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1 Introduction

1.1 Topological data analysis
In this section, we will give an informal introduction to persistent homology, which we
will make more rigorous in the following sections. In topological data analysis, we are
interested in studying geometric datasets using the tools of algebraic topology. For
example, let X be the finite subset of R2 in Figure 1. We consider this our dataset,
and we want to detect that it has the shape of a circle. One idea is to, for each real

Figure 1: A geometric dataset in R2.

ϵ ≥ 0, consider the subspace Xϵ ⊆ R2 given by the union of the closed balls of radius
ϵ centered at each data point x ∈ X. For small ϵ, this will be homotopy equivalent
to the disjoint sum of various points, depending greatly on ϵ as points close to each
other merge into one connected component. For large values of ϵ, e.g larger than the
radius of the perceived circle, Xϵ is contractible. However, for Goldilock values of ϵ,
the space will be homotopy equivalent to S1, as seen in Figure 1.1. In fact, since X
is a finite set, there are only finitely many ‘interesting’ values for ϵ: those where two
previously non-intersecting balls intersect. We consider the R≥-indexed sequence of
spaces Xϵ and their topological features as encoding the geometry of our original
dataset.

We can detect the circle by taking singular homology with coefficients in some
field F at each ϵ. This gives, for every nonnegative integer n and every ϵ ≥ 0, a
finite-dimensional F-vector space Hn(Xϵ,F), as well as maps Hn(Xϵ,F) → Hn(Xϵ′ ,F)
induced by the inclusion Xϵ ↪−→ X ′

ϵ whenever ϵ ≤ ϵ′. As we will see in Section 1.4,
we can always choose bases such that these maps send each basis element to either
0 or another basis element. Moreover, we only need to consider finitely many values
of ϵ where the space differs up to homotopy equivalence since X is finite. We call
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Figure 2: The subspace Xϵ for three values of ϵ.
Source: https://towardsdatascience.com/a-concrete-application-of-
topological-data-analysis-86b89aa27586

these critical values. This allows us to represent the homology as a barcode
diagram, as seen in Figure 3. Each line represents a generator of Hn(Xϵ,F), and at
each critical value, the line persists if the corresponding map in homology preserves
that generator, and disappears if the corresponding map is 0 on the generator. The
diagram in Figure 3 is the 0th homology barcode diagram, counting the number of
path components. Short-lived bars are interpreted as noise, while long-living bars
are interpreted as the true homology of our data set, informally called its persistent
0th homology. In this case, the persistent 0th homology tells us our data set has a
single path component. If we define H(Xϵ,F) =

⊕
kHk(Xϵ,F) we can furthermore

summarise all the homology groups in a single barcode diagram.

1.2 Interleaving distance
We are interested in formalising persistent homology in the language of category
theory, as this will allow us to compare persistent homology to other theories. We
follow closely the approach in [3].

In this section, Z and R will denote the poset category in the canonical way.
We have an endofunctor Tb : R → R given by translation by b, as well as a natural
transformation ηb : id → Tb whose components are given by ηb(a) : a ≤ a + b. This
allows us to make the following definitions.
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Figure 3: Barcode diagram in 0th homology for the data set in Figure 1.

Definition 1.1 ([3]). Let D be a category, and F,G ∈ DR be R-indexed diagrams
in D. An ϵ-interleaving (F,G, ϕ, ψ) of F and G consists of natural transformations
ϕ : F → GTϵ and ψ : G → FTϵ such that (ψTϵ)ϕ = Fη2ϵ and (ϕTϵ)ψ = Gη2ϵ. If an
ϵ-interleaving exists, we say F and G are ϵ-interleaved.

Definition 1.2. Given two R-indexed diagrams F,G in D we define their inter-
leaving distance as

d(F,G) = inf{ϵ : F and G are ϵ-interleaved}.

For an example of the interleaving distance in action, see Example 1.14. For now,
we would like to show that d is an extended metric, that is, one that can take the
value ∞ (note inf(∅) = ∞.) However, we do not a priori have that d(F,G) = 0 ⇐⇒
F = G. To get around this, we define an equivalence class on R-indexed functors,
where F ∼ G ⇐⇒ d(F,G) = 0. It is not difficult to see this is an equivalence
relation. F ∼ F trivially, and F ∼ G =⇒ G ∼ F by swapping ϕ and ψ for each
ϵ > 0. Finally, F ∼ G,G ∼ H =⇒ F ∼ H by vertically composing the relevant ϕ
and ψ.

Lemma 1.3. The interleaving distance is an extended metric on the class of equiv-
alence classes of R-indexed functors in D defined above.

Proof. Omitted. See [3].

We are particularly interested in R-indexed diagrams Vec, the category of finite-
dimensional vector spaces. However, we will first take a small detour to prove a
result about finitely generated R−modules.
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1.3 Structure Theorem for Graded PIDs
Recall the structure theorem for PIDs:

Theorem 1.4. Let R be a Principal Ideal Domain. SupposeM is a finitely generated
R-module, then M admits a decomposition

M ∼= Ra ⊕
(

m⊕
i=1

R/diR

)
,

such that d1| · · · |dm. Moreover, the ideals diR are uniquely determined; or, alterna-
tively, the di are uniquely determined up to multiplication by a unit.

In this section, we will prove a graded version of this, for M a graded module
over R a graded PID.

Theorem 1.5. Let R be a graded Principal Ideal Domain. Suppose M is a finitely
generated graded R-module, then M admits a decomposition

M ∼=
(

n⊕
i=1

ΣαiR

)
⊕

 m⊕
j=1

ΣβjR/djR

 ,
where Σα refers to an upwards shift in grading by α, and the dj are homogeneous
and uniquely determined up to multiplication by a unit.

The proof of this is very similar to the proof of the Structure Theorem of regular
PIDs. We just need to be mindful when dealing with graded pieces1.

Proof. Since M is finitely generated, let m1, . . . ,ms be a set of homogenous genera-
tors of M with degrees γ1, . . . , γs. Then there exists a surjection of graded modules

ϕ :
s⊕

i=1
ΣγiR ↠M.

Let S = ⊕s
i=1ΣγiR. By the first isomorphism theorem, we know that M ∼= S/ kerϕ.

Note that kernels of a graded morphism are also graded, so kerϕ is a graded sub-
module of S.

1A full proof of this theorem could not be found in any literature we read, although it was
alluded to in many papers.
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By the Graded Smith Normal Form, there exists a suitable change of basis of
{mi} such that kerϕ is generated by d1m1, d2m2, . . . , dnmn for some n ≤ s. Then
the quotient is easily calculated to be

M ∼= S/ kerϕ ∼=

s⊕
i=1

ΣγiR

n⊕
i=1

diΣγiR

∼=
(

n⊕
i=1

ΣγiR/(di)
)
⊕

 s⊕
i=n+1

ΣγiR

 ,

which is precisely of the form stated in the theorem.

The proof above assumes the existence of a Graded Smith Normal Form. We
now provide an algorithm for finding the Smith Normal Form that respects grading.
A statement of this algorithm the case of R = F[t] can be found in [22].

Lemma 1.6 (Graded Smith Normal Form). Let M = ⊕m
i=1ΣγiR with ΣγiR gener-

ated by vi, and N ≤ M a graded submodule. Then there exist bases {v′1, . . . , v′m}
and {w1, · · · , wn} forM and N , respectively, such that n ≤ m and wi = div

′
i for some

unique (up to multiplication to a unit) homogeneous di ∈ R satisfying d1| · · · |dn.

Proof sketch. Suppose N is generated by some homogeneous x1, . . . , xn, where xj has
degree δj. Without loss of generality, assume that the generators vi and xj are ordered
in non-decreasing order of grading, i.e. γ1 ≤ γ2 ≤ · · · ≤ γn and δ1 ≤ δ2 ≤ · · · ≤ δn.
Since the vi form a generating set, we can write xj =

∑
vifij for some coefficients fij.

In fact, we may take the fij to be homogeneous, since any terms of degree different
than δj must cancel. We can express this in terms of a matrix where each xi is a
column vector

A =


f11 f12 · · · f1n
... ... ... ...
fm1 fm2 · · · fmn

 =

 ↑ ↑ ↑
x1 x2 · · · xn
↓ ↓ ↓

 .
Notice that by the homogeneity condition of the xi, the degrees of fij satisfy

γi + deg fij = δj.

In the standard proof of Smith Normal form, we can simply use row and column
operations to change the matrix into SNF. In order to take into account the graded
structure, we have to be a little bit more careful about which row and column op-
erations are allowed. The rows and columns in A are organised by increasing order
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of degree. A row/column of higher degree cannot ‘affect’ a row/column of lower
degree, so essentially we can only do the row and column operations in one direction.
Moreover, the constants that we multiply by should keep degrees the same.

A column operation that respects degree (as outlined above) is simply a change
in the generating set of N . A row operation that respects degree is a change of basis
ofM . Using these restricted row and column operations, we can still achieve a Smith
Normal Form matrix by following the algorithm below:

1. Start at the lowest degree non-zero entry of A, where the row and column it
belongs in has other non-zero entries.

2. Using row operations, one can ‘zero out’ all entries on the same row as this
entry.

3. Using column operations, one can ‘zero out’ all entries on the same column as
this entry.

4. Go back to Step 1.

Note that steps 2 and 3 of the algorithm only consist of row and column operations
that respect degree, and since we picked the lowest degree entry, it can indeed affect
all the other non-zero entries in the matrix.

Note also that this algorithm does not necessarily give a diagonal matrix, since
we intentionally did not permute the rows and columns in order to preserve the non-
decreasing degree of the rows and columns. However when this algorithm terminates,
one can easily permute the rows and columns to obtain a diagonal matrix, and doing
so will give the bases {v′i}, {wj} as desired. Since the entries of the matrix are made
to be homogeneous, the d′is must also be homogeneous. The uniqueness of the di’s
follows from the uniqueness statements from the non-graded case.

