
(Co)ends: a taster
Malthe Sporring

University of Edinburgh

August 2023



Contents

1 (Co)end calculus 3
1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Bifunctors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Additional perspectives . . . . . . . . . . . . . . . . . . . . . . . . 7
1.4 (Co)end formulas . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.5 Weighted (co)limits . . . . . . . . . . . . . . . . . . . . . . . . . . 14

References 19

2



Chapter 1

(Co)end calculus

1.1 Introduction

(Co)ends are a categorical tool that organizes and clarifies many concepts in
category theory. They have the reputation of a secret tool of category theorists,
although they are fairly easy to define and motivate. The scope of this text is to
briefly set up the theory of (co)ends and highlight how they can be used to clarify
ideas in category theory. The original reference is [Yon60], but our exposition is
based on the modern account given in [Lor21]. No results should be assumed to
be original.

This text is organized as follows: we give two motivations for (co)ends; in
Section 1.2 as invariants associated to bifunctors and in Section 1.3 as terminal
and initial cones with respect to a modified definition of a natural transformation.
We then give brief proofs of the main results about (co)ends that constitute a
’calculus’ in Section 1.4. Finally, in Section 1.5 we introduce weighted (co)limits
via (co)ends and describe how they give a model for homotopy (co)limits.

1.2 Bifunctors

A ring is a pre-additive category R (i.e an Ab−enriched category) with a single
object, where maps correspond to ring elements and composition is defined by
r ◦ s = rs. An R-bimodule is then an additive functor M ′ : Rop × R → Ab,
where M := M(∗) picks out the module as an abelian group, and multiplication
r · (−) · s : M → M is given by M ′(s, r). Contravariance in the first argument
dictates that multiplication on the right is contravariant with respect to the ring
multiplication, i.e. m · (rs) = (m · r) · s.

Any such bimodule has two invariants associated with it. First, we can identify
the centre ZR(M), which is the largest submodule such that R acts symmetri-
cally as a bimodule. It can be identified as a submodule

ZR(M) = {m ∈ M : r ·m = m · r ∀r ∈ R},
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or as an equalizer

ZR(M) = eq
(
M ⇒

⊕
r∈R

M
)
,

where the two maps are defined by m 7→ (rm)r∈R, and m 7→ (mr)r∈R respectively.
On the other hand, we can form the space of R-coinvariants, which is the

largest quotient MR of M in Ab that identifies r · m with m · r for each r ∈ R
and m ∈ M . That is,

MR = M/⟨r ·m−m · r : r ∈ R,m ∈ M⟩,

or, as a coequalizer,

MR = coeq
(⊕

r∈R

M ⇒ M
)
,

where the maps are induced by (r,m) 7→ r ·m and (r,m) 7→ m · r, respectively.
We can generalize these ideas to an arbitrary functor

F : Cop × C → D

which we call a bifunctor. We can also make sense of V−enriched bimodules; see
[Lor21]. Unless stated otherwise, we will always assume bimodules have locally
small domain. Then, subject to the existence of certain (co)limits in D, we can
study two invariants. Firstly, the end of F∫

c∈C
F (c, c) := eq

(∏
c∈C

F (c, c) ⇒
∏

f :c→d

F (c, d)
)

where the two maps are induced by∏
c

F (c, c)
proj−−→ F (c, c)

F (id,f)−−−−→ F (c, d),

∏
c

F (c, c)
proj−−→ F (d, d)

F (f,id)−−−−→ F (c, d),

respectively, for each f : c → d. Dually, we can study the coend of F∫ c∈C
F (c, c) := coeq

( ∐
f :c→d

F (c, d) ⇒
∐
c∈C

F (c, c)
)
,

where the two maps are induced by

F (d, c)
F (id,f)−−−−→ F (d, d) ↪−→

∐
c∈C

F (c, c),

F (d, c)
F (f,id)−−−−→ F (c, c) ↪−→

∐
c∈C

F (c, c),

respectively, for each f : c → d. When the context is clear, we will use the simpler
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notation
∫
c
F (c, c) or

∫
c
F .

