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2 Introduction
One of the goals of algebraic topology is to classify spaces up to some definition
of equivalence, typically homotopy equivalence. Establishing equivalence can be
tedious, as it often requires the construction of an explicit homotopy equivalence.
It is typically easier to determine inequivalence, through calculations of homo-
topy invariants. These are properties of a space that are preserved by homotopy
equivalences, hence if two spaces have different invariants, they cannot be homo-
topy equivalent. Some of the first major homotopy invariances the undergraduate
student encounters are the homotopy groups πn(X),n ∈ N∪{0}: the groups of
equivalence classes of maps f : Sn → X with some base point. The homotopy
groups carry a lot of geometric information but are notoriously difficult to com-
pute. Even for a simple space like the 2-sphere S2, it is not obvious that there are
non-trivial maps S3 → S2 (we show that such a map exists in section 8.5), and it
is even less obvious what the higher homotopy groups are. The groups πn(S2) do
not seem to follow a pattern and remain an active area of research. Only recently,
in 2015, was it proven that πn(S2) is not zero for all n ≥ 2 [4].

To avoid these complications, we would like to find homotopy invariances
that are easier to compute, and ideally not at the cost of too much geometric
information. The homology groups Hn(X) are an example of such homotopy
invariants. Like the homotopy groups, they are a sequence of groups, one for each
n ∈ Z, but they are much simpler and easier to compute. For example, the spheres
have the simple structure

Hn(Sm) =

{
Z n = 0,m
0 otherwise

Homology groups have some key properties that aid in calculations, most im-
portantly a long exact sequence, which, broadly speaking, relates the homology
groups HnX to each other and to the homology groups HnA of a subspace A ⊆ X .
Therefore, the more homology groups you know, the easier it is to calculate the
rest.
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Historically, homology groups were calculated from a number of geometric
methods. It was Eilenberg and Steenrod who united the different homology the-
ories by laying out a set of axioms that all homology theories satisfy [2]. In this
text, we will take such an axiomatic approach, proving all results directly from the
axioms. In some ways this approach best captures the essence of homology: the
main task of a geometric approach to homology is to prove the Eilenberg-Steenrod
axioms, and in practical calculations, the axioms are often preferred over the geo-
metric construction. However, this approach is not without its disadvantages. For
the results in this text to be true, we have to take as given that there exists a ho-
mology theory that satisfies the axioms, and proving this is a major undertaking
worth its own project. Singular Homology is an example of a homology theory
that satisfies our assumptions, as the reader is invited to confirm in [3].

Homology theory is best understood in the language of category theory and
chain complexes, which sections 3 and 4 are devoted to. In section 5, we lay out
the Eilenberg-Steenrod axioms and prove some immediate results for an ordinary
homology theory, most importantly the homology groups of the n-sphere. In the
following sections, we make the choice H0• = Z, which corresponds to Singular
Homology. In sections 6, 7 and 8, we lay out three practical methods for calculat-
ing homology groups: The Mayer-Vietoris Sequence, degree maps and Cellular
Homology, and use them to prove some fascinating results. In Section 9, we put
everything together to prove the celebrated Borsuk-Ulam Theorem.

3 Category theory
The language of category theory was invented specifically for homology theory
but has since then become an entire field of itself with many applications [6]. It is a
very general construction, as many familiar constructions form categories, includ-
ing groups, rings, vector spaces and topological spaces. Informally, a category is a
collection of "objects" and "maps between them". In the above-mentioned cases,
the objects are sets with some structure, and the maps are functions that satisfy
some structure-preserving property. However, the definition of a category is more
general than this, and there are categories whose objects look nothing like sets and
whose maps look nothing like functions between sets.

Definition 3.1. A category A is

• a collection1 of objects ob(A ),

• for each A,B ∈ ob(A ) a collection A (A,B) of maps from A to B,

1A collection is similar to a set, with some technical differences laid out in [5].
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• a composition function ◦ : A (A,B)×A (B,C)→ A (A,C),

which satisfy the following properties:

(a) Associativity: ( f ◦g)◦h = f ◦ (g◦ f ),

(b) Identity laws: For each A ∈ ob(A ) there is a unique map idA ∈ A (A,A)
with the property that idA ◦ f = f and g ◦ idA = g for every f ∈ A (B,A) and
g ∈ A (A,B).

We often write A ∈ A to mean A ∈ ob(A ), and f g to mean f ◦g.
Categories are best understood through examples, of which we give a few.

Many more examples are given in [5].

Example 3.2. The following are categories.

(a) The empty category /0 with no objects and no maps.

(b) A one-object category {A} with only the identity map idA.

(c) Top is a category, where spaces are topological spaces, and the maps are all
continuous maps. This is because the identity map is always continuous, and
compositions of continuous maps are continuous.

(d) We have similar constructions for other "sets with structure" and "structure-
preserving maps" such as Vec the category of vector spaces and linear maps,
and Grp, the category of groups and homomorphisms.

(e) Many categories can be found as subcategories of previous examples. For
example, we have the subcategory Ab ⊂ Grp of abelian groups and homo-
morphisms between them.

(f) Finally, here is an example of a category that cannot be interpreted as "sets"
and "structure-preserving maps":

A B

idA

f
g f

idB

g

If we tried to interpret this as two one-element sets A and B together with the
only maps f ,g between them, we run into trouble, as there are two distinct
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maps from A to itself! However this category satisfies the definitions: we
have identities, and for every two maps we have defined their compositions

f g = idB, f (g f ) = f ,(g f )g = g,(g f )(g f ) = g f

These compositions are forced upon us by the associativity requirement, for
example f (g f ) = ( f g) f = (idA) f = f , and (g f )(g f ) = g( f g) f = g f . One
might think g f contradicts the uniqueness of the identity requirement, but it
does not, as (g f )idA = g f ̸= idA.

Two definitions that will play a big role in our study are the notions of "maps
between categories" and "maps between maps between categories". These are
called functors and natural transformations, respectively.

Definition 3.3. A functor F : C → H between two categories is a function as-
signing each X ∈ ob(C ) to some F(X) ∈ ob(H ), and each f ∈ C (A,B) to some
F( f ) ∈ H (F(A),F(B)), such that

(a) F( f ◦g) = F( f )◦F(g)

(b) F(idA) = idF(A)

The definition of a functor is set up such that it takes commutative diagrams
to commutative diagrams. I.e. if this commutative diagram is in C ,

A B

D C

f

j g

h

then the following commutative diagram is in H :

F(A) F(B)

F(D) F(C)

F( f )

F( j) F(g)

F(h)

Example 3.4. There is a functor F : Grp → Set which forgets the group struc-
ture. Explicitly, it maps each group G ∈ Grp to the underlying set in Set, and
each homomorphism f to the underlying function between sets. This functor is
appropriately named the forgetful functor.
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Example 3.5. There is a functor Top : Grp which takes each topological space
X to its fundamental group π1(X).2 This is well-defined since continuous maps
f give rise to homomorphisms f ∗ between fundamental groups, the identity map
gives rise to the identity homomorphism, and ( f g)∗ = f ∗g∗.

Definition 3.6. A natural transformation α : F → G between functors F,G :
A → B is a family of functions (αA : F(A)→ G(A))A∈A between objects in B
such that any map f : A → B in A gives rise to a commutative diagram

F(A) G(A)

F(B) F(B)

αA

F( f ) G( f )

αB

Functors and natural transformations are explored in-depth in [5]. For now,
we will make do with the definitions. The properties we will use the most are that
functors preserve commutative diagrams and that natural transformations com-
mute with functors in the way specified by the above diagram.

4 Chain Complexes
Definition 4.1. A chain complex is a family (Ai)i∈Z of abelian groups, as well
as a family ( fi : Ai → Ai+1)i∈Z of homomorphisms between consecutive groups,
such that im( fi) ⊂ ker( fi+1). If we have equality instead of inclusion, the family
is called an exact sequence.

We distinguish between short and long exact sequences, where short exact
sequences are sequences with three or fewer consecutive non-zero groups, i.e.
sequences of the form

0 A B C 00 f g 0

All other exact sequences are called long exact sequences.

Example 4.2. For any abelian group A the following is a long exact sequence:

. . . A A A . . .
0 id 0 id

2Technically, the domain should be the category of based Topological spaces Top•, whose
objects are spaces with a point, and whose maps are base-point preserving maps.
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Remark 4.3. The requirement that im( fi)⊆ ker( fi+1) is equivalent to the require-
ment that fi+1 ◦ fi = 0. This is clear from the definition: if im( fi)⊆ ker( fi+1) then

∀x ∈ Ai, fi+1 ◦ fi(x) ∈ fi+1(im( fi)) = {0}.

Additionally, if ∀x ∈ Ai, fi+1 ◦ fi = 0 then fi+1(im( fi)) = {0}.

Example 4.4. Suppose the following is part of a long exact sequence of groups.

. . . A B C D . . .
0 f 0

We say this gives rise to the following short exact sequence, as they carry the
same information.

0 B C 0
f

Note we can omit specifying any homomorphisms from or into 0, as there is
only one: the 0-homomorphism. Since 0 = im(0) = ker( f ), f is injective. Since
im( f ) = ker(0) =C, f is surjective. Therefore f is an isomorphism.

Definition 4.5. If there exist maps f : A→B and g : B→A between abelian groups
such that g◦ f = idA then g is called a retraction of f . If alternatively f ◦g = idB,
then f is called a section of f .

This definition formalises the idea of a "one-sided inverse".