1.4 Barcode diagrams
Equipped with the structure theorem, we can now define barcode diagrams. Let Vec
be the category of finite dimensional vector spaces over a fixed field F. We will work
with diagrams F in VecR with the interleaving distance, called persistence modules,
and in the following section, we will relate this to the classical definition of finite
barcode diagrams with the bottleneck distance. This mirrors the approach taken in
[3]. Recall the following definition:

Definition 1.7. A category C is abelian if the following hold:
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(1) It has a zero object, that is, an object that is both initial and terminal.

(2) It has binary products and coproducts, and these are equal.

(3) It has kernels and cokernels.

(4) Every monomorphism is the kernel of a morphism, and every epimorphism is
the cokernel of a morphism.

Vec is an easy example of an abelian category. The zero object is the zero vector
space, products and coproducts are both given by the direct sum, and we have kernels
and cokernels. In Vec, monomorphisms and epimorphisms are exactly injective and
surjective linear maps, respectively, and injective linear maps are the kernel of their
quotient, while surjective linear maps are cokernels by the first isomorphism theorem.

Given a category A and any small category I, the forgetful functor U : AI → Aob I

strictly creates all (co)limits that A admits. This is Proposition 3.3.9 in [21]. The
(co)limits are defined objectwise, so given a diagram F : J → AI such that ∀i ∈ ob I,
lim(evi ◦ F ) exists, we have that limF exists and is given by

limF : I → A i 7→ lim(evi ◦ F ).

while maps limF (f) are given by the universal property of limits. colimF is defined
similarly. In the case that A is abelian, one can check, objectwise, all the conditions
for AI to be abelian. In particular, VecR is an abelian category.

Definition 1.8. A persistence module F ∈ VecR has finite type if F ∼= ⊕n
i χIi for

some intervals Ii ∈ R. Here χI is the diagram

χI(r) =
F r ∈ I

0 otherwise
with all maps the identity, except the ones that must be zero.

Finite type diagrams will be our version of barcode diagrams, with each χI rep-
resenting a bar over I. We now want to justify the claim in Section 1.1 that given a
diagram F valued in vector spaces with finitely many critical values, called a tame
diagram, we can reorder bases such that F is of finite type. This will in particular
allow us to draw barcode diagrams for all tame diagrams. In fact, we will show that
this barcode diagram is unique up to reordering of the intervals χIi . We define a
critical value of F as a point r ∈ R such that F is non-constant on all open intervals
containing r. Let’s briefly note that every finite type diagram is tame: the critical
values are all endpoints of intervals χIi , of which there are finitely many choices.
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Lemma 1.9. Say a graded F[t]-module M = ⊕
ZMn has finite type if each Mn

is a finite-dimensional F-vector space. Then VecZ is isomorphic to the category
F[t]-Modf .t

gr of finite-type graded F[t]-modules.

Proof. We define a functor F : VecZ → F[t]-Modf .t
gr by D 7→⊕

ZD(n) with product
generated by

t · xm = D(m ≤ m+ 1)(xm) ∈ D(m+ 1).
Furthermore,

(α : D → D′) 7→ F (α) =
⊕
Z
αn.

This is a graded module homomorphism by definition.
In the other direction, we have a functor G : F[t]-Modf .t

gr → VecZ such that⊕
Z
Mn 7→ (G(M) : Z → Vec) n 7→Mn, (n ≤ n+ k) 7→ (tk · −)

(f :
⊕
Z
Mn →

⊕
Z
Kn) 7→ α : G(M) ⇒ G(K), αn = f |Mn

The naturality square of α is easy to check, and we can identify the codomain of
f |Mn with Kn since it is a graded homomorphism. Both composites of F and G are
the respective identities. [3]

Let’s briefly note that our two definitions of finite type correspond under this
isomorphism. That is, a diagram valued in Z is finite type if and only if its corre-
sponding module is finite type.
Theorem 1.10. A diagram in VecR is tame if and only if it has finite type.
Proof. We have already proved the ( ⇐= ) direction. For ( =⇒ ), if a diagram F has
finitely many critical points, call them (ai)1≤i≤n, we have a functor i : Z → R given
by

i 7→


a1 − 1 i ≤ 0
a(i+1)/2 0 < i < 2n and i odd
1
2(ai/2 + a(i+2)/2) 0 < i < 2n and i even
an + 1 i ≥ 2n

Composition by F gives a diagram Fi inVecZ. By Lemma 1.9, we identifyVecZ with
a finite type graded F[t]−module M , and note it is finitely generated by definition.
By the structure theorem,

M ∼=
(

n⊕
i=1

tαiF[t]
)
⊕

 m⊕
j=1

tβjF[t]/tγjF[t]

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Here we have used that the principal homogenous ideals of F[t] are of the form (ti).
Since M is finite type, Fi is also finite type. We can define a retraction r of i in
the way you’re imagining, and it is not hard to show we have a natural isomorphism
with components Fir(x) : F (x) → Fir(x), and that precomposing with r preserves
finite type diagrams. Therefore, since Fi is finite type, Fir ∼= F is finite type as
well. [3]

Definition 1.11. A barcode is a multiset of intervals in R. By the previous the-
orem, a tame diagram in VecR gives rise to a barcode, given by the multiset of
intervals in its finite-type decomposition.

Since the structure theorem decomposition is unique up to reordering, our finite
type diagram decomposition, and the barcode it gives rise to, are also unique up
to reordering. This justifies talking about the barcode of a finite type diagram.
In the next section, we will see that barcodes are furthermore stable under small
perturbations of the diagram F .

1.5 Stability of persistence modules and diagrams
We have a notion of interleaving distance for persistence modules. In this section,
we see how two filtration functions that are close in the supremum norm induce
close persistent modules. Since it is hard to think about what the interleaving dis-
tance means in general, we study how it relates to more intuitive notions of distance
between barcodes and persistence diagrams, when those can be associated with a
persistent module.

First, recall that the L∞ norm on Rn is defined by ∥x∥∞ = max{|x1|, . . . , |xn|},
where x1, . . . , xn are the components of x. This induces a metric on Rn where the
distance between x and y is ∥x − y∥∞. Write R = R ∪ {−∞,∞} for the extended
real line with the obvious total order. We can extend the L∞ norm to Rn with the
provision that ∥ · ∥∞ now takes values in R∪ {∞}. For this to induce an (extended)
metric on Rn we need a notion of difference in R, which we get by setting

∞− a =
0 if a = ∞,

∞ otherwise;
and (−∞)− a =

0 if a = −∞,

−∞ otherwise.

This gives a norm, and hence a metric, on the set of functions X → Rn or X → Rn

for any set X, by setting ∥f∥∞ = supx∈X∥f(x)∥∞. Note that we have

∥f∥∞ = inf{ϵ ∈ R : ∥f(x)∥∞ ≤ ϵ for all x ∈ X},
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since certainly ∥f∥∞ is in the set, and anything smaller cannot be.
Given a set X and a function f : X → R we can define a persistent module Lf in

the poset 2X of subsets of X, commonly called the sublevel set module. For a ∈ R,
we set Lf (a) = f−1(−∞, a]. This is a functor because, whenever a ≤ b, we have
inclusion maps Lf (a) ↪→ Lf (b). For the next theorem, we write RX for the space of
functions X → R with the metric induced by the L∞ norm.

Theorem 1.12. The assignment f 7→ Lf is a metric space isomorphism from RX to
(2X)R with the interleaving metric.

Proof. Given a persistence module F : R → 2X , we can define f : X → R by setting
f to be identically a on F (a) \ ⋃b<a F (b). This clearly defines an inverse for our
assignment and shows that it is a bijection. To show that it is distance-preserving,
note that f(x) ≤ g(x) + ϵ ≤ f(x) + 2ϵ for all x ∈ X if and only if

f−1(−∞, a] ⊆ g−1(−∞, a+ ϵ] ⊆ f−1(−∞, a+ 2ϵ]

for all a ∈ R. Indeed, if f(x) ≤ a, then g(x) ≤ f(x) + ϵ ≤ a + ϵ. Similarly,
g(x) ≤ a + ϵ implies f(x) ≤ a + 2ϵ. Conversely, putting a = f(x) in the first
inclusion gives g(x) ≤ f(x) + ϵ, and similarly f(x) ≤ g(x) + ϵ. The first condition
says that |f(x)− g(x)| ≤ ϵ for all x ∈ X. The second condition precisely defines an
ϵ-interleaving between Lf and Lg. The result follows by taking the infimum over all
ϵ ∈ R.

This result helps motivate the definition of interleaving distance, since we are
very often interested in the case of a sublevel set persistence module. The theorem
is stated in great generality and is most useful when combined with the following
lemma.

Lemma 1.13. Let H : C → D be any functor, and F and G be two persistent
modules in C. If F and G are ϵ-interleaved, then so are HF and HG. Therefore,
d(HF,HG) ≤ d(F,G).