As in the previous example, we can interpret the end
∫
c
F (c, c) as a subobject

of
∏

c F (c, c) which classifies the ’fixed points’ of the action F (fd, d) → F (c, fc)
for all f : c → d. Meanwhile, the coend

∫ c
F (c, c) is the ’quotient’ of the diagonal∐

F (c, c) which symmetrizes the same action of F on arrows. This interpretation
turns out to be very fruitful:

• Bifunctors, and their (co)ends, are everywhere.

• (Co)ends admit a sort of calculus, from which proofs and formulations be-
come almost algorithmic.

To justify the first point, any functor F : C → D can be promoted to a
bifunctor F defined by the composition

F : Cop × C
projC−−−→ C

F−→ D

i.e. by making F mute in the first variable. Then the (co)end of F is exactly
the (co)limit of F ; the formula for a (co)end becomes exactly the formula for a
general (co)limit in terms of (co)equalizers and (co)products. Furthermore, all
right and left Kan extensions are ends and coends, respectively. By extension of
the mantra ”all concepts are Kan extensions”, so too are all concepts co/ends.

We have already described ends and coends as limits and colimits, respectively,
so properties enjoyed by all (co)limits are also enjoyed by (co)ends. In particular,
right adjoints preserve ends, left adjoints preserve coends, and the HomD(−,=)
bifunctor enjoys the properties:

HomD(

∫ c

F,G) ∼=
∫
c

HomD(F,G) ∼= Hom(F,

∫
c

G).

Furthermore, there is a ”formula sheet” of coend calculus, with isomorphisms
holding up to the existence of the relevant (co)ends. Here the tensor ⊗ and
cotensor ⋔ are defined for any V−enriched category C, when they exist, such
that there are adjunctions

(−⊗ c) : V ⊣ C : C(c,−)

and
(− ⋔ c) : V op ⊢ C : C(−, c)

for each c ∈ C. For any category C, considered as enriched over Set with the
cartesian product, the tensor and cotensor exist when coproducts and products
exist respectively, and are given, for s ∈ Set and c ∈ C, by

s⊗ c :=
∐
s

c, s ⋔ c :=
∏
s

c.

In particular, when C = Set,

s⊗ x ∼= s× x, s ⋔ x ∼= Set(s, x).
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Let H : Cop × C ×Dop ×D → E.
• (Fubini’s theorem)

∫
c

∫
d
H ∼=

∫
d

∫
c
H ∼=

∫
c×d

H

• (Fubini’s theorem)
∫ c ∫ d

H ∼=
∫ d ∫ c

H ∼=
∫ c×d

H

Let F,G : C → D.
• (Natural transformations as end) Nat(F,G) ∼=

∫
c
D(Fc,Gc)

Let K : Cop → Set.
• (The Yoneda lemma) K ∼=

∫
c
Set(C(c,−), Kc)

• (The co-Yoneda lemma) K ∼=
∫ c

Kc× C(−, c)

Let H : C → Set.
• (The Yoneda lemma) H ∼=

∫
c
Set(C(−, c), Hc)

• (The co-Yoneda lemma) H ∼=
∫ c

Hc× C(c,−)

Let F : C → D and G : C → E.
• LanFG ∼=

∫ c
D(Fc,−)⊗Gc

• RanFG ∼=
∫
c
D(−, F c) ⋔ Gc

We will prove the above theorems shortly. However first, let us demonstrate
the algorithmic nature of coend calculus with an example. We say a right Kan
extension is pointwise if it is preserved by representable functors i.e. if following
diagram exists and the right triangle commutes:

C E Set

D

F

G E(e,−)

RanFG

RanFE(e,G)

This is equivalent to the condition that the Kan extension has an end formula
as above, as we now prove. Compare this with the standard proof in category
theory, i.e. Thm 6.3.7 of [Rie17].

Proposition 1.2.1. Let F : C → D and G : C → E, and suppose the right Kan
extension RanFG exists. Then it is pointwise if and only if

RanFG ∼=
∫
c

D(−, F c) ⋔ Gc,

and this end exists.