Proposition 4.6. Let the following be a short exact sequence

0 A B C 0
f g

(a) If there exists a section s : C → B of g, then f and s define an isomorphism

( f + s) : A⊕C → B

(a,c) 7→ f (a)+ s(c).

(b) If there exists a retraction r : B → A of f , then r and g define an isomorphism

(r,g) : B → A⊕C

b 7→ (r(b),g(b)).
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Proof. (a) First we show that ( f + s) is injective. By exactness we have that f is
injective, as 0 = im(0) = ker( f ), and that g is surjective, as im(g) = ker(0) =
C. Suppose f (a)+ s(c) = 0. Then

0 = g(0) = g( f (a)+ s(c)) = g f (a)+gs(c) = c

Which implies c = 0. But then 0 = f (a), which implies a = 0 as f is injective.
Therefore ker( f + s) = 0, so ( f + s) is injective.

Next we show ( f + s) is surjective. Let b ∈ B, c = g(b) ∈C and a ∈ A be the
unique element that maps to b− sg(b) ∈ B. This element exists, since

g(b− s(g(b))) = g(b)−g(b) = 0,

so b− sg(b) ∈ ker(g) = im( f ). It is unique by the injectivity of f . It follows
that

f (a)+ s(c) = b− sg(b)+ sg(b) = b,

so ( f ,s) is surjective. It is therefore an isomorphism.

(b) First we show that (r,g) is injective. Suppose (r(b),g(b)) = (0,0). Then
g(b) = 0, so b ∈ ker(g) = im( f ). Now r is injective on im( f ), since r f = idA.
Therefore r(b) = 0 =⇒ b = 0. So (r,g) is injective.

Next we show (r,g) is surjective. Let (a,c) ∈ A⊕C. Since g is surjective,
there exists b ∈ B such that c = g(b). Let x = f (a)+ b− f r(b) ∈ B. Then
g(x) = g(b), as g f (−) = 0 by exactness. Additionally,

r(x) = r f (a)+ r(b)− r f r(b) = a+ r(b)− r(b) = a,

since r f = idA. It follows that (r,g) is also surjective, so it is an isomorphism.

The next proposition is not necessarily about chain complexes, but is very
much in the flavour of Proposition 4.6 and will be very useful in our study.

Proposition 4.7. If f : A → B admits a retraction g : B → A, then

B ∼= im( f )⊕ ker(g)

Proof. We define a homomorphism

h : B → im( f )⊕ ker(g)

b 7→ ( f g(b),b− f g(b))
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This is well defined as f g(b)∈ im( f ) trivially, and g(b− f g(b))= g(b)−g(b)= 0.
First we show h is injective. Let ( f g(b),b− f g(b)) = (0,0). Then b− f g(b) =
b = 0, as f g(b) = 0, so h is injective. Next we show h is surjective. Let (x,y) ∈
im( f )⊕ ker(g), and a ∈ A be such that f (a) = x. Then

h(x+ y) = ( f g f (a)+ f g(y), f (a)+ y− f g f (a)) = ( f (a),y) = (x,y),

as g f = idA and g(y) = 0. It follows that h is surjective, so it is in fact an isomor-
phism.

We finish this section with a technical lemma that will become useful in sec-
tion 5.

Lemma 4.8 (Braid lemma). Suppose three long exact sequences and a chain com-
plex make the following commutative diagram:

A D G

O C F I

B E H

f1

g1 h3

g2 h4

j4

g0

j0 f2

h2 j3

g3h1

j1 f3

j2 f4

g4

Then the chain complex is also a long exact sequence.

Proof. By symmetry of the diagram, it does not matter which sequence is the
chain complex. We can assume it is the sequence with homomorphisms fi. We
are given that im( fi)⊆ ker( fi+1) and need to show that ker( fi+1)⊆ im( fi). By the
symmetry of the diagram, it is enough to show this for i = 1,2,3. We will show
that ker( f2)⊆ im( f1) here, and do the other two cases in the Appendix.

Let x ∈ ker( f2). Then 0 = f2(x) = j2 f2(x) = g2h2(x) by commutativity. It fol-
lows that h2(x) ∈ ker(g2) = im(g1). So ∃x1 ∈ A s.t. g1(x1) = h2(x). By commu-
tativity, g1(x1) = h2 f1(x1). So we have that 0 = g1(x1)−h2(x) = h2( f1(x1)− x).
Let x2 := f1(x1)− x ∈ ker(h2) = im(h1). Then ∃x3 ∈ B s.t. h1(x3) = x2.

Now note that

j1(x3) = f2h1(x3) = f2(x2) = f2( f1(x1)− x) = 0,

where the last equality follows from f2 f1(−) = 0 and f2(x) = 0. We therefore
have that x3 ∈ ker( j1) = im( j0). So there exists x4 ∈ O s.t. j0(x4) = x3. Consider
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g0(x4). It satisfies f1g0(x4) = h1 j0(x4) = h1(x3) = x2 = f1(x1)− x. Therefore we
have

x = f1(x1 −g0(x4)).

This shows that x ∈ im( f1) as required. [2]

5 Axioms

5.1 The Eilenberg-Steenrod axioms
In this section we follow the treatment of the Eilenberg-Steenrod axioms given
in [9]. We define Top2 to be the category of pairs of topological spaces (X ,A),
where A,B ∈ Top and A ⊆ X . Maps in Top2

(
(X ,A),(Y,B)

)
are continuous maps

f : X → Y such that f (A)⊆ B. It is not hard to see this defines a category.

Lemma 5.1. Top2 is a category.

Proof. As idX(A) = A, idX ∈ Top2
(
(X ,A),(X ,A)

)
for each (X ,A). Furthermore,

if f ∈ Top2((X ,A),(Y,B) and g ∈ Top2((Y,B),(Z,C), then g f is continuous and
g f (A) = g( f (A)) ⊆ g(B) ⊆ C as required. The extra associativity and identity
properties are satisfied because Top is a category.

We can similarly define Top3 as the triples of topological spaces (X ,A,B)
where B ⊆ A ⊆ X and where morphisms f : (X ,A,B) → (Y,C,D) are maps f :
X →Y such that f (A)⊆C and f (B)⊆D. We identify X ∈Top with (X , /0)∈Top2
and (X ,A) ∈ Top2 with (X ,A, /0) ∈ Top3.

Definition 5.2. A subcategory C ⊆ Top2 is admissible for homology if the fol-
lowing apply:

(a) C contains all points in Top. In the language of category theory, C contains
all final objects in Top, that is, all objects • ∈Top with the property that there
is exactly one morphism f : X →• for every X ∈ Top.

(b) For any (X ,A) ∈ C , the following commutative diagram lies in C , where all
maps are induced by canonical inclusions:

(X , /0)

( /0, /0) (A, /0) (X ,A) (X ,X)

(A,A)
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Furthermore, for any f ∈C ((X ,A),(Y,B)), C contains all the canonical maps
induced by f on the above diagram to the corresponding diagram for (Y,B).

(c) For (X ,A) ∈ C , the following diagram lies in C :

(X ,A) (X × I,A× I)

τ1

τ0

Where τt(x) = (x, t).

Remark 5.3. As noted in [9], the definition certifies that

1. C contains all final objects in Top2, that is all maps (•, /0)→ (X ,A), where
• is some fixed one-point set in C . This is because C contains all maps
(•, /0)→ (X , /0) and also the inclusion (X , /0)→ (X ,A),

2. C contains all homotopies h : f ≃ g, for f ,g ∈ C ((X ,A),(Y,B)). By (iii),
we can identify homotopies as maps h : (X × I,A× I) → (Y,B) such that
hτ0 = f and hτ1 = g:

(X ,A) (X × I,A× I) (Y,B)

t1

t0

f

g

h

In this text, we will assume all spaces and maps are admissible unless other-
wise stated. We will also use "space" to denote "topological space".

We now give the axioms of an (ordinary) homology theory.

Definition 5.4. An ordinary homology theory on an admissible category C is
a family of functors (Hn : C → Ab)n∈Z to the category of Abelian groups3 Ab
and a family of natural transformations ∂n : Hn → Hn−1 ◦ p, where p is the functor
sending (X ,A) to (A, /0) and f : (X ,A)→ (Y,B) to f |BA : (A, /0)→ (B, /0). We will
often write f ∗ for Hn f , ∂ for ∂n and HnX for Hn(X , /0), as it is usually obvious
what role they play. Hn and ∂ are assumed to satisfy the following axioms:

3The original definition defines functors into an abelian category, which generally speaking
is a category where homomorphisms can be added and where we can define the kernel and image
of a homomorphism. In this text we will only deal with the category of abelian groups.
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(a) (Homotopy invariance) If f ≃ g, then f ∗ = g∗.

(b) (Long exact sequence) The inclusions

(A, /0) (X , /0) (X ,A)i j

give rise to a long exact sequence

Hn+1(X ,A) HnA HnX Hn(X ,A)
∂n+1 i∗ j∗

(c) (Excision) If U ⊂ A ⊂ X is open in X and satisfies U ⊆ int(A), then the inclu-
sion (X \U,A\U)→ (X ,A) gives rise to an isomorphism Hn(X \U,A\U)∼=
Hn(X ,A).

(d) (Dimension) For any one-point set •,

Hn•=

{
G n = 0
0 otherwise,

where G is some fixed abelian group.

Remark 5.5. Note id∗ = id by the identity property of functors. Together with
axiom (a), this asserts that homology theory can be used to distinguish between
homotopy equivalent spaces: if f : X → Y is a homotopy equivalence with homo-
topy inverse g : Y → X , then as f g ≃ id, f ∗g∗ = ( f g)∗ = id, since Hn is a functor.
Therefore f ∗ is surjective. Similarly, as g f ≃ id, g∗ f ∗ = id, so f ∗ is injective.
Hence f ∗ : HnX → HnY is an isomorphism.