Proof. Let ϕ : F → GTϵ and ψ : G→ FTϵ form an ϵ-interleaving between F and G.
Then Hϕ and Hψ form an ϵ-interleaving between HF and HG, since

(ψTϵ)ϕ = Fη2ϵ =⇒ (HψTϵ)Hϕ = HFη2ϵ,

and similarly for HG.
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The case we are most interested in is when X is a topological space, and H is the
composition of the inclusion 2X ↪→ Top followed by the singular homology functor.
If the coefficients are taken over a field F, and HLf is tame, then we can study it in
terms of its barcode and its associated persistence diagram.
Example 1.14. LetX be the metric space R, and consider the two functions f, g : R →
R given by f(x) = |x| and g(x) = |x−1|. It is easy to see that ∥f−g∥∞ = 1. Consider
the sublevel sets Lf and Lg as functors R → 2R. By definition we have Lf (a) = [−a, a]
and Lg(a) = [−a + 1, a + 1]. Since the only morphisms in 2R are inclusions, an ϵ-
interleaving between Lf and Lg is a pair of inclusions Lf (a) ⊆ Lg(a+ ϵ) ⊆ Lf (a+2ϵ)
for all a ∈ R. In this case, it is clear that this is possible exactly when ϵ ≥ 1, so
that d(Lf , Lg) = 1 = ∥f − g∥∞. If instead, we considered Lf and Lg as functors
into Top or even Met, the category of metric spaces and distance preserving maps,
then d(Lf , Lg) = 0. This is because the maps that add and subtract one are inverse
natural isomorphisms between Lf and Lg : R → Met. In particular, this shows that
the inequality in Lemma 1.13 can be strict.

The previous example shows that the interleaving distance can radically dif-
fer depending on the category we take our persistence modules over. This makes
interpreting its meaning hard. Luckily, in the case of finite-type persistent mod-
ules of vector spaces, we can understand the interleaving distance in terms of bar-
codes and their related representations as persistence diagrams. To define these, let
∆ = {(a, a) : a ∈ R} be the diagonal in R2, and ∆+ = {(a, b) : a ≤ b ∈ R} be
the set of points above the diagonal. An interval in R defines a point on or above
the diagonal in R whose coordinates are the endpoints of the interval. For example,
[0, 1], (0, 1] and (0, 1) all give the point (0, 1) ∈ R2, while (−∞, 0] gives (−∞, 0).
Note that this forgets whether the original interval included the endpoints. Recall
that a barcode is simply a multiset of intervals in R.

Definition 1.15. A persistence diagram is a multiset supported in ∆+ with
m(x) = ℵ0 for all x ∈ ∆. Given a barcode B, we define its persistence diagram
D(B) to be the multiset of points in R2 given by the intervals in B with their
respective multiplicity, together with all the points in ∆ with multiplicity ℵ0.

If we allow multiplicities of at most ℵ0 in our barcodes, then any two persistence
diagrams have the same total multiplicity 2ℵ0 . We can now define two related notions
of distance for barcodes and persistence diagrams. First, given two multisets A and
B, let AB = A⊔ (|B| · {∅}), i.e. the disjoint union of A and the multiset containing
the empty interval with multiplicity equal to the total multiplicity of B. Similarly,
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we define BA. We call a bijection2 f : AB → BA a partial matching between A and
B, and write f : A⇌ B.

Definition 1.16. The bottleneck distance between two barcodes B and B′ is

dB(B,B′) = inf
f

sup
I∈dom f

d(χI , χf(I)),

where the infimum is taken over all partial matchings f : B ⇌ B′. The bottleneck
distance between two persistence diagrams X and Y is

dB(X, Y ) = inf
f

sup
x∈X

∥x− f(x)∥∞,

where the infimum is taken over all bijections f : X → Y .

The reason behind the definition of the bottleneck distance is the following the-
orem, part of which is Theorem 4.16 in [3].

Theorem 1.17. Let B be the set of finite barcodes and consider the assignment
χ : (B, dB) → (VecR, d) given by χ({Ik}nk=1) =

⊕n
k=1 χIk . Then

dB(D(B), D(B′)) = dB(B,B′) = d(χ(B), χ(B′)).

This theorem, together with the previous results in this section, is the key that
allows the application of persistent homology in fields like data analysis. Here is
how this can be done. We model our data as a finite subset X of some metric space
(M,d) – usually Rn with the Euclidean metric. We define a function fX :M → R by
fX(y) = d(y,X) = infx∈X d(y, x), and we form the sublevel set persistence module
LX := LfX . Note that LX(ϵ) = f−1

X (−∞, ϵ] is precisely the space Xϵ of Section
1.1. We can then study the homology of this persistent module, seen as a module
in Top. Because X is finite, this is guaranteed to be a tame module, and hence
we can study it in terms of its barcode and persistence diagram. Real-world data is
inevitably tied to noise and uncertainty, so for this to be a robust method of analysis
we need that ‘small’ perturbation of the original data result in ‘small’ perturbations
in the barcode and persistence diagram. The results in this section imply that if the
filtration functions (fX above) are close, then so are the corresponding barcodes and
persistence diagrams. There is one last notion of distance that will allow us to relate
the closeness of ‘datasets’ and their corresponding filtration functions.

2By a bijection between two multisets X and Y we mean a bijection between
⊔

x∈X

⊔m(x)
i=1 {x}

and
⊔

y∈Y

⊔m(y)
i=1 {y}, where m is the multiplicity function. In particular, it can send different copies

of an element in X with multiplicity greater than 1 to different elements in Y .
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Definition 1.18. Let X and Y be subsets of a metric space (M,d). The Hausdorff
distance between them is

dH(X, Y ) = sup
z∈M

|d(z,X)− d(z, Y )|,

where d(z,X) = infx∈X d(z, x) and similarly for d(z, Y ).

An easy exercise shows that dH(X, Y ) = max{supx∈X d(x, Y ), supy∈Y d(y,X)},
which we can interpret as the maximum distance to get from any point in one of the
sets to the other. In terms of the functions fX and fY as defined above, we have
dH(X, Y ) = ∥fX − fY ∥∞, so this is the last piece of our puzzle.

In fact, we can use the Hausdorff distance to study persistence diagrams as well,
or, more accurately, their underlying sets. For two persistence diagrams X and Y ,
one always has d(x, Y ) ≤ ∥x − f(x)∥∞ for any bijection f : X → Y and x ∈ X.
An analogous statement is true for y ∈ Y and, using the alternative formula for the
Hausdorff distance, they imply that dH(X, Y ) ≤ dB(X, Y ). Therefore, for two finite
subsets X and Y of a metric space (M,d) we have

dH(X, Y ) = ∥fX − fY ∥∞ = d(LX , LY )
≥ d(HLX , HLY ) = dB(BX , BY ) = dB(D(BX), D(BY ))
≥ dH(D(BX), D(BY )),

where H is inclusion into Top followed by singular homology, and BX and BY are
the barcodes of HLX and HLY .

1.6 The simplicial perspective
So far we have seen how one can produce a sequence of topological spaces from a
dataset, seen as a subspace of a metric space. There is an alternative perspective
which is more often used in applications because of its computational advantages.
This relies on the notion of an abstract simplicial complex, which we briefly introduce
now.

Definition 1.19. An abstract simplicial complex is a pair (V,Σ), where V is a
set and Σ is a collection of subsets of V that is closed under taking subsets and such
that {v} ∈ Σ for all v ∈ V . For each n ≥ 0, an element of Σ with cardinality n + 1
is called an n-simplex.

Abstract simplicial complexes form a category, where a map (V,Σ) → (V ′,Σ′) is
just a function f : V → V ′ such that f(σ) ∈ Σ′ for all σ ∈ Σ. These objects are best
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thought of geometrically, by identifying each n-simplex with a topological regular
n-simplex, defined as

∆n
Top = {(x0, x1, . . . , xn) ∈ Rn+1 | x0 + x1 + · · ·+ xn = 1 and 0 ≤ xi ≤ 1 for all i}.

For instance, ∆0
Top is a single point, ∆1

Top is a line segment, ∆2
Top is a regular triangle,

and ∆3
Top is a solid regular tetrahedron. Just as an abstract n-simplex contains a

number of (n − 1)-simplices (in fact, exactly n + 1), ∆n
Top has n + 1 distinguished

copies of ∆n−1
Top sitting inside it, which we call its faces. These are specified by n+ 1

embeddings δn−1
i : ∆n−1

Top ↪→ ∆n
Top for 0 ≤ i ≤ n, given by

δn−1
i (x0, . . . , xn−1) = (x0, . . . , xi−1, 0, xi, . . . , xn−1).

Moreover, ∆n
Top has exactly n+1 vertices, given by the points where one coordinate

is 1 and the rest are zero. These are canonically ordered by

(1, 0, . . . , 0) ≺ (0, 1, 0, . . . , 0) ≺ · · · ≺ (0, . . . , 0, 1).

Now given an abstract simplicial complex (V,Σ) we can form a topological space
that ‘looks’ like it by gluing several regular simplices of different dimensions in an
appropriate way. This construction is called the geometric realisation of (V,Σ).
The quickest way of describing this gluing process is as a categorical colimit. First,
pick a total order for the set V of vertices. The collection of sets Σ is a poset ordered
by inclusion, and hence can be seen as a category with at most one morphism between
any two objects. We define a functor Σ → Top on objects by sending each n-simplex
to ∆n

Top. In order to specify our functor on morphisms, it suffices to describe its
action on the inclusion τ ⊆ σ of an (n − 1)-simplex into an n-simplex; the rest will
be forced by functoriality. The chosen order for V gives a unique order-preserving
bijection between the elements of an n-simplex σ ∈ Σ and the vertices of ∆n

Top, with
the order ≺ above. This identifies τ with a unique face of ∆n

Top, so we send τ ⊆ σ to
the inclusion δn−1

i of that face. Then the geometric realisation of (V,Σ) is the colimit
of this functor. Note that our construction is not natural in (V,Σ), because we made
an arbitrary choice of an ordering for V . However, a more careful construction is
possible that makes taking the geometric realisation a functor from the category of
abstract simplicial complexes into Top. We write | · | for this functor.

This construction allows us to think of abstract simplicial complexes as topo-
logical spaces; so we can study, for instance, their homology. In a sense, abstract
simplicial complexes are a way of efficiently writing down a topological simplicial
complex without losing any information. This makes them attractive when perform-
ing computations since all the superfluous topological information has been stripped.
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For this reason, it is convenient to use abstract simplicial complexes to study datasets
in the fashion of persistent homology. Given a datasetX, seen as a subspace of a met-
ric space, there are a number of abstract simplicial complexes that we can associate
to it.

