Big Data for Public Policy

Introduction

Malka Guillot

ETH Zürich | 860-0033-00L

Zoom rules before we begin

- Turn on video and set audio to mute
- Set zoom name to "Full Name, School, Dept/Major" (ex: "Leon Smith, ETH Computer Science")
- Say "hi" in the chat

Table of contents

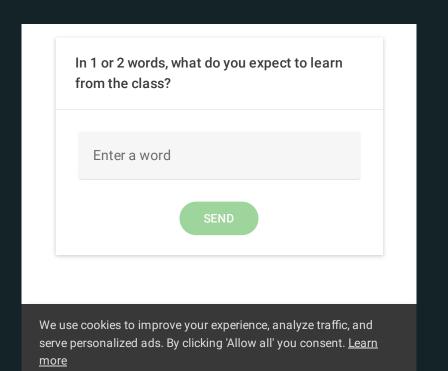
- 1. Prologue
- 2. Logistics
- 3. General motivation
- 4. Tools and resources
- 5. Course outline

More interaction using

slido

Join at slido.com #97107

What do you want to learn during the class?



Prologue:

Machine learning, big data an policy analysis

(Big) Data can diagnose (and hopefully help solve) policy problems.

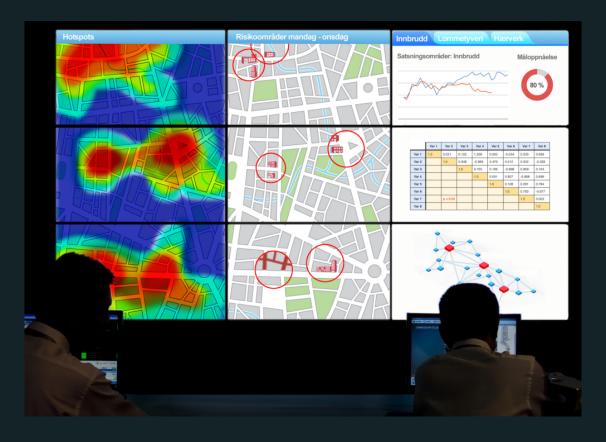
Police discrimination in the US

• Policy question:

- assess racial disparities in policing in the United States
- Big data:
 - Analyze a dataset detailing nearly 100 million traffic stops conducted across the country.
- Methodo:
 - Use a sunset as a "veil of darkness" masks one's race
- Result:
 - Black drivers were less likely to be stopped after sunset,

(Big) Data can cause (or magnify) problems.

Predictive policing



Predictive policing

Predictive policing poses discrimination risk, thinktank warns

Machine-learning algorithms could replicate or amplify bias on race, sexuality and age

▲ One officer said human biases including more stop and searches of black men were likely to be introduced into algorithm data sets. Photograph: Carl Court/Getty Images

Welcome

 This course focuses on applications of big data tools to public policy analysis

- Goals:
 - Equip you with the standard machine learning toolkit.
 - Put it to work on a real-world policy project.

What this course is, and is not

- It is:
 - Applied and oriented towards practice;
 - General overview of different techniques what they are and how to use them.
 - Data analysis in general, not restricted to a field (economics, political science).
 - In python.
- It is not:
 - Computer science. We're not coding up models from scratch.

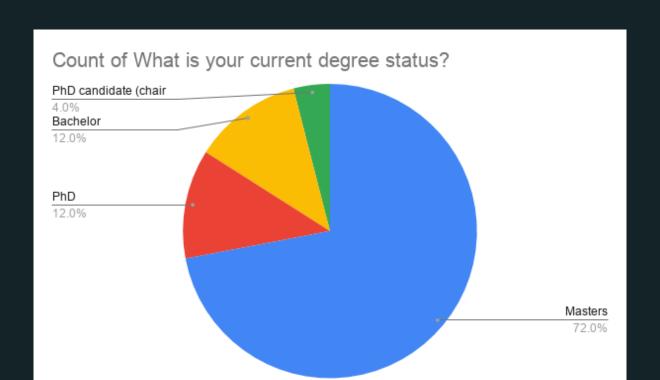
Who am I?