The extra dimension axiom is what defines an ordinary homology theory as
opposed to a (general) homology theory. It is essential in our study. The choice
H0 =G, called a choice of coefficients distinguishes homology theories from each
other.

5.2 Basic results
Proposition 5.6. If A ⊂ X is a deformation retract, then Hn(X ,A) = 0.

Proof. If A⊂X is a deformation retract, then the inclusion i : A→X is a homotopy
equivalence. By Remark 5.5, i : HnA → HnX is an isomorphism. Now consider
the homology sequence for (X ,A):

HnA HnX Hn(X ,A) Hn−1A Hn−2X
∼= j∗ ∂ ∼=

12



By exactness, ker( j∗) = HnX , so j∗ = 0. Similarly, im(∂ ) = 0, so ∂ = 0.
However im( j∗) = 0 = ker(∂ ), so Hn(X ,A) = 0. [9]

Remark 5.7. As a special case of this result, Hn(X ,X) = 0, as X is a deformation
retract of itself. We are also interested in special case where A = x is a single
point, i.e. X is contractible. Then we have HnX ∼= Hn•= G and Hn(X ,x) = 0.

Next, we would like to show how to calculate the homology of a disconnected
space.

Lemma 5.8. Consider the following commutative diagram.

B B′

X

A A′

g

i′ j

j′i

f

If f and g are isomorphisms, and the diagonals are exact, then there exist
isomorphisms (i+ i′) : A⊕B → X and ( j′, j) : X → A′⊕B′.

Proof. By commutativity, ji′ = g, so ji′g−1 = idB′ . Therefore i′g−1 is a section of
j. By Proposition 4.6, we have an isomorphism

(i+ i′g−1) : A⊕B′ → X

(a,b) 7→ i(a)+ i′g−1(b).

Since g−1 is an isomorphism, (i+ i′) : A⊕B → X is also an isomorphism in the
obvious way.

Similarly, f−1 j′ is a retraction of i. Again, by Proposition 4.6, we have an
isomorphism

( f−1 j′, j) : X → A⊕B′

x 7→ ( f−1 j′(x), j(x))

which since f−1 is an isomorphism also gives an isomorphism

( j′, j) : X → A′⊕B′.

Proposition 5.9. The inclusions iA : A → A⊔B, jB : B → A⊔B induce an isomor-
phism (i∗A + i∗B) : HnA⊕HnB → Hn(A⊔B).
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Proof. Consider the following diagram

(A, /0) (X ,B)

(X , /0)

(B, /0) (X ,A)

iA

f

jB

jAiB

g

It induces the following commutative diagram in homology, which satisfies
the previous lemma as the diagonals are part of the exact sequences of (X ,A) and
(X ,B) respectively and since f ∗ and g∗ are isomorphisms by the excision axiom.

HnA Hn(X ,B)

HnX

HnB Hn(X ,A)

i∗A

f ∗

j∗B

j∗Ai∗B

g∗

The result then follows from Lemma 5.8. [9]

5.3 Reduced homology
Results in homology are easy when the associated homology sequence has maps
that are isomorphisms or 0-maps. Therefore, if it is possible to "simplify" a ho-
mology sequence by for example replacing some groups with 0, this is often ad-
vantageous. As we will show, it is possible to factor out Hn• from a homology
sequence of (X ,A), resulting in a simpler sequence. Furthermore, this transfor-
mation is reversible.

Definition 5.10. For non-empty X , H̃nX := ker(p∗ : HnX → Hn•) where p∗ is
induced by the map p : X → •. H̃nX is called the n-th reduced homology group
of X .

Proposition 5.11. For non-empty X,

HnX ∼= H̃nX ⊕Hn•

and for any x ∈ X,
H̃nX ∼= Hn(X ,x).
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Proof. Consider the homomorphism p∗ : HnX → Hn•. Note p∗ is a retraction of
i∗ : Hn•→ HnX induced by the inclusion, as pi : •→ • is trivially the identity, and
Hn is a functor. By Proposition 4.7,

HnX ∼= ker(p∗)⊕ im(i∗)∼= H̃nX ⊕ im(i∗).

If we can show i∗ is injective, we have our first equality. By the naturality of ∂ ,
the following diagram commutes:

Hn+1(X ,•) Hn•

Hn+1(•,•) Hn•

∂

p∗ p∗

∂

Note p∗ : Hn•→Hn• is the identity, as p : •→• is the identity. Therefore ∂ factors
through Hn+1(•,•) = 0, so ∂ = 0. By the exactness of the homology sequence for
(X ,•), 0 = im(∂ ) = ker(i∗), so i∗ is injective as required, and

HnX ∼= H̃nX ⊕Hn • .

For the second isomorphism, note that the long exact sequence of (X ,•)

. . . Hn+1(X ,•) Hn• HnX Hn(X ,•) . . .
0 i∗ j∗ 0

gives a short exact sequence

0 Hn• HnX Hn(X ,•) 0i∗ j∗

Since p∗ : HnX → Hn• is a retraction of i∗, Proposition 4.6 gives that

HnX ∼= Hn(X ,•)⊕Hn • .

Since this is isomorphic to H̃nX ⊕Hn•,

Hn(X ,x)∼= H̃nX .

Corollary 5.12. If X is contractible to x ∈ X, then H̃n(X) = Hn(X ,x) = 0 by the
previous result and Remark 5.7.
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As we will see, the reduced homology group also come with a long exact
sequence. To define it, we will need a lemma. Consider an admissible category
C and a triple (X ,A,B) ∈ Top3 such that (X ,A),(X ,B),(A,B) ∈C. The homology
sequences of these three pairs, which will be labelled (1),(3),(4) respectively,
form the following braid diagram:

Hn+1(X ,A) Hn(A,B) Hn−1B

HnA Hn(X ,B)

HnB HnX Hn(X ,A)

(1)
∂

i∗(2)

(3) j∗

(4)

The sequences (1),(3),(4) commute with each other. The sequence (2) is
called the long exact homology sequence for the triple (X ,A,B). The map ∂ :
Hn+1(X ,A)→ Hn(A,B) is defined so the diagram commutes, and all other maps
in the sequence are induced by the canonical inclusions, which it is easy to see
also commute with the diagram, either by looking at inclusions or the naturality
of ∂ .

Proposition 5.13. For a triple (X ,A,B) ∈ Top3, the sequence

. . . Hn+1(X ,A) Hn(A,B) Hn(X ,B) Hn(X ,A) . . .
∂ i∗ j∗ ∂

is a long exact sequence.

Proof. We first show that (2) is a chain complex. By commutativity, the compo-
sitions i∂ and ∂ j factor through two consecutive maps in a long exact sequence,
and are hence 0. For j∗i∗, note that ji factors through (A,A):

(A,B)

(X ,B) (A,A)

(X ,A)

i
k

j
h
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In homology, this means j∗i∗ factors through Hn(A,A) = 0, so j∗i∗ = 0.

Hn(A,B)

Hn(X ,B) 0

Hn(X ,A)

i∗ 0

j∗ 0

The result then follows by an application of the Braid Lemma (Lemma 4.8). [9]

Corollary 5.14. The sequence

. . . Hn+1(X ,A) H̃nA H̃nX Hn(X ,A) . . .
∂ i∗ j∗ ∂

is an exact sequence, called the reduced homology sequence of (X ,A).

Proof. This is simply the long exact sequence for a triple (X ,A,x), where x ∈ A:

. . . Hn+1(X ,A) H(A,x) H(X ,x) Hn(X ,A) . . .
∂ i∗ j∗ ∂

Using the isomorphisms H̃nX ∼= Hn(X ,x) and defining the homomorphisms
in the reduced sequence as appropriate gives the result. For example, we define
i∗ : H̃A → H̃nX as the composition

H̃nA Hn(A,x) Hn(X ,x) H̃nX .
∼= i∗ ∼=

[3].

5.4 Homology of Sn

We will now perform a calculation of the groups HkSn from the axioms. Our
approach will be an adaptation of that taken in [9]. We write Sn for the n-sphere,

Sn = {x ∈ Rn : |x|= 1},

and Dn for the closed n-disk,

Dn = {x ∈ Rn : |x| ≤ 1}.

17



Lemma 5.15. For every n ∈ G,

H̃kSn ∼= H̃k−1Sn−1.

Proof. Consider first the pair (Dn,Sn−1), where Sn−1 is the boundary of Dn. Since
Dn is contractible, the reduced homology sequence reads:

0 Hk(Dn,Sn−1) H̃k−1Sn−1 0

This gives an isomorphism

Hk(Dn,Sn−1)∼= H̃k−1Sn−1

Additionally, we have the pair (Sn,Dn), where Dn is identified as the closed
lower hemisphere of Sn. Since H̃kDn = 0, the reduced homology sequence for this
pair reads

0 H̃kSn Hk(Sn,Dn) 0

which gives an isomorphism H̃kSn ∼= Hk(Sn,Dn).
The open disk int(Dn)1/2 of radius 1/2 is a subset of Dn which can be ex-

cised from the pair (Sn,Dn). The resulting space deformation retracts to the pair
(Dn,Sn−1), where Dn is the upper hemisphere and Sn−1 its boundary. By the ex-
cision axiom,

Hk(Sn,Dn)∼= Hk(Dn,Sn−1)

All in all,
H̃kSn ∼= Hk(Sn,Dn)∼= Hk(Dn,Sn−1)∼= H̃k−1Sn−1.