Definition 1.20. Let (M,d) be a metric space, X ⊆ M and fix ϵ ∈ [0,∞]. The
Čech complex of X with respect to ϵ, written Cϵ(X), is the abstract simplicial
complex whose n-simplices are subsets {x0, x1, . . . , xn} ⊆ X with n + 1 elements
such that the closed balls of radius ϵ/2 centred at each of the xi have a nonempty
intersection. In other words, such that there is some point of M that is a distance
at most ϵ/2 from all of the x0, . . . , xn.

Recall from Section 1.1 that we write Xϵ for the subspace ofM given by the union
of all the closed balls of radius ϵ centers around the points of X. If X is compact
and any intersection of such balls is either empty or contractible (as is the case when
M is Euclidean space), then the Čech nerve theorem implies that Xϵ/2 is homotopy
equivalent to the geometric realisation of Cϵ(X) [8]. In this sense, the Čech complex
gives the same homological information as the previously studied space Xϵ. This
shows that it is enough to study the Čech complex of a dataset in order to know its
persistent homology.

However, there are other simplicial complexes one can associate to a metric space
X, even when it is not embedded in a larger space M . These no longer capture the
same information as the sequence of spaces Xϵ, but they are closely related.

Definition 1.21. Let X be a metric space and fix ϵ ∈ [0,∞]. The Vietoris–Rips
complex of X with respect to ϵ, written Rϵ(X), is the abstract simplicial complex
whose n-simplices are subsets {x0, x1, . . . , xn} ⊆ X with n + 1 elements such that
d(xi, xj) ≤ ϵ for all 0 ≤ i, j ≤ n.

Note that since we only ever look at distances between two points, the Vietoris-
Rips complex is completely determined by its 1-simplices. This makes it popular in
applications since it greatly simplifies the encoding of the complex in a computer.
If X is a subset of a larger metric space, then it is easy to see that Cϵ(X) is a
subcomplex of Rϵ(X). In fact, if M is Rd, then these two complexes can be related
by the inclusions

Rϵ(X) Cϵ
√
2(X) Rϵ

√
2(X) (1)

for any ϵ > 0. If a homological feature survives the passage from Rϵ(X) to Rϵ
√
2(X),

then it must also be a feature of Cϵ
√
2(X), and hence of Xϵ

√
2/2. Hence, studying

the persistent homology of the Vietoris–Rips complex can still uncover geometrically
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meaningful information about our dataset. In general, one talks about persistent
homology with respect to a given choice of abstract simplicial complex.

2 Persistent homotopy theory
The homotopy groups of topological spaces are refinements of singular homology in
the sense they see strictly more geometric information. If we can build a persistent
homotopy theory, it will identify the geometry of a data set more finely than persis-
tent homology, although it will be harder to compute. We will use a modern view of
homotopy theory, where homotopy types are built from nice simplicial sets, as this
simplifies the situation. In particular, there is a nice simplicial set arising from the
Vietoris-Rips complex of a data set.

2.1 Simplicial homotopy theory
We will first need to build some foundations of simplicial homotopy theory. This
section closely follows the exposition given in [12]. As is standard in homotopy
theory, we let Top be the category of compactly generated Hausdorff spaces.

Let ∆ be the category whose objects are finite, non-empty, totally ordered sets
[n] = 0 < 1 < 2 < · · · < n, and whose maps are order-preserving maps. A simplicial
set X ∈ sSet is a presheaf on ∆, that is, a functor X : ∆op → Set. Note in contrast
to a simplicial complex, the vertices X[0] in a simplicial set have a total order.
Example 2.1. ∆n is the simplicial set represented by [n]. Concretely, ∆n = Hom∆(−, [n]).
Example 2.2. Given any category C we can form the simplicial set [n] 7→ Fun([n], C),
called the nerve N(C). Note ∆n = N([n]). The nerve construction is functorial,
giving a functor N : Cat → sSet. Furthermore, this functor admits a left adjoint
[12]. This makes the homotopy theory of nerves of categories particularly nice.

For every topological space X we get a simplicial set S(X), called the singular
simplicial set of X. It is defined as

S(X) : [n] 7→ HomTop(∆n
Top, X),

where ∆n
Top is the topological n−simplex defined in 1.6. The singular simplicial set

therefore consists of all the ways to map topological simplices into X.
Dually, a simplicial setX gives rise to a topological space |X|, called the geometric

realization, similar to the geometric realization of a simplicial complex defined in
Section 1.6. It can be defined very concisely as

|X| = colim
∆n∈∆/X

∆n
Top
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Here ∆/X is the slice category whose elements are maps ∆n → X in sSet and
whose maps are maps ∆n → ∆m making the relevant triangles commute. More
concrete formulas for the geometric realisation also exist (see Example 4.11), but
let us take the following as motivation for why this is the right definition: we want
geometric realization to be a functor adjoint to taking the singular simplicial set. In
particular, | − | must preserve colimits. Now by a Yoneda-lemmic argument, every
simplicial set is a colimit of representables:

X ∼= colim
∆n∈∆/X

∆n,

so defining a colimit-preserving functor on sSet is entirely determined by where the
∆n are sent. For geometric realisation we want to map ∆n to ∆n

Top, giving us the
above definition. Then, as promised, we have the following lemma:

Lemma 2.3. Geometric realisation is left adjoint to the singular simplicial set func-
tor.

Proof.

HomTop(|X|, Z) ∼= HomTop(colim∆n
Top, Z) ∼= limHomTop(∆n

Top, Z)

∼= limHomsSet(∆n, S(Z)) = HomsSet(colim∆n, S(Z)) ∼= HomsSet(X,S(Z)).
The fact that HomC(−, Z), for a fixed Z in any category C, sends limits to colimits
is proven directly by the universal property of (co)limits. [12]

Lemma 2.3 shows a close relationship between simplicial sets and topological
spaces. The geometric realisation is always a CW-complex [12], and furthermore the
arising monad on Top is a CW-approximation, i.e. the counit ϵX : |S(X)| → X is a
weak homotopy equivalence3 [18].

Definition 2.4. For 0 ≤ j ≤ n, the j−horn Λn
j is the simplicial subset of ∆n

consisting of the k−simplices [k] → [n] whose image does not contain [n]/j.

Remark 2.5. The geometric realization of a horn is a topological horn. Explicitly,
|Λn

j | is the subspace of ∆n
Top given by removing its interior and the interior of the

j−th face.
3This map is not a homotopy equivalence in general, as there are spaces not homotopy equivalent

to a CW-complex. A classical example is the Hawaiian earring.
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Definition 2.6. A simplicial set X is called a Kan complex if every horn inclusion
admits a lift:

Λn
j X

∆n

∃

Proposition 2.7. For any X ∈ Top, S(X) is a Kan complex.

Proof. By adjunction, finding such a lift is equivalent to finding a lift

|Λn
j | X

|∆n|
∃

The inclusion of the topological horn admits a deformation retract, giving the lift.
[12]

Definition 2.8. A simplicial set X is called an ∞−category if it has lifts for all
inner horn inclusions, i.e. unique lifts of the form given in Definition 2.6, but where
0 < j < n.

Example 2.9. The nerve N(C) of a category is an ∞−category. In fact, a stronger
statement is true: a simplicial set is the nerve of a category if and only if it has
unique lifts for all inner horn inclusions [12].

We finish by defining a homotopy between maps of simplicial sets strictly combi-
natorically.

Definition 2.10. A homotopy h between two maps f, g : X → Y of simplicial sets
is a map h : X ×∆1 → Y such that the restriction to the endpoints gives f and g.

This definition can be motivated by the fact that geometric realisation preserves
finite products, taken from [7]. This does rely on our definition of Top as the category
of compactly generated topological spaces, which has a different product than the
standard category of topological spaces - it is the compact generation of the standard
product. Recalling that |∆1| = [0, 1] is the standard interval, applying the geometric
realisation to a homotopy h : X × ∆1 → Y gives a homotopy h : |X| × I → |Y |
between the geometric realisations of f and g in the sense of algebraic topology.
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Lemma 2.11. A natural transformation α between functors F,G : C → D gives
rise to a homotopy N(α) : N(F ) ⇒ N(G).

Proof. A natural transformation is the same thing as a functor α : C× [1] → D such
that α(−, 0) = F and α(−, 1) = G. The components αc are given by α(c, 0 < 1),
and the naturality square, for f : X → Y ∈ C, is the following:

F (X) G(X)

F (Y ) G(Y )

α(f,id0)

α(idC ,0<1)

α(f,id1)

α(idC ,0<1)

Since the nerve is a right adjoint, it preserves products, so N(α) : N(C)×N([1]) →
N(D). Recalling ∆1 = N([1]) finishes the proof.

2.2 Homotopy interleavings
In this section we choose a nice simplicial set corresponding to a data set X, define
a homotopy interleaving, and prove a stability result. Our approach closely follows
that in [10]. We will restrict ourselves to homotopy types of finite data sets of metric
spaces, but the theory can be generalised to "controlled equivalences of systems of
spaces", essentially collections of spaces controlled by the poset [0,∞), see [10].

Given a data set X ⊂ Y and r ∈ [0,∞), consider the poset Ps(X) of subsets
of X such that d(x, y) < r for all x, y ∈ X. We can then construct the nerve
N(Ps(X)) ∈ sSet. The n−simplexes are n−tuples of inclusions of subsets in Ps(X).
The geometric realisation of N(Ps(X)) is the barycentric subdivision of the Vietoris-
Rips complex Rs(X): we have a 0−simplex for every simplex in Rs(X), and we have a
n−simplex exactly when we have an inclusion of n+1 simplices in increasing degrees.
There is a natural weak equivalence between a simplicial complex and its barycentric
subdivision, so in particular, we don’t lose any information on the homotopy type
by working with Ps(X) instead of Rs(X) [9]. We will additionally find advantages to
working with the nerve of a small category. Another advantage is that the simplicial
set structure on Ps(X) is canonical while building a simplicial set structure on Rs(X)
depends on an ordering of the elements in X.