Proof. On one hand, suppose E(e, RanFG) ∼= RanFE(e,G) for all e ∈ E. Since
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Set is bicomplete, an end formula exists of the form

E(e, RanFG) ∼=
∫
c

D(−, F c) ⋔ E(e,Gc) ∼=
∫
c

Set(D(−, F c), E(e,Gc))

∼=
∫
c

E
(
e,D(−, F c) ⋔ Gc

) ∼= E
(
e,

∫
c

D(−, F c) ⋔ Gc
)
.

Since e was arbitrary, by the Yoneda lemma,

RanFG ∼=
∫
c

D(−, F c) ⋔ Gc.

Following the string of isomorphisms in the reverse direction shows if RanFG
has an end formula, so does E(e, RanFG) as the desired Kan extension.

1.3 Additional perspectives

In the previous section, we saw that (co)ends arise as natural invariants associated
to bifunctors. In this section, we will see that (co)ends also arise, in a similar way
to (co)limits, as initial and terminal cones, but with a modified notion of natural
transformation.

Let us return to our previous example of an R−bimodule M ′, N ′ : Rop×R →
Ab. Let’s define a pseudo-homomorphism of bimodules f : M → N as a
group homomorphism such that r · f(m · r) = f(r ·m) · r for every r ∈ R,m ∈ M .
This may seem like a useless definition - for example, there is no well-defined
composition of pseudo-homomorphisms. However, it concisely gives the universal
property of the space of coinvariants MR (and dually, that of the center ZR(M)).
Indeed, MR is initial among trivial1 R−bimodules with a pseudo-homomorphism
from M .

This definition can be extended to any bifunctor. We make the following
definition:

Definition 1.3.1. A dinatural transformation α : F ⇛ R between bimodules
F,G : Cop × C → D consists of maps αc : F (c, c) → G(c, c) such that for all
f : c → d in C, the following square commutes.

F (d, c)

F (c, c) F (d, d)

G(c, c) G(d, d)

G(c, d)

F (f,id) F (id,f)

αc αd

G(id,f) G(f,id)

1Recall this is the only way we can think of MR as an R-bimodule in general.
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If F is a constant functor with a dinatural transformation α : F ⇛ G, we call
F a wedge over G.

The definition of dinatural transformation is motivated by thinking of a bi-
functor F : Cop×C → D as depending on c both contravariantly and covariantly
at the same time, which is not something a standard natural transformation can
fully account for. We will only need to consider wedges, but see [Lor21] for an
account of dinatural transformations and the closely related extranatural trans-
formations. Let us define a morphism of wedges α : E ⇛ F and α′ : E ′ ⇛ F
over F : Cop × C → D as a map f : E → E ′ such that the following diagram
commutes for all c ∈ C:

E E ′

F (c, c)

αc

f

α′
c

These combine into a category Wd(F ) of wedges over F , for which it is little
more than an unpacking of definition to show the end

∫
c
F is the terminal object,

if it exists. This gives ends a familiar classification to limits, as the terminal
wedge over the diagram F . Indeed, by the universal properties of the product
and equalizer, a cone E over the diagram∏

c∈C

F (c, c) ⇒
∏

f :c→d

F (c, d)

is exactly given by maps αc : E → F (c, c) that are equalized in each component
of ∏

f :c→d

F (c, d),

i.e. so
E F (d, d)

F (c, c) F (c, d)

αc

αd

F (f,id)

F (id,f)

commutes for each f : c → d. The end is by definition terminal among these
maps, which are exactly wedge maps over F.

Of course, one can make the completely analogous definition of a cowedge
under F , and arrive at the coend

∫ c
F as the initial object in the category coW (F )

of cowedges, if it exists.
Let us also include a third perspective of (co)ends, which is useful for gener-

alizing (co)ends to higher categories. Given a category C, we define the twisted
arrow category Tw(C) such that

• The objects of Tw(C) are the maps f : c → d in C.