Proposition 5.16. For n > 0,

HkSn =

{
G k = 0,n
0 otherwise

Proof. We identify S0 = •⊔•. By Proposition 5.9,

HkS0 = Hk •⊕Hk•=

{
G×G k = 0
0 otherwise

It follows that H̃0S0 = G and H̃kS0 = 0 when k ̸= 0. By Lemma 5.15,

H̃kSn = H̃k−nS0 =

{
G k = n
0 otherwise
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Therefore, by Proposition 5.11,

HkSn = H̃kSn ⊕Hk•=

{
G k = 0,n
0 otherwise

[9]

All the results in this section hold true for homology theories with any choice
of coefficients H0•= G. For the remainder of the text, unless stated otherwise, we
will make the choice G = Z, which corresponds to Singular Homology Theory
[3]. Making this choice will simplify some of our arguments, and, in Section 7,
allow us to define the degree of f : Sn → Sn as the integer f ∗(1) ∈ Z.

6 The Mayer-Vietoris Sequence

6.1 Statement and proof
In the previous section, we relied heavily on identifying homomorphisms in a
long exact sequence as either isomorphisms or 0-maps. In more general cases,
it is difficult to calculate homology groups directly from the axioms. However,
in many cases, we can cover a space X by two spaces A and B whose homology
groups we know. Provided A and B satisfy certain conditions, we say that (A,B)
is a Mayer-Vietoris cover of X . The excision axiom gives us a very convenient
method for relating the homology groups of X to the homology groups of its
Mayer-Vietoris cover:

Theorem 6.1. Let A and B be closed subsets of X whose interiors cover X. Sup-
pose furthermore that

A\ (A∩B)∩B\ (A∩B) = /0.

Then there is a long exact sequence:

. . . Hn+1X Hn(A∩B) HnA⊕HnB HnX . . .
∂n+1 (i∗, j∗) k∗−l∗

called the Mayer-Vietoris sequence of (X ;A,B). The maps i∗, j∗,k∗, l∗ are in-
duced by the inclusions:

A X

A∩B B

k

i
j

l
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Remark 6.2. The definition is set up such that the inclusions (B,A∩B)→ (X ,A)
and (A,A∩B)→ (X ,B) are excisions, and hence induce isomorphisms in homol-
ogy. For example, note that A\A∩B is open since its complement is closed. This
set satisfies excision, since A\ (A∩B) ⊆ (B\ (A∩B))c = int(A) by assumption.
A similar argument shows that the second inclusion is an excision.

To prove this theorem, we follow the approach laid out in [2], first proving a
lemma.

Lemma 6.3. Consider the following diagram.

G0

G′
1 G′

2

G

G2 G1

G′
0

l1

l2

i0

j0

j1

j2

h1

i2

k1

h2

i1

k2

Suppose we have commutativity in each triangle, k1,k2 are isomorphisms and the
diagonals are exact. Then h1k−1

1 l1 =−h2k−1
2 l2.

Proof. By Lemma 5.8, (i1 + i2) : G1 ⊕ G2 → G is an isomorphism, and so is
( j1, j2) : G → (G′

1,G
′
2). What does this tell us? Every x ∈ G is identified with

a unique ( j1(x), j2(x)) ∈ G′
1 ⊕G′

2, and there are unique x2,x1 ∈ G2 ⊕G1 such
that i2(x2)+ i1(x1) = x. These two representations are related by an isomorphism
(k−1

1 ,k−1
2 ). We would like to show that this isomorphism maps ( j1(x), j2(x)) to

(x2,x1). By commutativity, k−1
1 is the inverse of j1i2, and j1(i2(x2)) = j1(x), so

k−1
1 maps j1(x) to x2. A similar argument shows k−1

2 maps j2(x) to x1. It follows
that

x = (i2 + i1)(k−1
1 ,k−1

2 )( j1, j2)x = i2k−1
1 j1(x)+ i1k−1

2 j2(x).

In particular, letting g ∈ G0 and x = i0(g),

i0(g) = i2k−1
1 j1i0(g)+ i1k−1

2 j2i0(g).

Applying j0 to both sides and noting that j0i0(g) = 0 by exactness, we get that

j0i2k−1
1 j1i0(g) =− j0i1k−1

2 j2i0(g).
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By commutativity in the diagram, this also gives

h1k−1
1 l1(g) =−h2k−1

2 l2.

[2]

We will use this lemma to prove the main result.

Proof of Theorem 6.1. The proof will use a certain diagram, where all maps are
induced by canonical inclusions, except for the boundary map d, which is the
boundary map of the homology sequence of (X ,A∩B), and the maps ∂i, which
are defined to commute in their triangle.

Hn(A∩B)

HnB HnA

HnX

Hn(X ,A) Hn(X ,B)

Hn(X ,A∩B)

Hn(B,A∩B) Hn(A,A∩B)

Hn−1(A∩B)

j∗
i∗

m∗

l∗

k∗

l∗1

l∗2

n∗

j∗2
j∗1

d

k∗1
i∗2

∂1

k∗2

i∗1

∂2

First, we need to show that the lower diagram satisfies the requirements of
Lemma 6.3. The diagonals are exact because they come from homology se-
quences of triples (or pairs, in the case of the vertical sequence). The upper four
triangles commute because they are induced by commutative triangles of inclu-
sions, and the lower two triangles commute by definition. Finally k1 and k2 are
isomorphisms by Remark 6.2. We can therefore define ∂ : HnX → Hn−1(A∩B)
as the composition ∂1k∗−1

1 l∗1 =−∂2k∗−1
2 l∗2 . The remainder of the proof is showing

that the Mayer-Vietoris sequence is exact. This results to a diagram-chasing chal-
lenge. We will show that HnA⊕HnB → HnX → Hn−1(A∩B) is exact, and refer to
[2] for the rest of the pairs.
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We start by showing ∂ (k∗− l∗)= 0. This follows from the two decompositions
of ∂ :

∂k∗−∂ l∗ = ∂1k∗−1
1 l∗1k∗+∂2k∗−1

2 l∗2 l∗.

Both summands contain two consecutive maps in an exact sequence, and are hence
0.

Next, we show that ker(∂ )⊆ im(k∗− l∗). Suppose x∈HnX is such that ∂ (x) =
0. Then

0 = ∂1k∗−1
1 l∗1(x) = di∗2k∗−1

1 l∗1(x).

We define y := i∗2k∗−1
1 l∗1(x) ∈ ker(d). Note that

( j∗1(y), j∗2(y)) = (l∗1(x),0)

where the first component follows from j∗1i∗2k∗−1
1 = id, and the second component

from j∗2i∗2 = 0 by exactness. By exactness, ker(d) = im(n∗), so there exists some
x1 ∈ HnX such that n∗(x1) = y. By what we have just shown,

l∗1(x1) = j∗1n∗(x1) = j∗1(y) = l∗1(x),

and
l∗2(x1) = j∗2n∗(x2) = j∗2(y) = 0.

Now write x = (x− x1) + x1. Since l∗1(x− x1) = l∗1(x)− l∗1(x1) = 0, (x− x1) ∈
ker(l∗1) = im(k∗) so ∃a ∈ HnA such that k∗(a) = (x − x1). Additionally, x1 ∈
ker(l∗2) = im(l∗), so ∃b ∈ HnB such that l∗(b) = x1. Therefore

x = (x− x1)+ x1 = k∗(a)+ l∗(b) = k∗(a)− l∗(−b),

so x ∈ im(k∗− l∗).
We have shown im(k∗− l∗)⊆ ker(∂ ) and ker(∂ )⊆ im(k∗− l∗), so they are in

fact equal. [2]

We would like to also show, in a similar vein to regular homology sequences,
that maps between Mayer-Vietoris covers induce maps between Mayer-Vietoirs
sequences. We say that f : (X ;X1,X2)→ (Y ;Y1,Y2) is a map between the Mayer-
Vietoris covers of X and Y if f (X1) ⊆ Y1 and f (X2) ⊆ Y2. Note this necessarily
implies f (X1 ∩X2)⊆ Y1 ∩Y2.

Proposition 6.4. Let f : (X ;X1,X2) → (Y ;Y1,Y2) be map between the Mayer-
Vietoris covers of X and Y . Then f induces maps between their Mayer-Vietoris
sequences in a commutative manner.

Hn+1X Hn(X1 ∩X2) HnX1 ⊕HnX2 HnX

Hn+1Y Hn(Y1 ∩Y2) HnY1 ⊕HnY2 HnY

f ∗ f ∗ f ∗ f ∗
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The map f ∗ : (X1 ∩ X2) → (Y1 ∩Y2) is induced by the restriction f |X1∩X2 , and
f ∗ : HnX1 ⊕HnX2 → HnY1 ⊕HnY2 is induced by ( f |X1, f |X2).

Proof. We need to confirm three conditions.

(a)
(

f ∗(i∗, j∗) = (i∗, j∗) f ∗
)
. This trivially holds because f commutes with (i, j)

in the diagram

(X1 ∩X2) X1 ⊕X2

(Y1 ∩Y2) Y1 ⊕Y2

(i, j)

f |X1∩X2 ( f |X1 , f |X2)

(i, j)

(b)
(

f ∗(k∗− l∗) = (k∗− l∗) f ∗
)
. This will follow from showing that f ∗k∗ = k∗ f ∗

and f ∗l∗ = l∗ f ∗. However this trivially holds because f commutes with k in
the diagram:

X1 X

Y1 Y

k

f |X1 f

k

and commutes with l in a similar diagram.