PhD in economics from the Paris School of Economics

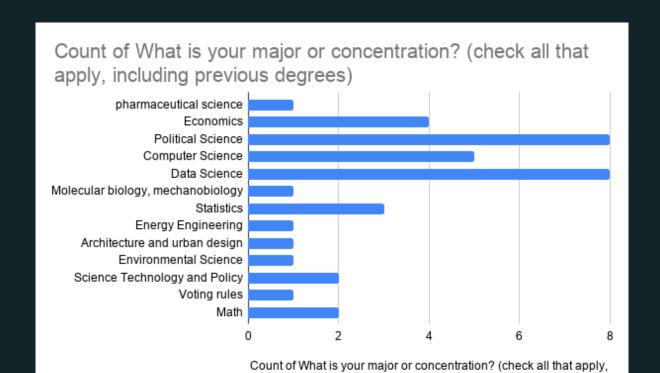
Postdoc at ETH

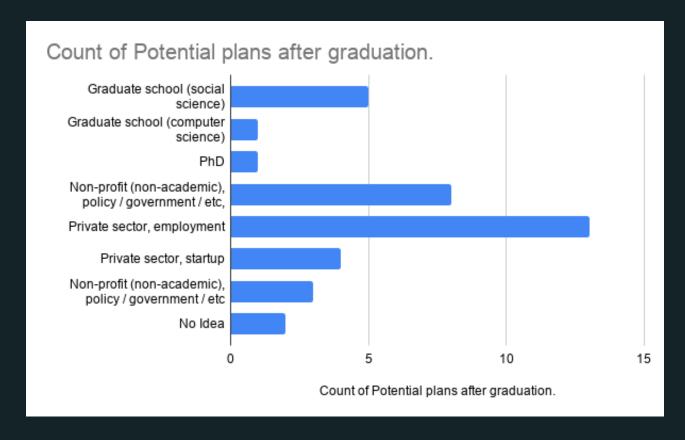
Interested in **public economics** questions: inequality and taxation

Using the standard econometric toolbox + natural language processing + machine learning









Logistics

How does the class work?

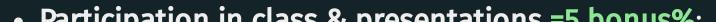
- **Lectures**: 2 hours / week
 - 1 hour theory
 - 1 hour interactive:
 - coding exercise
 - 2 * (15 min students presentations + 10 min of class discussion)
- Every week
 - Thursdays 12:15-14 (with a 10 minute break 13-13:10)
 - On zoom: link

Online Course Materials

- Moodle:
 - Course announcement and forum
 - Giving back homerwork
- Syllabus
- Github folder or Github page
 - Slides: in html, also available in PDF
 - relying on RevealJS
 - Coding sessions: in Jupyter Notebook
 - You can use mybinder in the beginning

Approximative Evaluation Policy

- **Weekly homework**: should be given back as jupyter notebooks in PDF format.
 - 4(hw)*10 pts + 2(hw)*5 pts 10 =40%
- Reading =30%:
 - 1 presentation (2 students) =30%
 - Essay on a paper (1 student) = 30%



Course Communication

- Course communication will be done through eDoz
- I will be available
 - in the zoom 5 minutes early, during the mid-lecture break and after the end of lectures.
 - for 1:1 meetings after the class, just book a 15 minutes slot here.

Online Lecture Norms

∠ Your narticination and collaboration is key for making this a great.

- Keep video on camera on [if connection allows]
 - At the beginning/end, when asking questions
 - When discussing papers / coding
- Visual feedback 😊 😊 😉 helps
- Stay muted when not talking
- To make questions or comments:
 - In the chat
 - use the "raise hand" function + •

Teaching Assistants

Matteo Pinna (matteo.pinna@gess.ethz.ch)

Leo Picard (leo.picard@gess.ethz.ch)

Can answer questions about lectures, notebooks, assignments, and projects

How to reach me?