• A morphism between f : c → d and g : x → y consist of morphisms
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j : x → c and h : d → y such that the following diagram commutes:

c x

d y

f g

j

h

The ”twist” refers to the fact that morphims in Tw(C) are pairs (j, h) of a
contravariant and a covariant morphism. There is an evident functor

p : Tw(C) → Cop × C

(f : c → d) 7→ (c, d)

c x

d y

f g

j

h

7→ (j, h)

Indeed, expanding the limit of F ◦p in terms of products an equalizers, we recover
exactly the limit-form of the end of F , so

limTw(C)(F ◦ p) ∼=
∫
c

F.

and similarly for the coend. Since we have a twisted arrow ∞-category [Lur17],
this is the easiest form of (co)ends to generalize to ∞-categories.

1.4 (Co)end formulas

We give brief proofs of the main (co)end formulas from Section 1.2.

Proposition 1.4.1 (Natural transformations as end). Let F,G : C → D. Then

Nat(F,G) ∼=
∫
c

D(Fc,Gc)

Proof. This is little more than a description of the definition of a natural trans-

formation. A wedge over D(F−, G−) is a set X with maps X
−c−→ D(Fc,Gc) for

each c such that the following diagrams commute.

X D(Fd,Gd)

D(Fc,Gc) D(Fc,Gd)

−d

−c D(Ff,id)

D(id,Gf)

For each element x ∈ X, this is exactly saying that the maps xc : Fc → Gc are
components of a natural transformation x : F ⇒ G. In other words, a wedge
is exactly a subset of Nat(F,G) with the obvious cowedge maps. Obviously,
Nat(F,G) is terminal among these.
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Remark 1.4.2. Note the end formula for the Yoneda lemma is just a special
case of Proposition 1.4.1 for Set-valued functors H : C → Set:

H(−) ∼= Nat
(
C(−,=), H(=)

) ∼= ∫
c

Set
(
C(−, c), Hc

)
and similarly for the contravariant version.

We will now prove the coend form of the co-Yoneda lemma for covariant
functors. The version for presheaves follows immediately, and unpacks as the
familiar statement ”every presheaf is a colimit of representables”.

Proposition 1.4.3 (co-Yoneda Lemma). Let H : C → Set be a functor. Then

H(−) ∼=
∫ c

Hc× C(c,−)

We give two proofs. First, a hands-on object-wise proof. Second, a proof
using (co)end calculus. Hopefully this demonstrates how (co)end calculus takes
the tedium out of object-wise categorical proofs.

Proof 1. Let us describe H as a cowedge under H(=)×C(=,−). For each c ∈ C
we have a natural transformation

αc : Hc× C(c,−) → H

whose components are given by

αc
d : Hc× C(c, d) → Hd (x, f) 7→ (Hf)(x)

The cowedge condition then says that for all f : c → d, g : d → e and x ∈ Hc,

(Hg ◦ f)(x) = (Hg)(Hfx)

which is satisfied by functoriality of H.
Given any other cowedge J with legs βc for c ∈ C, a cowedge morphism

γ : H ⇒ J is a natural transformation whose components satisfy

γd(Hf(x)) = βc
d(x, f)

for each c ∈ C, x ∈ Hc, f : c → d. There is at most one such map, given by
γd(y) = βd

d(y, id). Note we then automatically get

γd(Hf(x)) = βd
d(Hf(x), id) = βc

d(x, f)

by the cowedge condition on β.
Finally, the γd assemble to a natural transformation since the square in ques-
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tion

Hc Jc

Hd Jd

Hf

βc
c(−,id)

Jf

βd
d(−,id)

is a special case of the naturality square for βc combined with its cowedge condi-
tion:

Hc× C(c, c) Jc

Hc× C(c, d) Jd

Hc× C(d, d) Hd× C(d, d)

βc
c

(id,f◦−) Jf

βc
d

(id,−◦f)

(Hf,id)

βd
d

In particular, in the subdiagram spanned by Hc×{id} in the top left corner, the
left-most maps become isomorphisms and the diagram collapses to the desired
one.

