Chocolate Problem - |

Undergraduate Directed Group Reading Program 2024

Geometric Group Theory

Rinkiny Ghatak (B3) rinkiny@gmail.com Treanungkur Mal (B2) maltreanungkur@gmail.com

Credits: Nikhil Nagaria, BMath 3rd Year.

Problem - V (Chocolate Problem) This problem is taken from ...surprise... (Page 101):

Any non trivial subgroup of $(\mathbb{R}, +)$ is either cyclic or it is dense in \mathbb{R} .

Definition: A set $S \subseteq \mathbb{R}$ is said to be *dense* in \mathbb{R} if for every open interval $(a, b) \subseteq \mathbb{R}$, there exists an element $x \in S$ such that $x \in (a, b)$.

Proof. Let $H \leq \mathbb{R}$ be a subgroup that is not dense in \mathbb{R} as a metric subspace. We want to show that H is cyclic.

Claim. There exists t > 0 such that $(0, t) \cap H = \emptyset$.

Proof. Since H is not dense, find an interval (a, b) not intersecting H. Since $0 \in H$, it must be that a and b have the same sign. Since H is a subgroup, $c \in H$ iff $-c \in H$. Thus, replacing a and b by -a and -b respectively if needed, we can assume that b > a > 0. Then, for any positive integer n, we have that $\left(\frac{a}{n}, \frac{b}{n}\right) \cap H = \emptyset$ (as if x lies in this intersection, then $nx \in H \cap (a, b) = \emptyset$, a contradiction.)

Now, find N such that 1 + 1/N < b/a. Then, the inequality holds for all $n \ge N$ as well. Further, the inequality is equivalent to b/(n+1) > a/n. Thus, for $n \ge N$ and any y,

$$\left(y, \frac{b}{n+1}\right) \cup \left(\frac{a}{n}, \frac{b}{n}\right) = \left(y, \frac{b}{n}\right)$$

and so

$$\bigcup_{n=N}^{\infty} \left(\frac{a}{n}, \frac{b}{n}\right) = \bigcup_{n=N}^{\infty} \left(\frac{a}{n}, \frac{b}{N}\right) = \left(0, \frac{b}{N}\right)$$

and H does not intersect with this set. Set t = b/N.

Now, if $H = \{0\}$, we are done. Else, let $r = \inf\{x \in H \mid x > 0\}$. We claim that $r \in H$. If not, find $0 < s \in H$ such that r < s < r + t. Then, find $s' \in H$ with r < s' < s. Then, 0 < s - s' < t is in H - contradiction. Thus, $r \in H$.

Finally, claim that $\langle r \rangle = H$. Take $x \in H$ and find an integer m such that $x \in [mr, (m+1)r)$. Then, $x - mr \in H$ and $0 \leq x - mr < r$ so we must have x - mr = 0 or $x \in \langle r \rangle$. Thus, H is cyclic.