- Personal question: face-to-face interaction > emails
- General interest question: forum > email
- malka.guillot@gess.ethz.ch
- **▼** IFW E 44 (Haldeneggsteig 4)
 8092 Zürich

General motivation

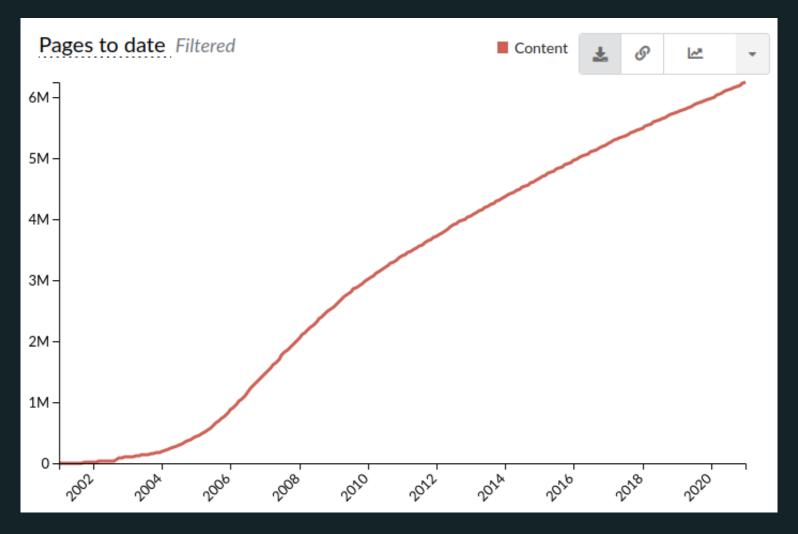
Revolution in policy analysis

- **new datasets**: administrative microdata, digitization of text archives, social media
- **new methods**: causal inference, natural language processing, machine learning

... which contribute to tackle forecasting and public policy evaluation with a new angle

New possibilities: exciting!

of Wikipedia Pages, 2001-2020



Source: Wikimedia Statistics. The running count of all pages created, excluding pages being redirects.

What is big data?

Expert Survey (UC Berkeley, 2014)

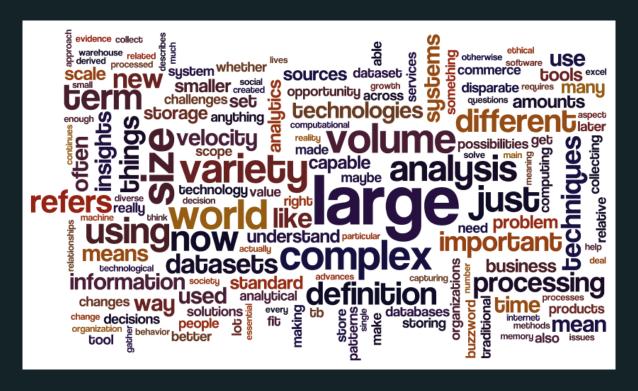


Image by Jennifer Dutcher, source: https://datascience.berkeley.edu/what-is-big-data

Conclusion

Source: Ingeniero Dilbert

What is big data?

- Variety of types/formats of data
 - Structured
 - Unstructured
- Volume of data
- Velocity: Speed of data flow/stream
- Unusual sources
 - Ready made vs. costummades