Proof 2. Let x, y ∈ C. Then

Set(

∫ c

Hc× C(c, x), y) ∼=
∫
c

Set
(
Hc× C(c, x), y

)
∼=

∫
c

Set
(
C(c, x), Set(Hc, y)

)
∼= Nat

(
C(−, x), Set(H−, y)

)
(Nat as end)

∼= Set(Hx, y) (The Yoneda lemma)

Therefore, by the Yoneda embedding,

Hx ∼=
∫ c

Hc× C(c, x).

Since all the isomorphisms used are natural in x, this isomorphism also holds as
functors.

We will now prove Fubini’s theorem for (co)ends. This will follow as an easy
corollary of a deeper result, namely the following:

Lemma 1.4.4. Suppose all ends exist for functors of the form F : Cop×C → D.
Then the end construction defines a functor∫

c

: Fun(Cop × C,D) → D

that is a right adjoint.
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Proof. For functoriality of
∫
c
, we note if α : F ⇒ G is a natural transformation

of bimodules, then ∫
c

F → F (c, c)
α(c,c)−−−→ G(c, c)

is a cowedge over G, giving a unique cowedge map
∫
c
F →

∫
c
G. By uniqueness,

this is functorial with respect to vertical composition of natural transformations.
The left adjoint is defined by

Hc : D → Fun(Cop × C,D) d 7→ C(−,=)⊗ d

with the obvious correspondence on maps. We will prove construct the (co)unit
maps of the adjunction, as in Exercise 1.14 of [Lor19].

For the unit η : id →
∫
c
◦Hc, notice that each d ∈ D is a wedge over

C(−,=)⊗ d

with legs

d →
∐
C(c,c)

d

the inclusion at the identity. This gives rise to unique wedge maps

ηd : d →
∫
c

(
C(c, c)⊗ d

)
which assemble to a natural transformation.

The counit ϵ : Hc ◦
∫
c
→ id has component at J : Cop × C → D given by

ϵJ : C(−,=)⊗
∫
c

J ⇒ J

which in turn have components given by

ϵJ,(c,c′) :
∐

C(c,c′)

∫
c

J(c, c) → J(c, c′)

defined on each component at f : c → c′ by the composition∫
c

J(c, c) 7→ J(c, c)
(id,J(f))−−−−−→ J(c, c′).

The wedge condition ensures this assembles to a natural transformation ϵ.
We now confirm the triangle identities. First,

(ϵHc) ◦ (Hcη)

is a natural transformation whose components at d are

C(−,=)⊗ d C(−,=)⊗
∫
c
C(c, c)⊗ d C(−,=)⊗ d
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By construction, on each component f ∈ C(c, c′), this is the identity map.
Second,

(

∫
c

ϵ) ◦ (η
∫
c

)

is a natural transformation whose component at J is∫
c
J

∫
c′

(
C(c′, c′)⊗

∫
c
J
) ∫

c′
J

The first map is the wedge map induced by∫
c

J
(id,id)−−−→ C(c′, c′)⊗

∫
c

J

while the second is the wedge map induced by∫
c′

(
C(c′, c′)⊗

∫
c

J
)
→

(
C(c′, c′)⊗

∫
c

J
)
→

∐
f :c→c′

J(c, c′)

so the long map is the wedge map induced by the legs∫
c

J → J(c, c),

which is the identity.

Theorem 1.4.5 (Fubini’s theorem). Let

F : Cop × C × Eop × E → D

Then if either of the following exist, they all do and are isomorphic.∫
e

∫
c

F ∼=
∫
e

∫
c

F ∼=
∫
(c,e)

F.

Similarly, ∫ e ∫ c

F ∼=
∫ e ∫ c

F ∼=
∫ (c,e)

F.

To make sense of the statement, when writing
∫
c
F , we implicitly mean the

end of
F : Cop × C → Fun(Eop × E,D)

defined by
F (c, d) := F (c, d,−,=),

and similarly for
∫
e
F .