We will define a homotopy interleaving in this particular setting.

Definition 2.12. A homotopy 2r-interleaving of a finite subset X of a metric space
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Y is a diagram
Ps(X) Ps+2r(X)

Ps(Y ) Ps+2r(Y )

j

i i

j

θ

such that the upper triangle commutes and the lower triangle commutes up to a
homotopy fixing Ps(X). [10]

We will now prove a stability theorem. Recall the Hausdorff distance dH from
Definition 1.18.
Theorem 2.13 (Rips stability). Suppose X ⊂ Y are finite subsets of a metric space
M such that dH(X, Y ) < r. Then there exists a homotopy 2r−interleaving of X in
Y .
Proof. The maps i, j are the inclusions. For y ∈ Y we define a retraction θ : Y → X
by picking θ(y) ∈ X such that d(θ(y), y) < r, setting θ(y) = y if y ∈ X. By the
comments after Definition 1.18, d(y,X) ≤ supy∈Y d(y,X) ≤ dH(X, Y ) < r, so it is
always possible to find such a θ(y). Given A ∈ Ps(Y ), and θ(y), θ(y′) ∈ θ(A),

d(θ(y), θ(y′)) ≤ d(θ(y), y) + d(y, y′) + d(θ(y′), y′) < s+ 2r
by the triangle inequality. It follows that θ defines a poset morphism

θ : Ps(Y ) → Ps+2r(X).
Since θ is a retract, j∗ = θ∗i∗. To show the bottom triangle commutes up to ho-
motopy, we interpret the maps as functors between individual poset categories, and
define natural transformations α : j → iθ ∪ j and β : iθ → iθ ∪ j whose components
are given by inclusions. iθ(A) ∪ j(A) ∈ Ps+2r since for y, y′ ∈ A,

d(y, iθ(y′)) < d(y, y′) + d(y′, iθ(y′)) < s+ r.

By Lemma 2.11, these natural transformations lift to homotopies after applying the
nerve, and by compositionality of homotopies, we have a homotopy between N(j)
and N(iθ) as required. [10]

The stability theorem implies, after applying the functor πn(N(−)), that there
exists a commutative diagram

πnNPs(X)) πn(NPs+2r(X))

πn(NPs(Y )) πn(NPs+2r(Y ))

j∗

i∗ i∗

j∗

θ∗
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Similar diagrams hold for homology and any other homotopy-invariant functor.

3 The Persistent Homology Transform Sheaf
In the spirit of studying the homology of a family of topological spaces indexed by
a real parameter, in this section, we wish to define a statistic called the Persis-
tent Homology Transform Sheaf. The reason why this construction is useful is that
the Persistent Homology Transform is a sufficient statistic. i.e it is injective on its
domain, so it can tell apart any two distinct shapes.

The PHT was first introduced in [23] as a statistic to compare different subsets
of Rn, it was expanded upon in [4] and [1], where the PHT was defined as a sheaf,
adding continuity conditions to the definition of the transform. In this section, we
will give an overview of the definitions and theorems that make the PHT useful.

For this section, we fix a field F, such asQ or R, and suppose that all (co)homologies
and dimension calculations are assumed to be over the field F.

3.1 Constructible sets
To avoid pathological sets such as fractals or the Cantor set, we will work over
definable sets and constructible sets, which are well-behaved subsets of Rd.

We use the definition of an o-minimal structure given in [5]. 4

Definition 3.1 (o-minimal structures, definable and constructible sets). An o-minimal
structure is a collection of sets O = (Od)d∈Z+ such that:

1. Od is a collection of subsets of Rd.

2. Od is closed under union, intersections, and complements, and contains the
empty set and Rd. 5

3. If A ∈ Od, then A× R,R× A ∈ Od+1.

4. {(x1, x2, . . . , xn) ∈ Rn : x1 = xn} ∈ On

5. Let π : Rd+1 → Rd be the projection map onto the first d co-ordinates, then
π(Od+1) ⊂ Od.

4There are definitions of o-minimality given in [1] and [4], but it seems those definitions maybe
be incomplete, so our definition is taken from the original source [5] instead.

5We call sets that satisfy this condition a boolean algebra
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6. {(x, y) : x < y} ∈ O2

7. O1 contains precisely the finite unions of intervals and points.

An element of M ∈ Od is called definable.
If M is also compact, then we say M is constructible. Let CS(Rd) be the con-

structible sets in Od.

A definable set is nice in the following sense:

Theorem 3.2 (Triangulation Theorem [5]). Every definable set M ∈ Od is triangu-
lable.

Intuitively a definable set is just a sufficiently ‘nice’ set, and one can think of a
set in CS(Rd) just as any reasonably defined subset of Rd. In particular, any semi-
algebraic set, i.e. a set that is defined by a finite number of polynomial equations or
inequalities, is definable [5].

3.2 The Persistent Homology Transform
Given a set M ⊂ Rd and a direction v ∈ Sd−1 ⊂ Rd, we wish to filter M in the
direction of v, we define:

M(v, t) = {x ∈M : x · v ≤ t}
Note that varying the value of t gives a filtration of spaces. We can think of this

set as the intersection of M with a half-space cut out by a hyperplane perpendicular
to v. We note that if M is additionally a simplicial complex, then this is in fact
homotopy equivalent to the full sub-complex spanned by all vertices in the halfspace:

Proposition 3.3. Suppose M = ⋃
σ∈∆ σ is triangulable, then M(v, t is homotopy

equivalent to the union of sets:

{σ ∈ ∆ : x · c ≤ t}

Before defining the sheaf-theoretic construction of the Persistent Homology Trans-
form, we first define the Persistent Homology Transform (PHT) in terms of persis-
tence diagrams. Recall the definitions of a Persistence Diagram and their bottleneck
distance in definitions 1.15 and 1.16 respectively. We denote by D the space of
persistence diagrams equipped with the bottleneck distance metric.

Since M(v, t) gives a filtration, we can take the kth homology Hk(M(v, t)) and
by the structure theorems in section 1.3, we can associate the homology groups of
this filtration with a persistence diagram, which we will denote PHk(M, v)
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Definition 3.4. Given a constructible set M ∈ CS(Rd), the Persistent Homology
Transform of M is a map PHT(M) : Sd−1 → Dd given by:

v 7→ (PH0(M, v), PH1(M, v), . . . , PHd(M, v))

The Persistent Homology Transform effectively gives all homological information
of the shape in all filtered directions.

We can additionally consider the Euler Characteristic of these filtered spaces, and
define the Euler Characteristic Transform (ECT):

Definition 3.5. Define the Euler Characteristic function χ(M, v) : R → Z given by:

χ(M, v)(t) =
d∑

i=0
(−1)d dimHi(M(v, t))

Then the Euler Characteristic Transform is the map: ECT(M) : Sd−1 → ZR

given by:
ECT(M) : v 7→ χ(M, v)

Notice that since the homology groups determine the Euler Characteristic, the
ECT is uniquely determined by the PHT.

We quote this theorem from [4]:

Theorem 3.6. The map ECT : CS(Rd) → {Sd−1 × R → Z} is injective.

3.3 The Sheaf Theoretic Version of PHT
In the definition of PHT above, We defined PHT as a map from the constructible
sets to the space of persistent diagrams.

In the last section we had a filtration of M along every direction v and real
parameter t. We wish to encode all of these filtrations into a single topological
space, which we will call the auxiliary total space.

Definition 3.7. For a given constructible set M ∈ CS(Rd) we define the auxiliary
total space:

ZM = {(x, v, t) ∈M × Sd−1 × R : x · v ≤ t}

Let fM be the projection map fM : ZM → Sd−1 ×R onto the final 2 coordinates.
Then the fibres of this map precisely give a single filtration of M :

f−1
M (v, t) =M(v, t)
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For each open set U ⊂ Sd−1 × R, the pullback of the open set f−1U is a varying
continuous family of filtrations ofM , and we can take their (co)homology, H i(f−1U).
Since (co)homology is functorial, we have defined a pre-sheaf:

U 7→ H i(f−1U)

Definition 3.8. For a constructible set M ∈ CS(Rd), the ith persistent homology
transform sheaf of M , PHTi(M) is the sheafification of the above pre-sheaf.

PHTi(M) = sh[U 7→ H i(f−1U)]

Given a fixed point (v0, t0), the stalk of the sheaf PHTi at (v0, t0) is precisely the
ith cohomology group of the fibre M(v0, t0).

3.4 Derived Version of PHT
We can generalise this further and define a version of the PHT in terms of a derived
sheaf. Since the cohomology groups H i of a topological space comes from its cochain
complex, we can look directly at the cochain complexes to obtain all the cohomology
groups. This gives the Derived Persistent Homology Transform, which was first
defined in Remark 4.7 in [4], but was expanded upon in [1].

Definition 3.9 (PHT: Derived Version). Fix a topological space X, and let Sp(U)
denote the F-vector space generated by singular p-cochains of U ⊂ X. This is a
functor (i.e. pre-sheaf), so define the sheafification:

S p(X) = sh[U 7→ Sp(U)]

Setting X = ZM , we obtain a flasque resolution of the constant sheaf of ZM :

0 → F → S 0(ZM) → S 1(ZM) → · · ·

Finally, we define the Derived Persistent Homology Transform associated toM ∈
CS(Rd) to be the pushforward of the above cochain complex along the projection
map fM : ZM → Sd−1 × R.

