{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "\n", " \n", " \n", " \n", " \n", "
Datenanalyse mit PythonManfred Hammerl
" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "\n", "# 12) Mehrfachantworten auswerten\n", "\n", "Dafür gibt es (noch, meines Wissens nach) keine fertige Funktion in **Pandas** (oder sonst wo), im Folgenden daher eine Schritt für Schritt Lösung, welche im Sinne der Nachvollziehbarkeit durchaus etwas länger ist als für die Erreichung des finalen Ziels nötig.\n", "\n", "Importieren wird zuerst wieder **Pandas** sowie einen neuen Datensatz, der (fiktive) Daten zur Bekanntheit von 4 Marken enhält. Solche Mehrfachantworten sind typischerweise mit 0/1 kodiert, wobei *1* bsw. für 'kenne die Marke' steht und *0* für 'kenne die Marke nicht'." ] }, { "cell_type": "code", "execution_count": 9, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
nikeheadbosslacoste
01.0000
11.0100
21.0111
30.0101
40.0000
50.0001
6NaN100
70.0000
81.0111
\n", "
" ], "text/plain": [ " nike head boss lacoste\n", "0 1.0 0 0 0\n", "1 1.0 1 0 0\n", "2 1.0 1 1 1\n", "3 0.0 1 0 1\n", "4 0.0 0 0 0\n", "5 0.0 0 0 1\n", "6 NaN 1 0 0\n", "7 0.0 0 0 0\n", "8 1.0 1 1 1" ] }, "execution_count": 9, "metadata": {}, "output_type": "execute_result" } ], "source": [ "import pandas as pd\n", "\n", "daten = pd.read_csv(\"C:\\\\Datenfiles\\\\mehrfachantworten.csv\")\n", "\n", "daten" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Wie in obiger Tabelle zu sehen, enthält unser Datenfile nur die Werte *1*, *0* und *NaN*. Für die Auswertung spielen *0* und *NaN* keine Rolle, uns interessiert nur der Wert *1* (man kennt die Marke).\n", "\n", "Dieser kurze Datensatz ist leicht visuell überprüfbar. Längere Datensätze müsste man mit anderen Methoden prüfen, schließlich will man wissen, welche Werte der Datensatz enthält." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### 12.1) Überprüfung des Datensatzes\n", "\n", "Bspw. kann man eine einfache Häufikgeitsauszählung der 4 Variablen durchführen um zu sehen, welche Werte in den einzelnen Variablen enthalten sind. Um die Werte jeder einzelnen unserer 4 Variablen angezeigt zu bekommen, stellen wir folgende **for**-Schleife auf. Damit wird **value_counts()** für jede der 4 Variablen ausgeführt." ] }, { "cell_type": "code", "execution_count": 10, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "0.0 4\n", "1.0 4\n", "NaN 1\n", "Name: nike, dtype: int64 \n", "\n", "1 5\n", "0 4\n", "Name: head, dtype: int64 \n", "\n", "0 7\n", "1 2\n", "Name: boss, dtype: int64 \n", "\n", "0 5\n", "1 4\n", "Name: lacoste, dtype: int64 \n", "\n" ] } ], "source": [ "for col in daten.columns:\n", " print(daten[col].value_counts(dropna = False),'\\n')\n", " \n", "# 'dropna = False', damit auch allfällige 'NaN' ausgegeben werden.