(c)
(

f ∗∂ = ∂ f ∗.
)

Note that f induces a map between the homology sequences of
(X ,X1 ∩X2) and (Y,Y1 ∩Y2). By naturality of the boundary map d (the same
boundary map from the definition of ∂ ), the following diagram commutes:

Hn(X ,X1 ∩X2) Hn(Y,Y1 ∩Y2)

Hn−1(X1 ∩X2) Hn−1(Y1 ∩Y2)

d

f ∗

d

f ∗

We therefore have that

f ∗∂ = f ∗di∗2k∗−1
1 l∗1 = d f ∗i∗2k∗−1

1 l∗1 .

This reduces the problem to showing

f ∗i∗2k∗−1
1 l∗1 = i∗2k∗−1

1 l∗1 f ∗.

Just as in (a) and (b), we can see that f commutes with i∗2, j∗1 and l∗1 , by noting
f commutes with i2, j1, l1. To see that f ∗ commutes with k∗−1

1 , note that f ∗
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commutes with k∗1 = j∗1i∗2, as f commutes with j1 and i2. We therefore have
f ∗k∗ = k∗ f ∗. Since k∗ is an isomorphism, we can left-multiply and right-
multiply by k∗−1 on both sides to get k∗−1 f ∗ = f ∗k∗−1. It follows that

f ∗i∗2k∗−1
1 l∗1 = i∗2k∗−1

1 l∗1 f ∗,

as required.

Finally, as with homology sequences of pairs, we can safely remove copies
of Hn• (or Hn •⊕Hn• for HnA⊕HnB) from the Mayer-Vietoris sequence to get a
sequence in reduced homology.

Proposition 6.5 (Reduced Mayer-Vietoris Sequence). If A ∩ B ̸= /0, there is a
long exact sequence in reduced homology, called the reduced Mayer-Vietoris se-
quence:

. . . H̃n+1X H̃n(A∩B) H̃nA⊕HnB H̃nX . . .
∂n+1 (i∗, j∗) k∗−l∗

Proof. Omitted. See [8].

6.2 Examples
In this section, we show a few examples of how convenient the Mayer-Vietoris
sequence can be for calculating homology groups.

Example 6.6 (One-point wedges of circles). Consider the figure eight 8 = S1∧S1

where ∧ is the wedge product identifying the south-pole S of the top circle with the
north-pole N of the lower circle. Let UN be a small open neighbourhood of N, the
north-pole of the top circle.We can cover 8 by A = 8\UN ≃ S1, and B = D+ ≃ •,
the upper half circle of the top circle. Then A∩B = D+ \UN ≃ •⊔•. It is easy to
see that this cover satisfies Mayer-Vietoris. Now note that

Hn(•⊔•) =

{
Z×Z n = 0
0 otherwise

by Proposition 5.9. Since H̃0S1 ⊕ H̃0• = 0, the reduced Mayer-Vietoris sequence
reads

0 Z H̃18 Z 0 H̃08 0k∗ ∂
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Therefore H̃08 = 0, so by Proposition 5.11, H08 = Z. Furthermore, note that the
fold f : 8 → S1, which is the identity on the lower circle, and the reflection on the
upper circle, is a retraction of the inclusion k : S1 → 8 of the lower circle. Since
Hn is a functor, f ∗ is a retraction of k∗. By Proposition 4.7, H18 ∼= Z×Z. The rest
of the Mayer-Vietoris sequence easily gives Hn8 = 0 whenever n ̸= 0,1.

This argument can easily be extended by induction to show the wedge of m
circles (wedged at the same point S ∈ S1)

∧
m S1, has homology groups H1

∧
m S1 =

Zm and H0
∧

m S1 = Z. Let A =
∧

m S1 \UN ≃
∧

m−1 S1, where UN is a small open
neighbourhood of N in one of the circles, and B = Dn

+ ≃ •, the upper hemisphere
of the same circle. Then A and B easily satisfy Mayer-Vietoris, and A∩B ≃ •⊔•.
By induction, the reduced Mayer-Vietoris sequence reads:

0 Zm−1 H̃1
∧

m S1 Z 0 H̃0
∧

m S1 0k∗ ∂

This shows H̃0
∧

m S1 = 0. Again k : S1 →
∧

m S1 admits a retraction r :
∧

m S1 →
S1 which is the identity on every circle except the one that had UN removed, and
which folds the final circle onto any other circle. Therefore Proposition 4.7 gives
that H1

∧
m S1 ∼= Zm.

Example 6.7. Let X be the quotient of the 2-sphere which identifies the North
and South poles: S2/ ∼, S ∼ N. The following is easily seen to be a Mayer-
Vietoris cover: A = (D2

2ε,+ ∪D2
2ε,−)/ ∼≃ •, two small closed disks in the north

and south hemispheres with identified centers S ∼ N, and B = S2 \ (int(D2
ε,+)∪

int(D2
ε,−))/ ∼≃ S1, a large closed belt of S2. For this cover, A∩B ∼= S1 ⊔ S1.

The deformation retraction B ≃ S1 composes with the inclusion i : A ∩ B → B
such that i|A = i|B = idS1 . We expect that inclusion induces the map i∗ : Z×Z→
Z,(x,y) 7→ x+ y, and indeed this can be shown from the following commutative
diagram, where the inclusions i1, i2 are as one expects:

S1

S1 ⊔S1

S1 S1

i

i1

id

i2

id

It induces the following commutative map in homology (for n = 0,1), which
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forces i∗(x,y) = x+ y.

Z

Z×Z

Z Z

i

(x,0)

x

(y,0)

y

The fact that i∗1(x) = (x,0) and i∗2(y) = (0,y) follows from Proposition 5.9. The
Mayer-Vietoris sequence reads as follows:

0 H2X Z×Z Z H1X . . .
∂2 i∗=x+y k∗ ∂1

Note ker(i∗) =< (x,−x) >∼= Z = im(∂2) by exactness. Since ∂2 is injective,
H2X = Z. Additionally, since i∗ is surjective, k∗ = 0. Therefore, the rest of the
sequence reads:

0 H1X Z×Z Z H0X 0
∂1 i∗=x+y k∗

This diagram is similar to the previous diagram, giving us H1X =Z and H0X =
0. HnX = 0 for all other values of x.

7 Degree maps
The only group homomorphisms g : Z → Z are multiplication by an integer m,
called the degree of g. For maps f : Sn → Sn,n > 0, we can therefore define the
degree deg( f ) as the degree of the induced map f ∗ : Z→ Z. It is clear from the
definition that deg(id) = 1, as id∗ = id. Additionally, if f ≃ g, then f ∗ = g∗, so
deg( f ) = deg(g). Furthermore, deg( f g) = deg( f )deg(g), as ( f g)∗ = f ∗g∗.

We are interested in some special cases of f .

Proposition 7.1. deg(ri) = −1 where ri : Sn → Sn is the reflection in the i− th
coordinate:

(x1,x2, . . . ,xi, . . .xn+1) 7→ (x1,x2, . . . ,−xi, . . .xn+1)

Proof. By composing with a rotation, we can assume ri is the reflection in the
(n+ 1)th degree which maps the north-pole N to the south-pole S, keeping the
equator Sn−1 fixed. We denote this map by r. Consider the following Mayer-
Vietoris cover of Sn: A = Sn \Dn

ε,+ ≃ •, B = Sn \Dn
ε,− ≃ • and A∩B ≃ Sn−1. r
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gives a map between the Mayer-Vietoris sequence of (Sn;A,B) and (Sn;B,A). For
n > 0, this gives the commutative diagram:

0 HnSn Hn−1Sn−1 . . .

0 HnSn Hn−1Sn−1 . . .

r∗

∂

id

∂ ′

Recall that ∂ = ∂1k∗−1
1 l∗1 =−∂2k∗−1

2 l∗2 in the following diagram.

HnX

Hn(X ,A) Hn(X ,B)

Hn(X ,A∩B)

Hn(B,A∩B) Hn(A,A∩B)

Hn−1(A∩B)

l∗1

l∗2

n∗

j∗2
j∗1

d

k∗1
i∗2

∂1

k∗2

i∗1

∂2

Swapping the order of A and B corresponds to a horizontal reflection in the di-
agram, which therefore changes the sign of the boundary map. It follows that
∂=−∂ ′. By commutativity in the first diagram, r∗ =−id, so deg(r) =−1.

Corollary 7.2. deg(−id) = (−1)n+1 where (−id) : Sn → Sn is the antipodal map.

Proof. Since (−id) is the composition (−id) = r1 ◦ r2 ◦ · · · ◦ rn+1,

deg(−id) = deg(r1)deg(r2) . . .deg(rn+1) = (−1)n+1.

[3]

Corollary 7.3. If f : Sn → Sn has no fixed points, then deg( f ) = (−1)n+1

Proof. Since f (x) ̸= x, the line segment from f (x) to −x does not pass through
0. We can therefore define a homotopy f (x)≃ (−id), which takes each f (x) to x
along an arc segment. Therefore deg( f (x)) = deg(−id) = (−1)n+1 [3].
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Remark 7.4. Note that the antipodal map commutes with the projection p : Sn →
RPn:

Sn RPn

Sn RPn

p

−id id
p

When n is odd, this gives rise to a commutative map in homology

Z HnRPn

Z HnRPn

p∗

−id id
p∗

However, this means p∗ =−p∗, so p∗ = 0 when n is odd. This is a hint that there is
something fundamentally different about RPn when n is odd and when n is even.

Next, we show how the famous Brouwer’s fixed point theorem can be proven
from degree theory.