DPHT(M) := 0 → fM∗S
0(ZM) → fM∗S

1(ZM) → · · ·

The image of this map is in the bounded derived category of sheaves over Sd−1×R,
so DPHT : CS(Rd) → Db(Shv(Sd−1 × R))
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Intuitively, the Derived Persistent Homology Transform of a constructible set M
gives a complex of sheaves over Sd−1×R, where taking the stalk of a particular point
(v, t) will give the cochain complex needed to determine the cohomology groups of
M(v, t).

Turns out the DPHT is itself a sheaf on the category CS(Rd). But in order to
make this precise we will need to define the notion of a Grothendieck Topology (since
CS(Rd) is not a category of the form OpenX).

3.5 Grothendieck Topologies and Homotopy Sheaves
In this section we want to treat each constructible set M ∈ CS(Rd) as a point in the
‘shape space’ CS(Rd), and in doing so define a sheaf that takes each point M to its
persistent homology transform. In order to do this, we first need to equip CS(Rd)
with a Grothendieck Topology.

Just like how Open(X) forms a category for a given topological space X, intu-
itively we want to think of objects in a category C as open sets in a topology, then a
Grothendieck Topology is a way of specifying open covers on this category, so that
we can define a sheaf.

Definition 3.10 (See [1]). Given a category C, a Grothendieck Topology on C is a
specification of admissible covers {Ui → U} for each object U ∈ C satisfying the
following:

1. (Isomorphism) If f : U ′ → U is an isomorphism, then {f} is a cover of U .

2. (Composition) If {fi : Ui → U} is a cover of U , and there is a cover {gij : Uij →
Ui} for each Ui, then:

{fi ◦ gij : Uij → U}

is a cover of U .

3. (Base Change) If {fi : Ui → U} is a cover of U , and V → U is a morphism in
C, then the pullback {V ×U Ui → V } forms a cover of V

Since the fibre product V ×U Ui can be thought of as the intersection of V and
Ui, intuitively we can think of the base change axiom as specifying that restrictions
of an open cover to a smaller open set give a cover of the smaller open set.

Theorem 3.11. Consider the poset CS(Rd) ordered by inclusion as a category. Then
CS(Rd) admits a Grothendieck Topology.

26



Proof. We say that {Mi ↪→ M} is a cover if and only if ∪Mi = M . i.e. it is a
cover in the normal sense. Then pullbacks are just intersections, and since CS(Rd)
is closed under intersections pullbacks exist. Then the 3 conditions follow directly
from properties of sets.

We can now define the notion of a pre-sheaf on a Grothendieck Topology. If C is
a category equipped with a Grothendieck Topology, then a pre-sheaf of C is simply a
contravariant functor from C. In order to be a sheaf we must add an extra condition,
which can be motivated as follows: For a sheaf F , its global sections should agree
with its zeroth Čech cohomology. So in general we simply force that a sheaf should
have this property, which is also called Čech descent [6].

Definition 3.12. Let C be a category equipped with a Grothendieck Topology, then
a sheaf on C is a functor F : Cop → A for some category A such that when Ui → U
is a cover of U there is an isomorphism:

F(U) ∼= lim
∏

i

F(Ui) ⇒
∏
i,j

F(Uij)


Where Uij = Ui ×U Uj, which we can intuitively think of as the intersection of Ui

and Uj.

In general, the derived category of an abelian category is not abelian, and the
above limit may not be well defined. In this case we may replace lim with instead a
homotopy limit (see [11], denoted holim. In this case, we say that F is a Homotopy
Sheaf [1].

Finally with these notions defined, we can state the following theorem, which is
proved in [1]:

Theorem 3.13. The Derived Persistent Homology Transform is a Homotopy Sheaf

DPHT : CS(Rd)op → Db(Shv(Sd−1 × R))

The importance of the DPHT being a sheaf is essentially that it inherits the local
continuity condition of sheaves. i.e. Points in CS(Rd) that are ‘close’ together have
a similar DPHT.

3.6 Stability and Sampling
We want that shapes with the same homology and have points ‘near’ each other, to
also have DPHTs that are close together. Recall the notion of ϵ-interleaving from
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Definition 1.1. The Derived Persistent Homology Transform is stable in the following
sense:

Theorem 3.14. Suppose M,N ∈ CS(Rd) be homotopy equivalent sets with the
homotopy equivalence given by ϕ :M → N and ψ : N →M . Let:

ϵ = sup
x∈M,y∈N

(
||x− ϕ(x)||2, ||y − ψ(y)||2

)
Then DPHT(M),DPHT(N) are ϵ-interleaved.

We now state some results on the effectiveness of determining a manifold M via
randomly chosen points on the manifold.

Suppose M ⊂ Rd is a compact manifold, and we wish to investigate the homol-
ogy of M by taking a random sample of n points x̄ = {x1, . . . , xn} in M , chosen
independently and identically from a uniform distribution on M .

We associate to M a condition number τ , which is the largest real number such
that the normal bundle of M can be realised as a tubular neighborhood of M of
radius r for all r < τ .

Suppose 0 < ϵ < τ/2, and define U to be the union of ϵ-balls centred about each
xi: U = ⋃

iBϵ(xi)
Then we have the following theorem from [19]:

Theorem 3.15. There exist parameters β1, β2 dependent on τ, ϵ and vol(M), such
that for δ ∈ (0, 1), if:

n > β1

(
log β2 + log 1

δ

)
Then U has the same homology as M with probability > 1− δ

Given a union of balls U = ∪Bϵ(xi), we define the Alpha complex to be the
realisation of the Čech complex (see definition 1.20). What this means is, instead
of taking an abstract simplicial complex, so embed the simplicial complex into Rd

itself, with each point xi corresponding to a vertex, and the simplex between a set of
vertices is in the alpha complex if and only if the balls centered at the vertices have
nontrivial intersection.

The main result of [1] is that the DPHT of M and the alpha complex are ϵ-
interleaved:

Theorem 3.16. Let M ⊂ Rd be a compact manifold with condition number τ .
x̄ = {x1, . . . , xn} be n points chosen fromM with identical and independent uniform
distributions. Define U = ∪x̄Bϵ(xi) and K be the alpha complex of U .
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If 0 < ϵ < τ/2, and β1, β2 are appropriately defined constants, and

n > β1

(
log β2 + log 1

δ

)
Then with probability > 1− δ, the sheaves DPHT(M),DPHT(K) are ϵ2-interleaved.

4 Persistent and magnitude homology
Magnitude homology is a homology theory of enriched categories, and in particular
of metric spaces. It first arose as a categorification (in the Khovanov homology –
Jones polynomial sense), of the numerical size-like invariant known as magnitude.
Both being homology theories for metric spaces, it is natural to ask how persistent
and magnitude homology are related. We answer this question in this section.

4.1 Enriched categories
An ordinary (locally small) category C consists of a class of objects ob C, and for
each pair of objects x, y a set of morphisms C(x, y), together with composition and
identities maps

C(x, y)× C(y, z) → C(x, z) and 1 → C(x, x),

where 1 is a fixed singleton set, for all objects x, y and z. In addition to this, we
have the usual associativity and identity axioms on these maps. The concept of an
enriched category arises when we allow C(x, y) to be objects in some category V other
than Set.

In order to have sensible composition and identities maps, we need V to have a
notion of a product between two objects, and this product must have a unit element.
Often times, like in ordinary categories, this is the categorical product, with unit
element the empty product. However, this need not be the case, and a more general
theory is useful.
Definition 4.1. A monoidal structure on an ordinary category V consists of a
functor − ⊗ − : V × V → V , called the monoidal product, and an object 1 of V ,
together with natural isomorphisms α, λ and ρ with components

αx,y,z : x⊗ (y ⊗ z) → (x⊗ y)⊗ z, λx : 1⊗ x→ x and ρx : x⊗ 1 → x,

satisfying two coherence axioms (see [17, Chapter VII]). These isomorphisms are
often called the associator, left and right unitor, respectively. Amonoidal category
is a category equipped with a monoidal structure.
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Example 4.2. If a category C has finite products, then taking ⊗ to be the categorical
product and 1 the empty product gives a monoidal structure on C. In this case, α, λ
and ρ can be easily specified using the universal property of products. Similarly, we
could take ⊗ to be the coproduct of two objects instead, and 1 the empty coproduct.
For any commutative ring R, the category of (left) R-modules is monoidal, with
monoidal product the tensor product, and unit R.
Example 4.3. Any poset with a monoid structure is a monoidal category. For in-
stance, Z gives a category whose objects are the integers, and we have a morphism
a → b precisely when a ≤ b. Setting a ⊗ b = a + b and 1 = 0 gives it a monoidal
structure. We will be particularly interested in the poset [0,∞]op with addition.
Since we are taking the opposite category, we have a morphism a→ b precisely when
a ≥ b.

Definition 4.4. Let V be a monoidal category. A category enriched over V (or
V-category) C consists of
• a class of objects ob C;
• for each x, y ∈ ob C, an object C(x, y) of V ;
• for each x, y, z ∈ ob C, a composition morphism C(x, y)⊗ C(y, z) → C(x, z) in V ;
• for each x ∈ obV , an identity morphism 1 → C(x, x) in V ;
satisfying analogous axioms of associativity and identities (see [2, Chapter 6]).