\n", "# '\\n' für eine Leerzeile nach jeder Variable aus Gründen der Übersichtlichkeit" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Wie zu sehen (linke Spalte: Werte, rechte Spalte: Häufigkeit des Vorkommens dieser Werte), enthält jede der 4 Variablen die Werte *0* und *1*, sowie die Variable *nike* zusätzlich noch einmal *NaN*. Wir können mit diesen Daten also weiterarbeiten." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### 12.2) Summe der Nennungen pro Variable\n", "\n", "Wir berechnen nun die Summe der Nennungen pro Variable, d.h. alle *1*er werden aufsummiert, *0* und *NaN* spielen keine Rolle für die Summenbildung. ACHTUNG: Die einfache Summenbildung, die hier angewandt wird, funktioniert natürlich nur, wenn nur *1*, *0* oder *NaN* vorkommen und uns die *1* Nennungen interessieren. Würden auch andere Zahlen (z.B. *2*, *3* usw.) vorkommen, funktioniert dies nicht! Typischerweise werden Mehrfachantworten in Umfragen aber mit 0/1 kodiert. Sind unterschiedliche Zahlenwerte vorhanden oder soll ein anderer Wert als *1* gezählt werden, helfen die Ausführungen in Kapitel 9 weiter.\n", "\n", "[pandas.DataFrame.sum](https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.sum.html)\n", "\n", "[Pandas: sum DataFrame rows for given columns](https://stackoverflow.com/questions/25748683/pandas-sum-dataframe-rows-for-given-columns)\n" ] }, { "cell_type": "code", "execution_count": 11, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "boss 2.0\n", "nike 4.0\n", "lacoste 4.0\n", "head 5.0\n", "dtype: float64" ] }, "execution_count": 11, "metadata": {}, "output_type": "execute_result" } ], "source": [ "summe = daten[['nike', 'head', 'boss', 'lacoste']].sum(axis = 0).sort_values(ascending = True)\n", "\n", "# 'ascending=True' zeigt es zwar in der Tabelle aufsteigend an, aber im Balkendiagramm absteigend (wie es sein soll)!\n", "\n", "summe" ] }, { "cell_type": "code", "execution_count": 12, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYcAAAD4CAYAAAAHHSreAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAANV0lEQVR4nO3dfYxldX3H8fenu8DCokthN2SzPExDiS2wFeqU1tKQ+FAE1wpCKRpKiRpWm0pB05htbLZVWrMpxJhWjS6WAiqlVdpAuw0gTyK0PMyyzyLWlGllNSGrZYEStdJv/5hjO93fILty7z07M+9XMplzzz333u+B7LznnPswqSokSZruJ/oeQJK0/zEOkqSGcZAkNYyDJKlhHCRJjYV9DzAoS5curbGxsb7HkKRZZePGjbuqatme6+dMHMbGxpiYmOh7DEmaVZL820zrPa0kSWoYB0lSwzhIkhrGQZLUMA6SpIZxkCQ1jIMkqWEcJEkN4yBJahgHSVLDOEiSGsZBktSYMx+8t23nbsbWbOh7DEkaqcl1q4Zyvx45SJIaxkGS1DAOkqSGcZAkNYyDJKlhHCRJDeMgSWoYB0lSwzhIkhoDjUOSsSTbB3mf3f1OJlk66PuVJM3MIwdJUmMYcViQ5OokO5LcnuTgJMcluTXJxiRfTvIzAEl+LcmDSTYluSPJkd36I7rbbkryKSBDmFOS9AKGEYfjgY9X1YnAU8B5wHrg0qp6FfB7wCe6be8DfqmqTgFuBN7frf9D4L5u/S3AMUOYU5L0AobxqayPV9XmbnkjMAb8MvD55H8PAA7qvh8F/HWS5cCBwOPd+tOBcwGqakOS/5jpgZKsBlYDLHj5soHuhCTNZ8M4cvjetOXngcOBp6rq5GlfP9td/+fAx6pqJfAuYNG029aLPVBVra+q8aoaX3DIkkHNL0nz3iiekH4aeDzJ+QCZ8sruuiXAzm754mm3uRe4sNv+LOAnRzCnJKkzqlcrXQi8M8kWYAdwdrf+j5g63fRlYNe07T8InJ7kEeAM4N9HNKckiQE/51BVk8BJ0y5fNe3qM2fY/mbg5hnWf5upKPzQewc3pSTpxfg+B0lSwzhIkhrGQZLUMA6