ightarrow Use programming and statistics to extract value

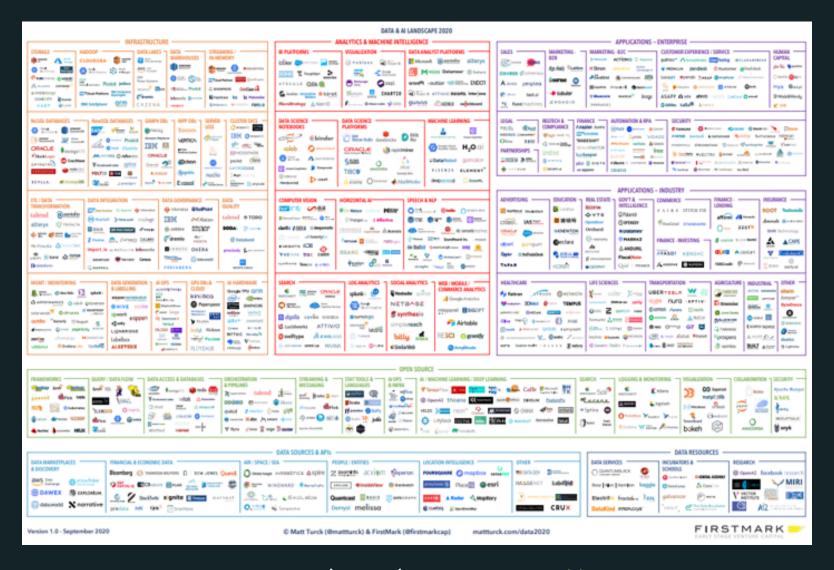
Big data in the Social sciences

- From web applications and digitization of economic and political processes
- Volume: can be big, but usually smaller than in natural sciences
- Variety and variability: often important and challengin
 - Various resources
 - Data generation from 'the real world'
- But usually no streaming applications (**velocity** not that much of an issue)

New tools and methods

- Data collection: API, Webscraping
- Analysis: text analysis, machine learning
 - Data can be tall (many observations) or wide/fat (many regressors) ⇒ Machine learning helps to extract the relevant information
- Visualization: maps, social networks, web appeals

Big data ecosystem



Source: 'Big Data Landscape (2020)' from http://mattturck.com, high definition image

What is machine learning?

More on this in the statistical learning theory lecture.

Why is it useful to policy analysis?

Empirical policy research (1)

- Standard causal inference framework
- Relying on a **counterfactual**: what happens with and without a policy
- The art of the counterfactual intertwine with applied econometrics
 - → many policy applications where causal inference is not central, or even necessary

(Toy) example

Policy maker facing a drought must decide whether to:

- 1. Invest in a rain dance to increase the chance of rain Causality: do rain dances cause rain?
- 2. Take an umbrella to work to avoid getting wet on the way home? **Prediction**: is the chance of rain high enough to merit an umbrella?

E Kleinberg, J., Ludwig, J., Mullainathan, S. and Obermeyer, Z.,2015. Prediction policy problems. American Economic Review, 105(5), pp.491-95.

Conclusion:

Why relying on BD and ML appeals to policy analysis?

- 1. Not all policy problems are causal inference problems, some require **prediction**
 - → ML and BD **supplement** standard econometrics
- 2. Some data pose **new empirical challenges**
 - → ML and BD **complement** standard econometrics

Learning objectives:

1. Technical skills

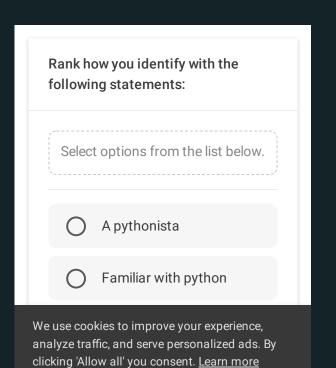
- Introduction data analysis and visualization in python: pandas, web-scraping, API, web-app
- Programming skills necessary to train and assess the performance of the most popular machine learning algorithms

2. Substantive knowledge

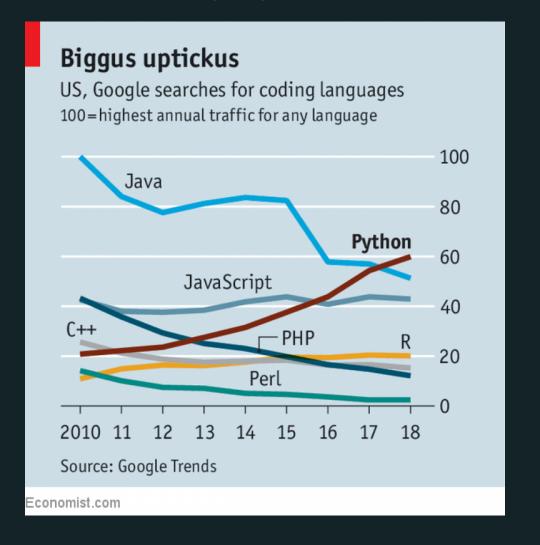
- Statistical theory underlying common supervised and unsupervised machine learning algorithms.
- When and how to apply different types of machine learning algorithms to policy issues

Tools and resources

Your programming background



Why Python?