Example 4.5. If we take V = Set with the cartesian product as in Example 4.2, then
a V-category is an ordinary category. The category R-Mod of left R-modules is
enriched over itself. That composition is a morphism in R-Mod expresses the fact
that composition of linear maps is a bilinear operation.
Example 4.6. Let X be a small [0,∞]op-category, where we take the monoidal struc-
ture as in Example 4.3. For each x, y ∈ obX, we have an extended real number
X(x, y) which we think of as the distance from x to y. The composition morphism
says precisely that X(x, y) + X(y, z) ≥ X(x, z) for any x, y, z ∈ obX, whereas the
identity morphism expresses that 0 ≥ X(x, x), and then X(x, x) = 0. Since we
are enriching over a poset, the associativity and identities axioms are automatically
satisfied, and so give us no more properties. These conditions make obX a sort of
‘relaxed’ metric space, where X(x, y) need not equal X(y, x), two distinct points
may be distance zero apart, and the distance between two points may be ∞. This
was first realised by Lawvere in [13], which is why we call small [0,∞]op-categories
Lawvere metric spaces.

If instead we take the monoidal product in [0,∞]op to be the categorical product,
then the composition law reduces to max{X(x, y), X(y, z)} ≥ X(x, z), giving the
notion of Lawvere ultrametric space.
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4.2 The nerve of an enriched category
The nerve of an ordinary category C is a simplicial set N(C) that sends [n] to the
set of composable n-tuples of morphisms in C. The face and degeneracy maps are as
follows

(f1, f2, . . . , fn)
dn07−→ (f2, . . . , fn),

(f1, . . . , fi, fi+1, . . . , fn)
dni7−→ (f1, . . . , fi+1fi, . . . , fn) for 0 < i < n,

(f1, . . . , fn−1, fn)
dnn7−→ (f1, . . . , fn−1),

(f1, . . . , fn)
sn07−→ (1dom f1 , f1, . . . , fn),

(f1, . . . , fi, fi+1 . . . , fn)
sni7−→ (f1, . . . , fi, 1cod fi , fi+1, . . . , fn) for 0 < i ≤ n.

A concise way of writing down the set of n-simplices is

N(C)n =
⊔

x0,...,xn

C(x0, x1)× · · · × C(xn−1, xn). (2)

In this section, we will study how to generalise this notion to enriched categories.
Ideally, one would want to simply exchange the cartesian product for the monoidal
product and the disjoint union for the coproduct in (2). However, our enriching
category V may not have coproducts. We can overcome this by passing to the
presheaf category V̂ instead, but first let us examine one more reason why this
construction may fail.

Restricting the face map dn0 to C(x0, x1) × · · · × C(xn−1, xn), for some choice of
x0, . . . , xn ∈ ob C, gives a map into C(x1, x2)×· · ·×C(xn−1, xn) which can be factored
as

C(x0, x1)× C(x1, x2)× · · · × C(xn−1, xn)

1× C(x1, x2)× · · · × C(xn−1, xn) C(x1, x2)× · · · × C(xn−1, xn)

dn0 |!×1

λ

(3)

where ! is the unique map C(x0, x1) → 1 and λ is the monoidal left unitor. Here we use
crucially that the monoidal identity in Set is the terminal object. A similar situation
occurs with dnn, this time involving the right unitor. In a general monoidal category
V , there need not be a map from C(x0, x1) to the monoidal unit 1. We therefore
restrict ourselves to working with enriching categories V which are semicartesian,
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i.e. where the monoidal unit is terminal6. Note that the remaining face maps and
degeneracy maps are simply built up using the monoidal product, composition, and
identities, so they do not pose a problem.

To overcome the scarcity of coproducts, we use the category of presheaves on V ,
which we denote V̂ = SetVop . The Yoneda lemma shows that the functor y : V → V̂
given by y(v) = V(−, v) is full and faithful. This functor is commonly called the
Yoneda embedding. The category V̂ has all small colimits and they are computed
‘objectwise’, i.e.

(colimI D)(v) = colimI D(v)
for any functor D : I → V̂ . In fact, V̂ is the category obtained from V by adjoining all
colimits in the freest possible way. This is made precise by the following proposition.

Proposition 4.7. Let C and D be categories with D cocomplete and let F : C → D
be any functor. Then there exists a functor F̂ : Ĉ → D that preserves all colimits
and that extends F along y, i.e. the following diagram commutes up to natural
isomorphism

C

Ĉ D

y F

F̂

Moreover, F̂ is uniquely determined up to natural isomorphism.

Proof sketch. It follows from the Yoneda lemma that every presheaf is a colimit
of representables, so, if F̂ is to preserve all colimits, it must be determined up to
isomorphism by its action on the image of y.

With this in mind, we make the following definition for the nerve of an enriched
category. Because we are working with presheaves now, the nerve of an enriched
category is no longer a single simplicial set, but a family of them, or more precisely
a functor Vop → sSet.

Definition 4.8. Let V be a semicartesian monoidal category, and C be a small V-
category. The nerve of C is the functor N(C) : Vop → sSet, where for each v ∈ obV ,
the set of n-simplices is given by

N(C)(v)n =
⊔

x0,...,xn

V(v, C(x0, x1)⊗ · · · ⊗ C(xn−1, xn)).

6See [15] for a discussion on why this condition is not as obscure as it may at first appear.
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The face maps dn0 and dnn are analogous to the map shown in (3). The remaining
face maps are built using the product and composition, and the degeneracy maps
are built using the product and identities. For a morphism f : v → v′ in V , we get
N(C)(v′)n → N(C)(v)n induced by precompositing with f . It is straightforward to
check that these maps come together to form a simplicial map N(C)(v′) → N(C)(v).

Example 4.9. Let V = [0,∞]op and X be a Lawvere metric space. We find an explicit
description for the nerve ofX. Note that [0,∞]op is semicartesian, since the monoidal
unit is 0. For each l ∈ [0,∞], we have that

[0,∞]op(l, X(x0, x1) + · · ·+X(xn−1, xn))

is nonempty and a singleton if and only if l ≥ X(x0, x1) + · · ·+X(xn−1, xn). We see
then that N(X)(l)n is canonically isomorphic to the set

{(x0, . . . , xn) ∈ Xn+1 : X(x0, x1) + · · ·+X(xn−1, xn) ≤ l}.

The face maps dni remove the i-th member of a tuple, while the degeneracy maps sni
repeat it. Given l′ ≥ l, we get inclusions N(X)(l)n ⊆ N(X)(l′)n.

4.3 Coends
Ends and coends in category theory are a construction akin to limits and colimits. In
fact, both can be defined in terms of each other (see [17, §IX.5]). For our purposes,
we will only need the following (slightly less general) definition of a coend in terms
of a colimit, taken from [20].

Definition 4.10. Let C be a small category and D be a cocomplete category. Given
a functor F : Cop × C → D, its coend, denoted

∫ c F (c, c), is the coequaliser of the
diagram ⊔

f :c→c′
F (c′, c)

⊔
c∈ob C

F (c, c),

where for each f : c → c′ in C the top morphism is given by F (f, 1c) : F (c′, c) →
F (c, c) and the bottom morphism by F (1c′ , f) : F (c′, c) → F (c′, c′). If the target
category D is monoidal, with monoidal product ⊗, we define the tensor product
of two functors F : Cop → D and G : C → D as the coend of the functor ⊗(F ×G).
More explicitly,

F ⊗D G =
∫ c

Fc⊗Gc.
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This is a generalisation of the familiar concept of tensor product between two
modules. Indeed, the category Ab of abelian groups is monoidal with the usual
tensor product. We can see a ring R as a one-object Ab-category: the elements of
the ring are the endomorphisms of this object, which can be added and multiplied
(composed). Then a left R-module M is precisely a functor R → Ab, while a right
R-module N is a functor Rop → Ab. The tensor product of these two functors is
the coequaliser of ⊔

r∈R
M ⊗N M ⊗N.

A generating element m⊗ n in the r-copy of M ⊗N on the left-hand side is sent to
mr ⊗ n by the top map, and to m ⊗ rn by the bottom one. These get identified in
the coequaliser, which is then easily seen to be M ⊗R N .
Example 4.11. We have already met another example of a coend: the geometric
realisation of a simplicial set. We have a functor ∆ : ∆ → Top that sends [n] to
the regular n-simplex. Given a set S and a topological space X, we can form the
copower S · X = ⊔

S X, which consists of |S| disjoint copies of X. This defines a
functor · : Set ×Top → Top. Given a simplicial set X : ∆op → Set, its geometric
realisation is given by

∫ [n]X[n] ·∆[n].

4.4 Magnitude homology
In this section, we give a definition of magnitude homology, as presented in [14]. We
write sAb for the category of simplicial abelian groups, i.e. functors ∆op → Ab,
and Ch for the category of chain complexes of abelian groups. Let us write A
for a simplicial abelian group, with An := A[n] and the usual notation for face and
degeneracy maps. This gives a chain complex U(A), which we call the unnormalised
chain complex of A, with U(A)n = An and boundary map

∂n =
n∑

i=0
(−1)ndni : U(A)n → U(A)n−1.

The fact that this is a chain complex, i.e. that ∂n∂n+1 = 0 for all n, can be shown
using the simplicial identities. This defines a functor U : sAb → Ch. We can also
construct a smaller, homotopy equivalent chain complex from A. Let D(A)n be the
subgroup of An generated by the image of the degeneracy maps, i.e.

D(A)n =
〈

n−1⋃
i=0

sn−1
i (An−1)

〉
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for n > 0, and D(A)0 = 0. One can show using the simplicial identities that the
boundary map ∂ descends to the quotients U(A)n/D(A)n, giving a second chain
complex which we call the normalised chain complex of A. In fact, U(A)/D(A)
is naturally chain homotopy equivalent to U(A); see [9, §III.2]. This also gives a
functor sAb → Ch.

Now let C be a small V-category, with V a semicartesian monoidal category. We
can consider the functor MC(C) given by the composite

Vop sSet sAb Ch,N(C) Z·−

where Z · − is post-composition by the free abelian group functor Z : Set → Ab,
and we can take the last arrow to be either the unnormalised or normalised chain
complex functor. Because our last step will be to take the homology of a related
complex, it does not matter which one we choose, since they are chain homotopy
equivalent. We work with the unnormalised version for simplicity.