Theorem 7.5 (Brouwer’s fixed-point theorem). Every continuous f : Dn → Dn

has a fixed point.

Proof. Suppose f has no fixed points. Define the map g : Sn → Sn as the compo-
sition

Sn q−→ Dn f−→ Dn i−→ Sn

where q is the quotient map of the identification (x1, . . . ,xn) ∼ (y1, . . . ,−xn), i.e.
the map that folds the lower hemisphere onto the upper hemisphere and identifies
it as Dn, and i is the inclusion of Dn onto the upper hemisphere of Sn. Note
that g also has no fixed points. By Corollary 7.3, deg(g) = (−1)n+1. We could
alternatively have made the identification i′ : Dn → Sn with the lower hemisphere,
and g would still have no fixed points. This corresponds to composing g with the
reflection r, which has degree −1. This implies

(−1)n+1 = deg(rg) = deg(r)deg(g) = (−1)n

which is a contradiction.

There is a convenient way of calculating degrees of maps f : Sn → Sn. Suppose
that f has the property that for some y∈ Sn, f−1(y) is a finite set {xi}i∈J . We define
the local degree of f , deg( f )|xi at xi as the degree of the map f : Ui \ {xi} →
V \{y}, where Ui are disjoint open neighbourhoods of respectively the xi’s and V
is an open neighbourhood they are all mapped into. By the metric space structure
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of Sn we may take the Ui’s to be sufficiently small n-disks, and V some small n-
disk containing their images. This shows that f : Ui \{xi} →V \{y} gives a map
f : Sn−1 → Sn−1 as desired.

Proposition 7.6. If f is as proposed, then

deg( f ) = ∑
i∈J

deg( f )|xi.

Proof. Omitted. See [3]

8 Cellular homology

8.1 CW-complexes
A useful class of spaces is the class of cell complexes or CW complexes, which
are spaces constructed by iteratively gluing copies of Dn in a manner defined by
a "gluing map" on the boundary ∂Dn ∼= Sn−1. As will become apparent, CW-
complexes have the right structure for establishing a very practical way of calcu-
lating their homology groups.

Definition 8.1. A CW-complex X is the union of a sequence of spaces Xn, called
the n-skeleta of Xn defined as follows: X0 is a discrete set, and for each Xn−1, Xn

is obtained by gluing copies of Dn
α , called n-cells, along a gluing map φα : Sn−1

α →
Xn−1 defined on the boundary of Dn

α . Explicitly, Xn is the quotient of the disjoint
union Xn−1 ⊔α Dn

α/ ∼ under the identification x ∼ φα(x) for x ∈ Sn−1
α ⊂ Dn

α . If
X = Xn for some n ∈ N∪{0}, then X is called a finite cell complex. Otherwise,
X is given the weak topology: a subset A ⊂ X is open iff A is open in Xn for every
n ∈ N∪{0}.

Many familiar spaces naturally arise as cell complexes.

Example 8.2. Sn is a CW-complex with 1 0-cell and 1 n-cell when n > 0.

Example 8.3. RP2 is a CW-complex with 1 0-cell, 1 1-cell and 1 2-cell, and where
the gluing map φ : S1 → X1 = RP1 is the projection z 7→ [z]. Iteratively, RPn can
be understood as a copy of Dn glued to a copy of RPn−1 via the projection map
z 7→ [z] along the boundary ∂Dn. So RPn has a k-cell for 0 ≤ k ≤ n.

Example 8.4. The torus T 2 has a cellular structure composed of 1 0-cell, 2 1-
cells and 1 2-cell. We can use the familiar identification of T 2 as a quotient of the
square, where the two 1-cells a and b have their endpoints glued to a single 0-cell
and the corners are identified to a single point.
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x xa

x

b

x a

b

The gluing map φ : S1 → X1 is the concatenation a · b · −a · −b, where we are
thinking of a and b as paths.

Remark 8.5. The cell structure of a CW-complex need not be unique. For exam-
ple, an alternative cell structure of S2 is with one 0-cell, 1 1-cell, and 2 2-cells (the
upper and lower hemispheres) both glued onto the equator via the identity map on
their boundaries.

8.2 Cellular homology groups
We will show that the homology groups of CW-complexes can be identified as
the homology groups of a certain chain complex of relative homology groups
Hn(Xn,Xn−1). By "homology group of a chain complex" we mean the following:

Definition 8.6. Let the following diagram be a chain complex of abelian groups.

. . . An+1 An An−1 . . .
dn+1 dn dn−1

The abelian group H̃n(An) := Ker(dn)/Im(dn+1) is called the homology group of
the chain complex.

Remark 8.7. Note both Ker(dn) and Im(dn+1) are abelian subgroups, and Im(dn+1)⊆
Ker(dn) as we are dealing with a chain complex. By [7], a subgroup of an abelian
group is normal, so Ker(dn)/Im(dn+1) is well-defined and is abelian.

We will restrict our study to finite cell complexes, but the reader is invited to
confirm that the established results also hold for general cell complexes [3]. The
proof is adapted from [3], with axiomatic replacements to arguments based on
Singular Homology. We first establish some basic results.

Lemma 8.8. The following hold for a finite cell complex X:

(i) Hn(Xn,Xn−1) = Zm where m is the number of n-cells of X and n ∈ N∪{0}.

(ii) Hm(Xn) = 0 for m > n.
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(iii) The inclusion Xn i
↪−→ X gives rise to an isomorphism Hk(Xn)∼= Hk(X) when-

ever k > n.

Proof. (i) The statement is trivial for n = 0. For n > 0, notice that Xn−1 is a
deformation retract of A := Xn\⊔m•, where the m copies of • are the centers
of the m n-cells of X . The subset B := Xn \⊔mDn

1/2 satisfies the conditions

of excision, where Dn
1/2 is the disk of radius 1

2 in the center of an n-cell. It
follows that

Hk(Xn,Xn−1)∼= Hk(Xn,A)∼= Hk(Xn \B,A\B)∼= Hk(⊔mDn,⊔mSn−1)

These homology groups are familiar: they are Zm if k = n, and 0 otherwise,
by the proof of Proposition 5.15 and an application of Proposition 5.9.

(ii) By the previous result, the homology sequence for (Xn,Xn−1) reads

0 HmXn−1 Hm(Xn) 0

whenever m ̸= n,n−1. Therefore, for m > n we have

HmXn ∼= HmXn−1 ∼= . . .∼= HmX0 = 0.

(iii) By the same exact sequence, when m < n we have that

Hm(Xn)
i

↪−→ Hm(Xn+1)

is an isomorphism. By induction, we get a chain of inclusions, all of which
are isomorphisms:

Hm(Xn)
i

↪−→ Hm(Xn+1)
i

↪−→ . . .
i

↪−→ Hm(Xm)

Since the inclusion Hm(Xn)
i

↪−→ Hm(Xm) is the composition of the above in-
clusions, it too is an isomorphism. For finite cell complexes, X = Xm for
some m, proving (iii).

Theorem 8.9. The following is a chain complex, where the map dn is defined as

the composition Hn(Xn,Xn−1)
∂n−→ Hn−1(Xn−1)

i
↪−→ Hn−1(Xn−1,Xn−2):

. . . Hn(Xn,Xn−1) Hn−1(Xn−1,Xn−2) . . .
dn+1 dn dn−1

Furthermore, Ker(dn)/Im(dn+1)∼= Hn(X)
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Proof. The relative homology sequences of Xn and Xn−1 for all n ∈ N fit into the
following commutative diagram:

Hn(Xn,Xn−1)

Hn(Xn−1) Hn(Xn+1)

Hn(Xn)

Hn+1(Xn+1,Xn) Hn(Xn,Xn−1) Hn−1(Xn−1,Xn−2)

Hn−1(Xn−1)

Hn−1(Xn−2)

i

j
∂n+1

dn+1

∂n

dn dn−1

l

Via Lemma 8.8, we can reduce some groups to 0, and make an identification with
Hn(X):

0

0 Hn(Xn+1) HnX

Hn(Xn)

Hn+1(Xn+1,Xn) Hn(Xn,Xn−1) Hn−1(Xn−1,Xn−2)

Hn−1(Xn−1)

0

∼=

i

j
∂n+1

dn+1

∂n

dn dn−1

l

Since the composition of any two dn and dn−1 factors through the compositions of
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two successive maps of an exact sequence, this composition is 0. The horizontal
sequence is therefore a chain complex.

We have
im(dn+1) = im( j∂n+1) = im(∂n+1) = ker(i),

where the second equality comes from the injectivity of j, and the third equality
from the exact sequence. Similarly,

ker(dn) = ker(l∂n) = ker(∂n) = im( j)∼= Hn(Xn).

The second equality follows from the injectivity of l, the third from the exact
sequence, and the fourth from the injectivity of j. We therefore have that

ker(dn)/im(dn+1)∼= Hn(Xn)/ker(i).

By the first isomorphism theorem, and since i is injective,

Hn(Xn)/ker(i)∼= im(i)∼= HnX .

Therefore
ker(dn)/im(dn+1)∼= HnX .

[3]

We also have a method of calculating the boundary maps dn from degree cal-
culations:

Theorem 8.10. Let (Dn
α)α∈A represent the generating elements of the α n-cells.

Then dn+1(Dn+1
α ) = ∑β dα,β Dn

α , where dα,β is the degree of the map Sn
α → Xn →

Sn
β

, that is the composition of the gluing map of Dn
α with the quotient map identi-

fying Xn \ int(Dn
β
) as a single point. This quotient space is homeomorphic to Sn,

as Sn is the one-point compactification of Rn ∼= int(Dn).