Why Python?

- General-purpose language
 - One of the core languages of scientific computing
- Elegant syntax
- Many useful libraries:
 - Data manipulation: Pandas
 - Machine learning: scikit-learn
 - Statistics: statsmodels
 - Natural Language Procession nltk
- Also path dependency: the language I know the best

Using Python

Anaconda

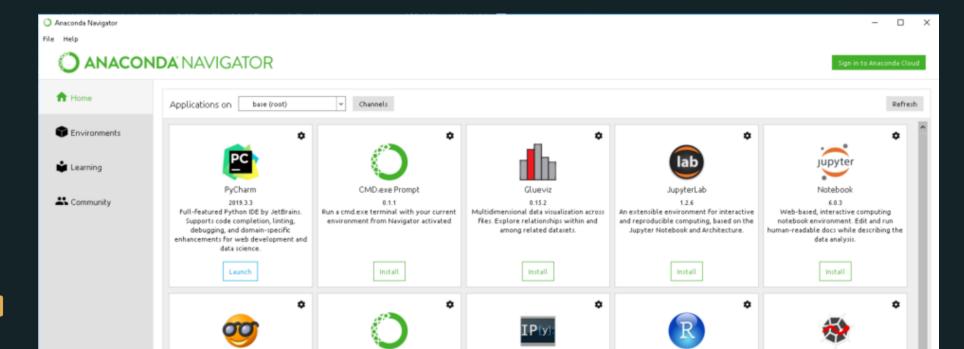
Jupyter notebook

Spyder

a convenient all-in-one install for homerwork for longer code

You are welcome to use R instead.

→ Anaconda



Course materials are on Github

- Git
 - Git is a distributed version control system.
 - Dropbox + track changes, optimized for codes
- GitHub (≠ Git)
 - = Online hosting platform that provides an array of services built on top of the Git system.
 - Makes life easier

Why Git and Github?

How to interact with the materials?

- 1. **Simple** -> Just use the online GitHub interface to
 - Access the materials
 - Amend the students' presentation signing sheet

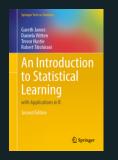
2. Advanced

- Download git
- Create an account on GitHub
- Go through this simple guide
- In case it goes wrong: http://ohshitgit.com/

■ Main textbook references

Geron, Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow

James, Witten, Hastie, and Tisbshirani (JWHT), Introduction to statistical learning with applications in R



Other references

Gaillac and L'Hour, Machine Learning for Econometrics.

Course outline

0. Theoretical context

• W1 & W2: Statistical learning theory

1. Tools

- W1:
 - Overview + tools
 - HW on the basics of python and jupyter notebook
- W2: Webscraping and API
- W13: Web-app application (dash)

2. Machine Learning

- W3+5: Unsupervised ML
- W4+6: Supervised ML
- W7: Advanced ML
- **W8+10**: Text as data
- **W9**: Advanced ML: Working with time series

3. Causal inference designs

- W11: Causal analysis framework
- W12: Synthetic control methods

For next week

Python

- Install Anaconda, try out to run python in a Jupyter notebook and spyder
- Basics of python's syntax: Learn Python
 - less Classes and Objects + Modules and Packages.

Troubleshooting

- Use the course forum to share & find answers
- Let's try to make this a **fun collaborative experience** for everyone

Organizing the readings

- Take a slot for a paper presentation by:
 - By group of 2
 - Indicate 1st, 2nd and 3rd choice for a presentation
 - You can contact me (and are encourage to) if you want to present a paper that is not on the list