Next, we introduce a functor of coefficients A : V → Ab, which we see as a
functor into Ch by considering an abelian group as a chain complex concentrated in
degree zero. For the general definition, we require A to be a small functor, which is
a way of saying that its values are determined by its restriction to a set of objects.
This is automatically true when V is small, as is the case for [0,∞]op.

The last ingredient is to recall that Ch is a monoidal category with product
given by the tensor product of chain complexes. In our case, one of the two chain
complexes we will take the product of will always be concentrated in degree zero,
so this has a particularly simple form. Indeed, if (C, ∂) and (C ′, ∂′) are two chain
complexes and C ′

n = 0 for all n ̸= 0, then (C ⊗ C ′)n = Cn ⊗ C ′
0 and the boundary

map is simply ∂n ⊗ 1. We can now use the tensor product of Definition 4.10 to form
the chain complex MC(C)⊗V A.
Definition 4.12. Let V be a semicartesian monoidal category, C be a small V-
category and A : V → Ab be a small functor. The magnitude homology of C
with coefficients in A, written H∗(C;A), is the homology of the chain complex
MC(C)⊗V A.

We are interested in the case where V is [0,∞]op. The typical choice of coefficient
functor is δl for some fixed l ∈ [0,∞], which sends l and the identity on it to Z and
1Z, and everything else to zero. Let us examine the chain complex MC(X)⊗[0,∞]op δl
for some Lawvere metric space X. According to our definition of a coend, this is the
coequaliser of a diagram⊕

m≥m′
MC(X)(m′)⊗ δl(m)

⊕
m

MC(X)(m)⊗ δl(m).
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The resulting coequaliser will be the quotient of the object on the right-hand side
by the relations imposed by the two maps. Thanks to the simplicity of δl, we can
simplify this diagram greatly. Whenever m ̸= l we have δl(m) = 0, so the right-hand
side is simply MC(X)(l) ⊗ δl(l) = MC(X)(l). Similarly, on the left-hand side we
only need to consider those m′ ≤ l. Moreover, for all m′ < l, the component of the
bottom map out of MC(X)(m′) is δl(l > m′) = 0, whereas for l ≥ l both maps are
the identity. We are left with the cokernel of the map

⊕
l>m′

MC(X)(m′) MC(X)(l).

These are chain complexes, so we look at the parts of degree n individually. Then,
using our description of the nerve in Example 4.9, this becomes

⊕
l>m′

Z · {(x0, . . . , xn) ∈ Xn+1 : X(x0, x1) + · · ·+X(xn−1, xn) ≤ m′}

Z · {(x0, . . . , xn) ∈ Xn+1 : X(x0, x1) + · · ·+X(xn−1, xn) ≤ l}.

Each of the components is induced by an inclusion of sets, so we see that the cokernel
is the free abelian group on tuples (x0, . . . , xn) in X for which X(x0, x1) + · · · +
X(xn−1, xn) = l. The boundary maps descend to this quotient as usual. This proves
the following proposition, bringing Definition 4.12 closer to [16, Definition 3.3]. The
definition there would result from taking the normalised chain complex instead.

Proposition 4.13. Let X be a Lawvere metric space and l ∈ [0,∞]. Then H∗(X; δl)
is the homology of the complex MC•,l(X), defined as follows. The degree n part is

MCn,l = Z · {(x0, . . . , xn) ∈ Xn+1 : X(x0, x1) + · · ·+X(xn−1, xn) = l}.

The boundary map ∂n : MCn,l(X) → MCn−1,l(X) is the alternating sum∑n
i=0(−1)idni ,

where dni is defined on basis elements as

dni (x0, . . . , xn) =
(x0, . . . , xi−1, xi+1, . . . , xn) if X(xi−1, xi+1) = X(xi−1, xi) +X(xi, xi+1),
0 otherwise.

The magnitude homology of a metric space has been linked to familiar geometric
notions. For instance, a metric space X has H1(X; δl) = 0 for all l ∈ [0,∞] if and
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only if it is Merger convex, which for closed subsets of Rd is equivalent to being
convex [16].

Note that the condition in the definition of the maps dni is precisely detecting
when the triangle inequality is an equality. There are, however, many examples of
metric spaces where this is never the case; take, for instance, any finite subset of Rd

where no three points lie on the same line. In those cases, the magnitude homology is
equal to the complex MC∗,l, which is very large, and so fails to summarise information
about the space. This suggests that the coefficient functor δl is too restrictive, and
we could instead consider δJ for some interval J ⊆ [0,∞]. This gives a ‘blurred’
version of magnitude homology that is closely related to persistent homology. We
study this relation in the next section.

4.5 Persistent and magnitude homology
Given any abstract simplicial complex, there are several ways of constructing a re-
lated simplicial set whose geometric realisation is homeomorphic to the geometric re-
alisation of the original complex; see, for instance, the construction in [20, Definition
6]. Therefore, we may in general consider various ways of constructing an [0,∞]-
indexed family of simplicial set from a metric space X. With this in mind, we may
define persistent homology in a broad sense for any functor S(X) : [0,∞] → sSet
arising in some way from a metric space X. Concretely, it is the following composite
functor

[0,∞] sSet sAb Ch Ab.S(X) Z·− U H∗

We can now begin to see the relation between this construction and the one for
magnitude homology in the previous section. However, in this case there is no further
step of taking the tensor product with a functor of coefficients. In fact, it will be by
choosing the appropriate functor of coefficients that we will recover the persistent
homology construction, in the case where S(X) is the enriched nerve of X.
Definition 4.14. Let J ⊆ [0,∞] be an interval, i.e. a set such that x, y ∈ J implies
z ∈ J for all x ≤ z ≤ y. The functor δJ : [0,∞] → Ab is given on objects by
δJ(l) = Z if l ∈ J and 0 otherwise, and δJ(l ≤ l′) = 1Z whenever l, l′ ∈ J and 0
otherwise.

We are interested in the chain complex MC(X)⊗[0,∞]op δ[0,l] for a fixed l ∈ [0,∞].
Proceeding as in the previous section, we are looking for the coequaliser of the
diagram ⊕

m≥m′
MC(X)(m′)⊗ δ[0,l](m)

⊕
m

MC(X)(m)⊗ δ[0,l](m). (4)
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Once again, we need only consider m ≤ l, since δ[0,l](m) will be zero otherwise. This
simplifies the diagram to

⊕
l≥m≥m′

MC(X)(m′)
⊕
m≤l

MC(X)(m).

Now fix l ≥ m ≥ m′ and take a generator element of MC(X)(m′)n, say (x0, . . . , xn)
with X(x0, x1) + · · ·+X(xn−1, xn) ≤ m′ (we are once again using the identification
of Example 4.9). The top map sends it to the same generator in MC(X)(m)n,
while the second one is the identity on MC(X)(m′)n. These two elements are then
identified in the coequaliser. Taking m = l, we see that all direct summands on the
right are identified with the corresponding subgroup of MC(X)(l)n, showing that the
coequaliser is exactly MC(X)(l). The boundary maps descend to this quotient and
become the original boundary map of MC(X)(l). Hence, we conclude that

MC(X)⊗[0,∞]op δ[0,l] ∼= MC(X)(l).

In fact, more is true. We already have that MC(X) is a functor [0,∞] → Ch. It
turns out that we can also make MC(X) ⊗[0,∞]op δ[0,−] into a functor [0,∞] → Ch,
and both are naturally isomorphic. Indeed, whenever l ≤ l′, we have a natural
transformation δ[0,l] → δ[0,l′] given on each object by inclusion. This in turn gives a
natural transformation between the two diagrams whose coequaliser gives the tensor
product, and hence a map between the respective tensor products. Explicitly, the
map on the right-hand side of the diagram (4) is given by including each of the direct
sum factors:

MC(X)(m)⊗ δ[0,l](m) ↪→ MC(X)(m)⊗ δ[0,l′](m).
The resulting map in the quotient is then precisely the inclusion MC(X)(l) ↪→
MC(X)(l′), showing that our isomorphism is natural in l. The homology of the
functor MC(X)⊗[0,∞]op δ[0,−] is sometimes called the blurred magnitude homol-
ogy of X This proves the following theorem.

Theorem 4.15 ([20]). Let X be a metric space. There is a natural isomorphism

MC(X)⊗[0,∞]op δ[0,−] ∼= MC(X).

In particular, the persistent homology of X with respect to the enriched nerve is
isomorphic to the blurred magnitude homology of X.

This shows that magnitude homology, in the generality of Definition 4.12, sub-
sumes persistent homology when using the enriched nerve as the way of constructing
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a simplicial set from a metric space. However, it was later realised that, to produce
a sensible categorification of magnitude, magnitude homology should be taken with
coefficient functors of the form δl, which throw away the persistent information by
singling out a length in [0,∞].

A comment about the choice of the enriched nerve as a simplicial set construction
for persistent homology is in order. Recall from Section 1.6 that two of the commonly
chosen abstract simplicial complexes for this purpose are the Čech and the Vietoris–
Rips complexes. The first has a very tangible geometric meaning, since we say it
has the same homology as the spaces Xϵ we considered in that section; whereas the
second is closely related to the first and has the benefit of being easier to compute. A
priori, the enriched nerve carries no obvious geometric interpretation. In fact, there
is no hope of relating it to either of these two complexes. For instance, suppose we
have a tuple (x0, . . . , xn) of points of X such that d(xi, xi+1) = ϵ. Then {x0, . . . , xn}
is a simplex of Rϵ(X) but not of N(X)(δ) for any δ < nϵ. Taking n arbitrarily large,
we see that no chain of embeddings such as (1) can exist relating the enriched nerve
and R−(X) or C−(X).
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