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Prologue
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Coming back on the homework

Most challenging homework
Great spirit on the forum!
Organizing an intro to python session (voluntary participation)
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By now you should have:

Installed Anaconda, with Jupyter-notebook and Spyder
(Installed Git)
Created a GitHub account
Joined the Moodle class
Registered for a presentation
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Last week
What is statistical learning?
Statistics in social science – causality.
Statistics in machine learning – prediction.
Accuracy v. interpretability.

Today

The bias-variance tradeoff.
Classi�cation

Reference: , chap 2.2 & 5.1

Model accuracy

JWHT
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Mean Squared Error (MSE)

Regression setting: the mean squared error is a metric of how well a
model �ts the data.

But it’s in-sample.

What we are really interested in is the out-of-sample �t!

MSE = ( − ( )
1

n
∑
i=1

n

yi f̂ xi )2
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Measuring fit (1)

We would like  to be small for some , not in
our training sample .

Assume we had a large set of observations  (a test sample),

then we would like a low

i.e a low average squared prediction error (test MSE)

( − ( )y0 f̂ x0 )2 ( , )y0 x0

( , )xi yi
n
i=1

( , )y0 x0

Ave( − ( )y0 f̂ x0 )2
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Measuring fit (2)
To estimate model �t we need to partition the data:

1. Training set: data used to �t the model
Training MSE: how well our model �ts the training data.

2. Test set: data used to test the �t
Test MSE: how well our model �ts new data

We are most concerned in minimizing test MSE
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Training MSE, test MSE and model flexibility
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Overfitting

As model �exibility increases, training MSE will decrease, but the
test MSE may not.

When a given method yields a small training MSE but a large test
MSE, we are said to be over�tting the data.

(We almost always expect the training MSE to be smaller than the
test MSE)

Estimating test MSE is important, but requires training data...
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The Bias-Variance Trade-Off
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Decomposing the expected (test) MSE

3 components:

1.  Variance of the predictions
how much would  change if we applied it to a different data set

2.  Bias of the predictions
how well does the model �t the data?

3.  variance of the error term

E( − ( ) = V ar( ( )) + [Bias( ( )) + V ar(ϵ)y0 f̂ x0 )2 f̂ x0 f̂ x0 ]2

V ar( ( )) =f̂ x0

f̂

[Bias( ( )) =f̂ x0 ]2

V ar(ϵ) =
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The bias-variance tradeoff
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Accuracy in Classifications

MSE in the context of regression (continuous predictor).

Modi�cations in the setting in which we’re interested in prediction
classes

We are essentially interested in what % of classi�cations are
correct.

For cross-validation we could also use the estimated test error rate

(training) error rate = 1( ≠ )
1

n
∑
i=1

n

yi ŷ i

(test) error rate = Ave(1( ≠ ))y0 ŷ0
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How to choose training and test set?
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Resamling methods
Estimate the test error rate by

holding out a subset of the training observations from the �tting
process,

 then applying the statistical learning method to those held out
observations
+
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Validation set approach
Randomly divide labeled data randomly into two parts: training and
test (validation) sets.
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Two concerns

Arbitrariness of split

Only use parts of the data for estimation

 we tend to overestimate test MSE because our estimate of  is
less precise
→ f(x)
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Leave-One-Out Cross-Validation (LOOC)
Fit on  training observations, and a prediction the Last
Iterate  times
Assess the average model �t across each test set.

Estimate for the test MSE:

n − 1

n

C = MSVn ∑
i=1

n

Ei
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Leave-One-Out Cross-Validation (LOOC)

less bias than the validation set approach
always yield the same results
potentially too expensive to implement
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-fold Cross-validation

Leave-One-Out Cross-Validation with 
Randomly dividing the data into the set of observations into 
groups
1st fold is treated as a validation set, and the method is �t on the
remaining  folds
Iterate  times

Estimate for the test MSE:

k

k = 1

k

k − 1

k

∑
k
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-fold Cross-validation

 Arguably the contribution to econom(etr)ics: Cross-validation (to
estimate test MSE)!

k

⇒
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Bias-Variance Trade-Off -Fold Cross-Validation
Bias

validation set approach can lead to overestimates of the test error
rate
1-fold validation: almost unbiased estimates of the test error
k-fold validation is in between

Variance

1-fold validation: higher variance
k-fold validation: lower variance

or is a good benchmark

f

k = 5 k = 10
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