Subject - Modal - Verb

employee_shall_be

employee_shall_be_allowed

employee_shall_be_considered

employee_shall_be_entitled

employee_shall_be_given

employee_shall_be_granted

employee_shall_be_laid_o�

employee_shall_be_paid

employee_shall_be_required

employee_shall_continue

employee_shall_lose

Subject - Modal - Verb

employee_shall_receive

employee_shall_retain

employee_will_be

employee_will_be_allowed

employee_will_be_entitled

employee_will_be_given

employee_will_be_granted

employee_will_be_paid

employee_will_be_required

employee_will_have

employer_shall_grant
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Case Study: Canadian Auto Workers Union Contract
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Semantic Role Labeling

Source: Jurafsky-Martin slides.
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“Higher taxes will hurt the economy.”

“Health insurance saves lives.”

‘Immigrants steal our jobs.’

Our (broad) research agenda: How do narratives influence and/or reflect
political and economic outcomes?
A preliminary challenge: How to identify and quantify narratives.
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Raw sentences and their mined narratives

I “President, I think the administration has begun to address the overseas basing
issue.”
æ (administration, address, foreign policy)

I “As always, God bless and protect our troops and their families.”
æ (god, bless, troop)
æ (god, protect, troop)

I “We need to pay attention to agriculture and the survival of the family farm as
other countries protect and subsidize their farmers.”
æ (country, protect, farmer)
æ (country, subsidize, farmer)

I show wordviews HTML
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Analyzing polarization in social media: Method and application to tweets
on 21 mass shootings
Demszky, Garg, Voigt, Zou, Gentzkow, Shapiro, and Jurafsky

I Research Object:
I use NLP to understand four dimensions of social media polarization: topic choice,

framing, a�ect, modality.

I Context:
I tweets in response to mass shooting events.

I Research question:
I does political partisanship manifest in polarized responses to violent/polarizing

events?
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Dataset

I 21 mass shooting events, 2015-2018, from Gun Violence Archive

I tweets about those events, identified by:
I location keywords (e.g. chattanooga, roseburg, san bernardino, fresno, etc.)
I event keywords (lemmas): shoot, gun, kill, attack, massacre, victim
I filter out retweets and tweets from deactivated accounts
I N = 10,000 (out of 4.4 million tweets from the firehose archive).
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Identifying party a�liation of Twitter users
I Party a�liation identified o� of whether you follow more Democrats or

Republicans, from a list of Twitter accounts associated with legislators,
presidential candidates, and party organizations (Volkova et al 2014).
I at least 51% of tweets for each event can be assigned partisanship this way.

I For geolocated users this matches up pretty well with party vote shares by state
(R2 = .82):
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Measuring Partisanship: Pre-processing

I Stemming and stopword removal.
I Event-specific vocabulary:

I unigrams and bigrams
I occur in event’s tweets at least 50 times
I must be used by at least two tweeters.
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Partisanship metric

I Leave-one-out estimator from Gentzkow et al (2019), applied to each shooting
event:

fi = 1
2( 1

|D|
ÿ

iœD
q̂ i · fl̂≠i + 1

|R|
ÿ

iœR
q̂ i · (1≠ fl̂≠i))

I q̂ i = token frequencies for user i , drawn from set of democrats D and set of
republicans R

I fl̂≠i has elements

fl≠i = q
D
i

qD
i +qR

i
empirical posterior probabilities computed from all other users.

I fi is an estimate for expected posterior probability that a Bayesian observer would
correctly predict party after observing one randomly sampled token.
I consistency assumes tokens are drawn from multinomial logit.
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Tweet texts about mass shootings are predictive of party

I comparable to fi = .53 in Congressional speeches (GST 2019).
I The increase in polarization over time is not statistically significant.
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Questions/Issues with this Analysis

I How polarized are tweets about other topics (not mass shootings)?
I why not use a tweeter fixed e�ect and compare to their other tweets?
I why not show pre-trends in polarization?

I Can show polarization separately by party?
I Validating fi:

I How accurate is fi at the individual level?
I Where is the binscatter of fi versus actual party a�liation?
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Sentence Embeddings for Topic Assignment

1. Make a new vocabulary:
1.1 Sample 10,000 tweets from each event
1.2 vocabulary of stemmed words occuring at least ten times in at least three events

(N = 2000)

2. Train GloVe embeddings on random samples of tweets from each event (samples
were di�erent sizes, this is not explained)

3. Create Arora et al (2017) embeddings:
3.1 for each tweet t, compute weighted average vectors vt for each word, weighted by

inverse frequency.
3.2 take out first principal component of matrix whose rows are vt
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Topics = Embedding Clusters

1. Cluster the embeddings using k-means

2. Identify and drop hard-to-classify tweets:
2.1 compute ratio of distance to closest topic and distance to second-closest topic.
2.2 drop tweets above the 75th percentile.

I Validation using Amazon Mechanical Turk to choose number of clusters:
I Identify word intruder: five from one cluster, one from another cluster.
I Identify tweet intruder: three from one cluster, and one from another cluster.
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Topic Content

I The embedding method resulted in more coherent topics (better MTurk validation
for words and tweets) than a topic model. k = 8 got best coherence.
I Appendix reports samples of tweets for each topic (but does not say how samples

were selected).
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Between-topic vs within-topic polarization
I Within-topic polarization: compute fi separately by the tweet clusters.