Proof. We prove the statement for ends. The statement for (co)ends is obtained
by a similar argument. By Lemma 1.4.4, it is enough to show that He ◦ Hc

∼=
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Hc ◦He
∼= H(c,e), interpreted properly. Then the result will follow by uniqueness

of adjoints. We have

H(c,e)(≡) := (C × E)(−,=)⊗ (≡) ∼=
(
C(−,=)⊗ E(−,=)

)
⊗ (≡)

so the result follows by associativity and commutativity of the tensor product.

We finish this section by giving an extremely useful characterisation of Kan
extensions as (co)ends.

Proposition 1.4.6 (Kan extensions as (co)ends). Let F : C → D and G : C →
E. Then the following isomorphisms hold whenever the relevant (co)ends exist.

LanFG ∼=
∫ c

D(Fc,−)⊗Gc

RanFG ∼=
∫
c

D(−, F c) ⋔ Gc

Proof. We will prove the result for right Kan extensions - the other result follows
by a dual argument. The universal property defining RanFG is that for any
H : D → E

Nat(H,RanFG) ∼= Nat(HF,G).

We then have

Nat(HF,G) ∼=
∫
c

E
(
HF (c), G(c)

)
(Nat as end)

∼=
∫
c

∫
d

Set
(
D(d, Fc), E(Hd,Gc)

)
(Yoneda on E(−, Gc))

∼=
∫
c

∫
d

E
(
Hd,D(d, Fc) ⋔ Gc

)
(Cotensor adjunction)

∼=
∫
c

Nat
(
H,D(−, F c) ⋔ Gc

)
(Nat as end)

∼= Nat
(
H,

∫
c

D(−, F c) ⋔ Gc
)
.

The desired isomorphism follows by the Yoneda embedding.

The previous proof demonstrates the deductive nature of (co)end proofs. We
started with Nat(HF,G) and wanted to reach something of the form Nat(H, ?).
We then used the rules available to us to rearrange the ’variables’ to the correct
form.

1.5 Weighted (co)limits

A cone over a diagram F : C → D is a natural transformation x ⇒ F from a
constant functor, and a limit is then a terminal cone. The universal property of
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the limit limF is therefore that

D(x, limF ) ∼= Nat(1, D(x, F−)),

where 1 represents the terminal functor C → Set. There is no reason we cannot
generalize this to other representing functorsW : C → Set, which we callweights
for the functor F : C → D. We will then define the limit of F weighted by
W , limW F , by the universal property

D(x, limWF ) ∼= Nat(W,D(x, F−)),

if it exists. Similarly, the colimit of F weighted by W , colimW , has the
property

D(colimWF, x) ∼= Nat(D(x, F−),W ),

if it exists.
There is good reason to do this. Firstly, many objects arise naturally as

weighted (co)limits. Secondly, while we will see that the theory of (co)limits
absorb the theory of weighted limits in the standard setting, this is not true in
the enriched setting. In particular, there is not always a good notion of ”constant
functor” in the enriched setting, crucial for defining conical limits. For example,
the constant functor

B : Ab → Ab,A 7→ B, f 7→ idB

is not additive. So in the enriched setting we really need a generalized definition
of (co)limit.

Weighted colimits arise as certain (co)ends, which is helpful for clarifying
computations.

Proposition 1.5.1. Let F : C → D and W : C → Set be functors, and assume
the set-tensor, set-cotensor, and relevant (co)ends exists in D. Then

limWF ∼=
∫
c

W (c) ⋔ F (c)

colimWF ∼=
∫ c

W (c)⊗ F (c).

Proof. Let x ∈ D. Then

D
(
x,

∫
c

W (c) ⋔ F (c)
) ∼= ∫

c

D
(
x,W (c) ⋔ F (c)

) ∼= ∫
c

Set
(
W (c), D(x, F (c))

)
∼= Nat

(
W,D(x, F−)

)
so the desired isomorphism for weighted limits follows by the Yoneda lemma.