Proof. Omitted. See [3].

8.3 Examples
We now give a few examples of homology groups of CW-complexes. The follow-
ing corollary becomes very useful.

Corollary 8.11. If a CW-complex X has no cells in adjacent dimensions, then
HnX is the free abelian group generated by the n−cells of X.

Proof. Suppose X has m > 0 n-cells. The chain complex reads:

0 Zm 0
dn+1 dn

It follows that Hn(X) = Ker(dn)/Im(dn+1) = Zm.

33



Proposition 8.12. If X has only one 0-cell, then d1 = 0.

Proof. The inclusion j : H1(X1)→ H1(X1,•) is an isomorphism by prop 5.11. By
exactness, ∂1 = 0, so d1 = l∂1 = 0.

Example 8.13 (Orientable surface of genus g). Mg is the orientable surface with
g "holes". It is known that it can be identified as a quotient of the regular 4g-
sided polygon, where side i is identified with the reflection of side i+2 (counted
clockwise). In pictures, M1 is the torus T 2, identified as the familiar quotient of
the square:

x xa1

x

a2

x
a1

a2

M2 is the similar quotient of the octagon:

x x
a1

x

a2

x

a1

x

a2

x a3

x

a4

x

a3

a4

It is clear that Mg should be given a CW-complex structure with 1 0-cell, 2g 1-
cells and 1 2− cell glued along the concatenation f = a1 ·a2 ·−a1 ·−a2 ·a3 · · · · ·
−a2g−1 ·−a2g. According to Theorem 8.10, we should calculate the degree of the
composition of f with the map identifying everything but ai \{x}. This is the map
ai ·−ai ≃ 0, so d2 = 0. The chain complex reads:

0 Z Z2g Z 00 0
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Since all maps are 0, the homology groups can be read as:

Hn(Mg) =


Z n = 0
Z2g n = 1
Z n = 2
0 otherwise

Example 8.14 (Klein bottle). The Klein bottle K is the following quotient of the
square with its interior:

x xa

x

b

x a

b

We can therefore give it a CW-complex structure of 1 0-cell (the point x), 2
1-cells corresponding to the paths a and b, and one 2-cell glued along the path
f = a ·b ·−a ·b. By Theorem 8.10, we should calculate the degree of f composed
with the quotient collapsing respectively b and a to a point. The first of these is
a ·−a ≃ 0, and the second is b ·b ≃ z2. It follows that d2(x) = (0,2x). The chain
complex reads:

0 Z Z×Z Z 0
(0,2x) 0

We simply read off:
H2X = ker(d2) = 0

H1X = ker(d1)/im(d2)∼= (Z×Z)/(0×2Z)∼= Z×Z/2Z

H0X = ker(d0) = Z

and HnX = 0 for all other values of n.

8.4 Real projective space RPn

Cellular homology makes the full calculation of RPn very easy. We use the cell
structure with 1 k-cell for 0 ≤ k ≤ n, where the k− th glue map is the projection
onto RPk−1.
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Proposition 8.15.

Hk(RPn) =


Z k = 0
Z k = n odd
Z/2Z 0 < k < n and k odd.

Proof. By theorem 8.10, the degree of dn+1 : (RPn+1,RPn) → (RPn,RPn−1) is
the degree of the composition

Sn RPn Snp q

where p is the projection map and q is the quotient map RPn →RPn/RPn−1 ∼= Sn.
Note that the map first applies the identity map to the upper hemisphere and the
antipodal map on the lower hemisphere, then collapses the equator to a single
point. The pre-image of a neighbourhood of the north pole N is two neighbour-
hoods of N and S. The neighbourhood near N is mapped via the identity, and the
neighbourhood near S is mapped via the antipodal map. By the Proposition 7.6,

deg(dn+1) = deg(qp) = 1+(−1)n+1 =

{
2 n odd
0 n even

The cellular chain complex for RPn therefore reads

0 Z Z Z . . . Z Z 02 0 2 2 0

when n is even, and

0 Z Z Z . . . Z Z 00 2 0 2 0

when n is odd. The result can be read off directly. [3]

8.5 Complex projective space CPn

The complex projective space, CPn is defined similarly to RPn as the space of
complex lines in Cn+1. Explicitly it is the quotient Cn+1 \ {0} ∼ where z ∼ λw
for ∀λ ∈ C.

It is trivial to see that CP0 ∼= •, as any z ∼ 1 via multiplication by 1
z .

CP1 is the quotient C2/∼, [
z
w

]
∼ λ

[
z
w

]
.
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If w ̸= 0, [
z
w

]
∼ 1

w

[
z
w

]
=

[
z/w

1

]
We can relabel u = z/w, and note that any complex number can be written in this

way. So {
[

u
1

]
} ∼=C∼=R2. The boundary (and complement) of this subset of RP1

is the set {
[

z
0

]
}/∼∼=CP0 ∼= •. Therefore RP1 is the one-point compactification of

R2, which homeomorphic to S2. We can therefore give it a CW-complex structure
of 1 0-cell and 1 2-cell, and its homology groups are the same as that of the 2-
sphere.

The general case can be done by induction.

Proposition 8.16. As a cell complex, CPn has a 2m-cell for 0 < m ≤ n. As a
consequence,

Hk(CPn) =

{
Z k even, 0 ≤ k ≤ 2n
0 otherwise

Proof. We have proved the case n = 0,1. In general, CPn = Cn+1/∼

(z1,z2, . . . ,zn+1)∼ λ (z1,z2, . . . ,zn+1),λ ∈ C

If zn+1 ̸= 0, we can let λ = 1/zn+1 to find a set of unique representatives

{(u1,u2, . . . ,1)} ∼=Cn ∼= int(D2n),

after relabeling uk = zk/zn+1 for 0 ≤ k ≤ n. The boundary (and complement) of
this set in CPn is

{(z1,z2, . . . ,zn,0)}/∼∼= CPn

We can therefore give CPn the CW-structure of CPn−1, with an additional 2n-cell
glued onto CPn−1 by the projection on its boundary p : Sn−1 →CPn−1. The result
follows by induction.

As CPn has no two m-cells in adjacent dimensions, its m− th homology group
is the free abelian group generated by its m-cell (or lack thereof).

Remark 8.17. It is worth looking at the gluing map of the 4-cell of CP2 onto
CP1 ∼= S2. Via the homeomorphism, this is a map S3 → S2 with the property that

the pre-image of every point is a great circle of S3. This is because
[

z
1

]
∈ CP1,

chosen as a representative with norm 1, is mapped to by

{λ

[
z
w

]
: λ ∈ C, |λ |= 1} ⊂ S3 ⊂ C2,
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which is a great circle of S3. This is exactly what characterises the famous Hopf
map h : S3 → S2. Using the homeomorphism S3 ∼= int(D3)∗ with the one-point
compactification of the 3-disk, the Hopf map can be visualised as in Figure 1. The
colours show which circles in S3 ∼= int(D3)∗ are mapped to which points in S2.

Figure 1: The Hopf fibration. Image by Niles John-
son, CC BY-SA 3.0 https://creativecommons.org/
licenses/by-sa/3.0, via Wikimedia Commons.

8.6 Quaternionic projective space HPn and beyond
The 2-dimensionality of C ensured that the n-cells of CPn were well spread in di-
mension, leading to an easy homology calculation. One can wonder if the higher-
dimensional extensions of R are as easy to calculate, and indeed they are! The
quaternions H is an extension of R homeomorphic to R4. It is not a field, as it
is not commutative. However, it retains all the other requirements of a field, im-
portantly it has multiplicative inverses. Rings where every nonzero element has a
multiplicative inverse are called division algebras. The fact that H is a division
algebra is what allows us to use the same argument as before on the Quaternionic
projective space HPn.

Proposition 8.18. HPn has a cell structure with a 4k-cell for 0 ≤ k ≤ n. As a
consequence,

Hk(HPn) =

{
Z k = 0 mod 4,0 ≤ k ≤ 4n
0 otherwise
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Proof. As in previous cases, HP0 = •, as z ∼ 1 for every z ∈ H by division by z.
For general HPn we will proceed by induction. HPn =Hn+1/∼

(z1, . . . ,zn+1)∼ h(z1, . . . ,zn+1),∀h ∈H.

If zn+1 ̸= 0, we can divide by zn+1 to find a set of unique representations

{(u1, . . . ,un,1)} ∼=Hn ∼= int(D4n)

The boundary (and complement) of this set in HPn is the quotient

{(z1, . . . ,zn,0)}/∼∼=HPn−1

We can therefore give HPn the CW-structure of HPn−1, with an additional 4n-cell
mapped onto HPn−1 via the projection on its boundary p : S4n−1 → HPn−1. By
induction, HPn has the CW-structure stated in the proposition. Since HPn has no
m-cells in adjacent dimensions, its m-th homology group is the free abelian group
generated by its m-cell (or lack thereof).

Remark 8.19. Notice that HP1 has a 0-cell and a 4-cell, and is therefore home-
omorphic to S4. As in Remark 8.17, the gluing map of the 8-cell of HP2 onto
HP1 ∼= S4, therefore gives a "Hopf"-map S7 → S4 with the property that the preim-
age of a point is a "great" copy of S3. If there was a way to keep extending R to
a division algebra for every positive power of two we could repeat this process,
yielding "Hopf"-maps from S2n−1 to S2n−1

for all n > 0. However, this is false!!!
The non-existence of such maps for n > 4 proves there are no 2n-dimensional
division algebras that extend R for n > 3.