I Between-topic polarization: Compute fi using cluster counts, rather than token
counts.
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Trends in within-topic polarization
I Most polarized topics: shooter’s identity & ideology (.55), laws & policy (.54)

I “measuring polarization of topics for other events over time is noisy”.
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Partisanship of Topics, by Race of Shooter
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Partisan Framing Devices: Words

I Partisanship of phrases from supervised model:

I Partisan valence of “terrorist” and “crazy” flip depending on race of shooter
(these words have the largest racial di�erence in the joint vocabulary).
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Partisan Framing Devices: Events

I Partisanship of keywords for previous events:

I Democrats invoke white shooters, Republicans invoke POC shooters.
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A�ect (Emotions)
I Starting point: Emotion lexicon from Mohammad and Turney (2013), available at

saifmohammad.com.
I 14,182 words assigned to sentiment (positive/negative) and emotions (anger,

anticipation, disgust, fear, joy, sadness, surprise, trust).

I Domain propagation (Hamilton et al 2018):
I pick 5-11 representative words per emotion category (Appendix E)
I for each word in vocabulary, compute average distance to each member of each

category. take 30 closest words as lexicon.

saifmohammad.com
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Partisanship of A�ect Categories

I Compute partisanship scores using a�ect-category counts:

I Disgust a�ect flips along partisan lines depending on race of shooter.
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Modality

I Count the four most frequent necessity modals in the data: should, must, have to,
need to.
I in this context, they are used as calls to action.

I Democrats use modals more than Republicans; Republicans seem more fatalistic.
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Comments

I This is an impressive array of NLP tools aimed at the same research question.
I could be moving toward a standard for analyzing interpretable dimension in language.

I For all outcomes, would help to compare to other types of events, and to show
pre-trends.
I there is no baseline for polarization for comparison.
I they do not distinguish whether outcomes are driven by di�erent people selecting

into tweeting, vs within-user changes.
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Outline
Reading Text Documents as Data

Corpora
Quantity of Text as Data
Dictionary Methods
Featurization

Document Distance/Similarity

Machine Learning with Text

Topic Models

Word Embeddings

Document Embeddings

Syntactic and Semantic Parsing

In-Depth Application: Demszky et al (2019)

Social Science Research with Text
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Causal inference is needed to improve the world

Consider important policy questions like:
I In light of coronavirus, should schools reopen or not for in-person teaching?

I No matter how much we know from lab experiments about the biology/epidemiology
of the virus, there will be too much uncertainty about costs/benefits to answer this.

I We need real-world evidence, but we can’t experimentally force schools to reopen or
not.

I Can use a natural experiment to produce causal estimates:
I e.g., variation in number of coronavirus cases before/after openings, using

di�erences in the timing of openings (di�erences-in-di�erences).
I Google/Facebook understand the importance of causal inference with A/B

testing; social scientists want to use it to assist public policy.
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Causal Graphs

I We are interested in estimating a causal e�ect (if any) of a “treatment” on an
“outcome”.
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I Unobserved Confounders are variables that a�ect both the treatment and the
outcome, which we don’t have in our dataset:

I Observed confounders are not a problem, because we can adjust (control) for
them in causal inference analysis (that is, including them in a regression).
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I Reverse causation: “the outcome” a�ects “the “treatment”.
Joint causation: there is bidirectional causation.

I e.g., e�ect of tax collections on economic growth.

I Resulting estimates are biased (not causal), and cannot be fixed by adjusting for
observed confounders.
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With joint causality, or with unobserved confounders, it is often impossible to
produce statistical estimates with a causal interpretation.

I The gold standard: randomized control trials.
I often not available, e.g. with opening/closing schools under covid-19.

I Second best: natural experiments.
I di�erences-in-di�erences: use longitudinal data and look at groups or places that

adopted treatment at di�erent times.
I regression discontinuity: compare individuals just above or just below some discrete

scoring threshold.
I instrumental variables: use a third variable (“instrument”) that randomly shifts the

probability of treatment.
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Fong and Grimmer (2016): Causal e�ect of political messaging

I What biographical characteristics of politicians influence voter evaluations?

I Could run a survey experiment:
I Document 1: He earned his Juris Doctor in 1997 from Yale Law

School, where he operated free legal clinics for low-income

residents of New Haven, Connecticut...

I Document 2: He served in South Vietnam from 1970 to 1971 during

the Vietnam War in the Army Rangers’ 75th Ranger Regiment, attached

to the 173rd Airborne Brigade. He participated in 24 helicopter

assaults...

I But hard to generalize what features drive di�erences.
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Fong and Grimmer (2016): Approach

I Lab experiment: 1,886 participants, 5,303 responses
1. Randomly assign texts, Xi , to respondents i

I Sees up to 3 texts from the corpus of > 2200 Wikipedia biographies
2. Obtain responses Yi for each respondent

I Feeling thermometer rating: 0-100

3. Structural topic model variant (“supervised indian bu�et process”):
I Discover mapping from texts X to latent topic treatments D̨ based on their e�ect on

Y .
4. Measure causal e�ects of these treatments on Yi
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Fong and Grimmer (2016): Results
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Causal Graphs
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Causal Graph Example: Pollution of a River
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Activity: Practice with Causal Graphs

I Think of two example causal inference questions:
1. where you have language as an outcome
2. where you have language as a treatment

I Try to personalize it:
I a research question from your field
I a policy you are interested in
I a mystery you are fascinated by

I Link to causal graph template posted in zoom chat:
I make a copy, fill it in
I make your doc viewable and paste link into padlet (also in zoom chat).
I will review these at beginning of next lecture.
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