Similarly,

D
( ∫ c

W (c)⊗ F (c), x
) ∼= ∫

c

D
(
W (c)⊗ F (c), x

) ∼= ∫
c

Set
(
W (c), D(F (c), x)

)
∼= Nat

(
W,D(F−, x)

)
.
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We can use Proposition 1.5.1 to prove statements about weighted (co)limits
using (co)ends, and vice-versa. In particular, combined with Proposition 1.4.6,
we get a description of Kan extensions as weighted limits:

RanGF (−) ∼= limD(−,G=)F

LanGF (−) ∼= colimD(G=,−)F

Remark 1.5.2. As has been the theme so far, Proposition 1.5.1 also has a dual
version: (co)ends are certain weighted (co)limits. This uses the previous remark,
along with the fact that for any functor H, H ∼= RanidH.

Let F : Cop × C → D and suppose its end exists. Then for every d ∈ D,

D
(
d,

∫
c

F (c, c)
) ∼= ∫

c

D
(
d, F (c, c)

)
∼=

∫
c

D
(
d,

∫
c′
C(c, c′) ⋔ F (c, c′)

)
(Right Kan extension)

∼=
∫
(c,c′)

Set
(
C(c, c′), D

(
d, F (c, c′)

))
(⋔ adjunction)

∼= Nat
(
C(−,=), D

(
d, F (−,=)

))
Hence ∫

c

F (c, c)
) ∼= limC(−,=)F

by the universal property of weighted limits. A similar proof shows∫ c

F (c, c)
) ∼= colimC(−,=)F

Let us give a homotopy theoretic reason to be interested in weighted lim-
its. The category hTop∗ of pointed topological spaces and homotopy equivalence
classes of maps is not well-behaved under (co)limits. For example, it does not
have pushouts. Consider the two pushout diagrams in Top∗:

S1 ∗ S1 D2

∗ ∗ D2 S2

where the two maps S1 → D2 are both the inclusion of the boundary. Under
the obvious functor Top∗ → hTop∗, these should be identified with the same
pushout diagram since D2 is contractible. However, S2 is not contractible. This
can be fixed by considering a suitable weighted limit, giving a model for ho-
motopy (co)limits. in particular, consider a diagram F : J → M in a model
category equipped with sSet-variants of ⊗,⋔, [−,=] with the appropriate ad-
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junctions. Then

hlimF ∼= limN(J/−)F ∼=
∫
j

N(J/j) ⋔ F (j)

and dually

hcolimF ∼= colimN(−/J)F ∼=
∫ j

N(j/J)⊗ F (j).

Here N(J/−) : J → sSet sends an object j to the nerve of its under category
J/j. That is, a 0−simplex is a map i → j, a 1−simplex is a commutative triangle

i j

i′

a 2−simplex is a commutative 3−simplex

i j

i′′ i′

and so on, with the obvious face and degeneracy maps.
We can motivate the homotopy limit construction by the following observa-

tions:

1. For any category C with a terminal object 1, N(C) is contractible, essen-
tially because |N(C)| is star-shaped at the terminal object. In particular,

N(J/j) is contractible since (J/j) has a terminal object j
id−→ j.

2. N(J/−) is a fibrant object in Cat(J, sSet).

We have described a fibrant replacement of the terminal weight: N(J/−) should
be thought of as a contractible but fattened up version of the terminal functor
which keeps track of homotopy equivalences. For more details, see [Lor21] and
[Rie14].

Example 1.5.3. Let’s motivate homotopy colimits by a computation. Let
F : J → sSet be the pushout diagram

∂∆2 ∆0

∆0

with its obvious underlying diagram J , and note that ∂∆2 is a minimal model
for the circle. We recall sSet is self-tensored with X ⊗ Y ∼= X × Y , where

(X × Y )n ∼= Xn × Yn

17



with the obvious face and degeneracy maps. Then

hcolimF ∼=
∫ j

N(j/J)× F (j)

is the initial cowedge

hcolimF

∆0 ∆0

∂∆2 Λ2
0 × ∂∆2 ∂∆2(1,id) (2,id)

This is ∂∆2 ∗∂∆1, which is a model for S2 - the correct answer to our motivating
example. Repeating the argument for a general X ∈ sSet, we get that the
homotopy pushout along two points is X ∗ ∂∆1 - is a model for the suspension
Σ|X|, as expected.
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