9 The Borsuk-Ulam Theorem
An advantage of taking an axiomatic approach is that our results in Section 5
immediately pass over to homology theories in other coefficients. In this section,
we show why this is sometimes useful. We will be interested in a homology
theory with coefficients G = Z/2Z. Such a homology theory exists by [3], and
in fact, it can be constructed in the same way Singular Homology is constructed.
Proposition 5.16 immediately gives us that

Hm(Sn;Z/2Z) =

{
Z/2Z k = 0,n
0 otherwise

where we have specified the coefficients of the homology group. As one expects,
if f : Sn → Sn,n > 0, gives rise to

f ∗ : Z→ Z,
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1 7→ m

in homology with coefficients Z, then it gives rise to

f ∗ : Z/2Z→ Z/2Z,

1 7→ m mod 2

in homology with coefficients Z/2Z. This intuitive result is proven in [3]. The
induced map f ∗ : Hn(Sn;Z/2Z)→ Hn(Sn;Z/2Z) is therefore an isomorphism if f
is odd, and is the zero map otherwise.

With this construction, we can prove the fascinating Borsuk-Ulam theorem
which states that every odd map f : Sn → Rn maps two antipodal points to the
same point. A popular interpretation of this statement is that there are always
two antipodal points on Earth with the same temperature and barometric pressure.
This follows from Borsuk-Ulam, where we are assuming the Earth is a 2-sphere
and temperature and barometric pressure are continuous functions on the surface
of Earth (although both of these assumptions are dubious).

Instead of proving Borsuk-Ulam, we will prove the following stronger result:

Theorem 9.1. Odd maps f : Sn → Sn,n ≥ 1, have odd degree.

Before we examine the proof, let us first see how it implies Borsuk-Ulam.

Corollary 9.2 (The Borsuk-Ulam Theorem). For every odd map f : Sn →Rn there
exists x ∈ Sn such that f (x) =− f (−x).

Proof. Suppose f is odd but has no such point. Then g : Sn → Rn defined as
g(x) = f (x)− f (−x) has no zeroes. We can therefore define

h(x) =
g(x)
|g(x)|

: Sn → Sn−1.

h|Sn−1 has no fixed points, and is therefore homotopic to the antipodal map by
Corollary 7.3. However, the restriction h|Dn

+
of h to the upper hemisphere of Sn is

null-homotopic, as Dn
+ is contractible, via the homotopy

j(x, t) : Dn × I → Sn

(x, t) 7→ h( j̃(x, t))

where j̃ is the homotopy j̃ : idDn ≃ c, and c is a constant function. Since the
restriction of a homotopy is also a homotopy, j|Sn−1×I defines a homotopy h|Sn−1 ≃
c ̸≃ (−id), a contradiction. [3]
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We will now look at Theorem 9.1. The proof will involve the diagram induced
by f ∗ on the homology sequence of (Sn,Sn−1) to itself, where we are yet to show
that f ∗ induces such a diagram. It will become clear that we are only interested
in whether f ∗ and the associated induced maps have odd or even degree. Using
coefficients in Z/2Z is therefore useful, as, by the comments at the start of this
section, the induced map f ∗ is id if f has odd degree, and 0 if f has even degree.
Our proof of Theorem 9.1 follows the approach in [1]. We will need the following
technical result.

Theorem 9.3 (Cellular approximation). Every map f : X → Y is homotopic to a
cellular map g, that is a map such that g(Xn) ⊆ Y n for each n. If g is already
cellular on a subcomplex of X, the homotopy can be taken to be fixed on the
subcomplex.

Proof. Omitted. See [3].

Proof of Theorem 9.1. We prove this by induction on n, assuming it holds for
n − 1. By assumption, f ∗ : Hn−1(Sn−1;Z/2Z) → f ∗ : Hn−1(Sn−1;Z/2Z) is an
isomorphism. Note this is trivially true for n = 0, as the only odd map on S0 is
the antipodal map, which is an isomorphism. We can give Sn a cell structure with
1 0-cell, 1 n− 1-cell corresponding to the equatorial sphere Sn−1, and 2 n-cells
corresponding to the upper and lower hemispheres of Sn, glued by the identity
map on their boundaries. By Theorem 9.3, f ≃ g where g is cellular. As f ∗ = g∗,
f ∗ inherits the properties of both an odd map and a cellular map. We may therefore
assume f is both odd and cellular.

As f (Sn−1)⊆ Sn−1, f gives a map from the homology sequence of (Sn,Sn−1)
to itself:

0 Hn(Sn;Z/2Z) Hn(Sn,Sn−1;Z/2Z) Hn−1(Sn−1;Z/2Z) . . .

0 Hn(Sn;Z/2Z) Hn(Sn,Sn−1;Z/2Z) Hn−1(Sn−1;Z/2Z) . . .

i

f ∗

∂

f ∗ ∼=

i ∂

By excision,

Hk(Sn,Sn−1;Z/2Z)∼= Hk
(
(Dn

+,S
n−1;Z/2Z)⊔ (Dn

−,S
n−1;Z/2Z)

)
.

By Proposition 5.9 and the proof of Lemma 5.15, this equals

Hk(Dn,Sn−1;Z/2Z)⊕Hk(Dn,Sn−1;Z/2Z) =

{
Z/2Z×Z/2Z k = n
0 otherwise
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The above diagram therefore reads:

0 Z/2Z Z/2Z×Z/2Z Hn−1(Sn−1;Z/2Z) . . .

0 Z/2Z Z/2Z×Z/2Z Hn−1(Sn−1;Z/2Z) . . .

i

f ∗

∂

f ∗ ∼=

i ∂

The middle f ∗ ̸= (0,0) by commutativity as ∂ is non-zero (i is not an isomor-
phism). f commutes with the antipodal map by oddness: f (−id) = (−id) f . It
follows that f ∗(−id)∗ = (−id)∗ f ∗. The antipodal map is cellular, so also gives
a map between these sequences. Intuitively, we expect (−id)∗(x,y) = (y,x), as
(−id) is an isomorphism that flips the two hemispheres. The argument can be
made specific by noting (−id) gives rise to the following commutative diagram,
where all forms of (−id) are isomorphisms.

(Dn
−,S

n−1)⊔ (Dn
+,S

n−1)

(Dn
−,S

n−1) (Dn
+,S

n−1)

(Dn
−,S

n−1)⊔ (Dn
+,S

n−1)

(Dn
+,S

n−1) (Dn
−,S

n−1)

(−id)

k

(−id)

l

(−id)

l
k

The diagram induced in homology easily shows that (−id)∗(x,0) = (0,y) and
(−id)∗(0,y) = (x,0).

If f ∗(x,y) = ( f1(x,y), f2(x,y)), then commutativity with (−id)∗ gives that
f1(x,y) = f2(y,x). This leaves only the options f (x,y) = (x,y) and f (x,y) = (y,x),
both of which are isomorphisms.

By commutativity in the left square, since i is injective and f ∗i is injective,
f ∗ : Sn → Sn is also injective. Since im(i f ∗) ∼= im(i∗) and i∗ is injective, f ∗ is
surjective. It follows that f ∗ is an isomorphism. This implies the degree of f :
Sn → Sn is s.t. deg( f ) mod 2 = 1, i.e. deg( f ) is odd. [1]
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Appendix

A Proof of the Braid Lemma
In this section, we give the rest of the proof of Lemma 4.8.

Proof. Recall the following commutative braid lemma diagram, where we have
assumed the sequence indexed by fi is a chain complex, and the other sequences
are exact sequences.

A D G J

O C F I

B E H K

f1

g1 h3

g2 h4

j4

g0

j0 f2

h2 j3

g3 h5

f5

h1

j1 f3

j2 f4

g4

We have shown that ker( f2)⊆ im( f1) and need to show that ker( f3)⊆ im( f1)
and ker( f4)⊆ im( f3).

(a) ker( f3)⊆ im( f1).

Let x ∈ E be s.t. f3(x) = 0. By commutativity, g3 j2(x) = 0, so j2(x) ∈
ker(g3) = im(g2). Then ∃x1 ∈ D s.t. g2(x1) = j2(x). It satisfies h3(x1) =
j3g2(x1) = j3 j2(x) = 0, as ( ji) is a chain complex. So x1 ∈ ker(h3) = im(h2).
Therefore there exists x2 ∈ C s.t. h2(x2) = x1. This element is such that
j2 f2(x2) = g2h2(x2) = g2(x1) = j2(x). We therefore have j2( f2(x2)− x) = 0.

Let x3 := f2(x2)− x. Then x3 ∈ ker( j2) = im( j1). Let x4 ∈ B be s.t. j1(x4) =
x3. x4 is such that f2h1(x4) = j1(x4) = x3 = f2(x2)− x. Finally, we see that
x = f2(x2 −h1(x4)), so x ∈ im( f2) as required.

(b) ker( f4 ⊆ im( f3).

Let x ∈ H be s.t. f4(x) = 0. Then 0 = h5 f4(x) = g4(x). So x ∈ ker(g4) =
im(g3). Let x1 ∈ F be s.t. g3(x1) = x. Then h4 j3(x1) = f4g3(x1) = f4(x) = 0
So j3(x1) ∈ ker(h4) = im(h3). Let x2 ∈ D be s.t. h3(x2) = j3(x1). Then
j3(x1) = j2g2(x2), s.t. x3 := g2(x2)−x1 ∈ ker( j3) = im( j2). Let x4 ∈ E be s.t.
j2(x4) = x3. Then f3(x4) = g3 j2(x4) = g3(x3) = g3(g2(x2)−x1) =−g3(x1) =
−x. Therefore x = f3(−x4), and x ∈ im( f3) as required.
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