SpIZxkCQ1jIMkqWEcJEkN4yBJagzjg/d6sXLFEibWrep7DEmaEzxykCQ1jIMkqWEcJEkN4yBJahgHSVLDOEiSGsZBktQwDpKkhnGQJDWMgySpYRwkSQ3jIElqGAdJUsM4SJIaxkGS1DAOkqSGcZAkNYyDJKlhHCRJDeMgSWoYB0lSwzhIkhrGQZLUMA6SpIZxkCQ1jIMkqbGw7wEGZdvO3Yyt2dD3GJJGbHLdqr5HmJM8cpAkNYyDJKlhHCRJDeMgSWoYB0lSwzhIkhrGQZLUMA6SpIZxkCQ1jIMkqfGicUjy7LCHSHJykjcO+3EkSXtnfzlyOBkwDpK0n9jrOCQ5NMmdSR5Jsi3J2dOu+60kW5NsSfKZbt2x3fZbu+/HdOvPT7K92/beJAcCHwIuSLI5yQVJFie5JsnDSTZNfyxJ0vDty6eyfhd4S1U9nWQp8ECSW4ATgA8Ap1XVriSHd9t/DLi+qq5L8g7gz4BzgLXAG6pqZ5LDqur7SdYC41X1HoAkHwbuqqp3JDkMeCjJHVX1n9MHSrIaWA2w4OXLfrz/ApKkxr6cVgrw4SRbgTuAFcCRwGuBL1TVLoCq+k63/auBG7rlzwC/0i3fD1yb5BJgwQs81hnAmiSbgXuARcAxe25UVeuraryqxhccsmQfdkWS9KPsy5HDhcAy4FVV9V9JJpn6oR2g9uL2BVBV707yi8AqYHOSk2fYNsB5VfXYPswnSRqQfTlyWAI82YXhNcCx3fo7gd9IcgTAtNNK/wS8tVu+ELivu/64qnqwqtYCu4CjgWeAl017rNuAS5Oku80p+7xnkqQf277E4XPAeJIJpn7YfxWgqnYAfwJ8KckW4CPd9r8LvL07DXURcFm3/sruCe3twL3AFuBu4IQfPiENXAEcAGzttrvipeykJGnfpGpvzgjt/w5afnwtv/ijfY8hacT8M6EvTZKNVTW+5/r95X0OkqT9iHGQJDWMgySpYRwkSQ3jIElqGAdJUsM4SJIa+/LxGfu1lSuWMOHrnSVpIDxykCQ1jIMkqWEcJEkN4yBJahgHSVLDOEiSGsZBktQwDpKkhnGQJDWMgySpYRwkSQ3jIElqGAdJUsM4SJIaxkGS1DAOkqSGcZAkNYyDJKlhHCRJDeMgSWoYB0lSwzhIkhrGQZLUMA6SpIZxkCQ1jIMkqWEcJEmNhX0PMCjbdu5mbM2GvseQNGKT61b1PcKc5JGDJKlhHCRJDeMgSWoYB0lSwzhIkhrGQZLUMA6SpIZxkCQ1jIMkqdFLHJJ8KMnru+XJJEv7mEOSNLNePj6jqtb28biSpL0z1COHJGNJHk1ydZIdSW5PcnCSa5P8+h7bHpzk1iSXJFmc5JokDyfZlOTsYc4pSfr/RnFa6Xjg41V1IvAUcN4M2xwK/D1wQ1VdDXwAuKuqfgF4DXBlksV73ijJ6iQTSSaef2730HZAkuabUcTh8ara3C1vBMZm2OZm4C+r6vru8hnAmiSbgXuARcAxe96oqtZX1XhVjS84ZMmAx5ak+WsUzzl8b9ry88DBM2xzP3BWkhuqqoAA51XVYyOYT5K0h/3lpaxrgW8Dn+gu3wZcmiQASU7pazBJmo/2lzgAXA4sSvKnwBXAAcDWJNu7y5KkERnqaaWqmgROmnb5qhm2GZt28e3Tlt81tMEkST/S/nTkIEnaTxgHSVLDOEiSGsZBktQwDpKkhnGQJDWMgySpYRwkSY1e/p7DMKxcsYSJdav6HkOS5gSPHCRJDeMgSWoYB0lSwzhIkhrGQZLUMA6SpIZxkCQ1jIMkqWEcJEkN4yBJahgHSVLDOEiSGsZBktQwDpKkhnGQJDWMgySpYRwkSQ3jIElqGAdJUsM4SJIaxkGS1DAOkqSGcZAkNYyDJKlhHCRJDeMgSWos7HuAQdm2czdjazb0PYZ6MLluVd8jSHOORw6SpIZxkCQ1jIMkqWEcJEkN4yBJahgHSVLDOEiSGsZBktQwDpKkxlDikGQsyfZh3Lckafg8cpAkNYYZh4VJrkuyNckXkhyS5HVJNiXZluSaJAcBJFmX5Cvdtld1685Psj3JliT3DnFOSdIehhmHVwDrq+rngKeB9wHXAhdU1UqmPvTvt5McDrwFOLHb9o+7268F3lBVrwTePMQ5JUl7GGYcvlFV93fLnwVeBzxeVV/r1l0HnM5UOL4LfDrJucBz3fX3A9cmuQRYMNMDJFmdZCLJxPPP7R7WfkjSvDPMONRebVT1A+BU4CbgHODWbv27gT8AjgY2Jzlihtuur6rxqhpfcMiSQc0tSfPeMONwTJJXd8tvA+4AxpL8dLfuIuBLSQ4FllTVPwKXAycDJDmuqh6sqrXALqYiIUkagWH+sZ9HgYuTfAr4F+Ay4AHg80kWAg8DnwQOB25OsggI8N7u9lcmOb5bdyewZYizSpKmGUocqmoSOGGGq+4ETtlj3beYOq20532cO/jJJEl7w/c5SJIaxkGS1DAOkqSGcZAkNYyDJKlhHCRJDeMgSWoYB0lSY5jvkB6plSuWMLFuVd9jSNKc4JGDJKlhHCRJDeMgSWoYB0lSwzhIkhrGQZLUMA6SpIZxkCQ1jIMkqWEcJEkN4yBJahgHSVLDOEiSGqmqvmcYiCTPAI/1PUePlgK7+h6iJ/N538H9d/9f2v4fW1XL9lw5Zz6yG3isqsb7HqIvSSbm6/7P530H99/9H87+e1pJktQwDpKkxlyKw/q+B+jZfN7/+bzv4P67/0MwZ56QliQNzlw6cpAkDYhxkCQ1Zn0ckpyZ5LEkX0+ypu95Ri3JNUmeTLK971lGLcnRSe5O8miSHUku63umUUqyKMlDSbZ0+//BvmcatSQLkmxK8g99zzJqSSaTbEuyOcnEwO9/Nj/nkGQB8DXgV4EngIeBt1XVV3odbISSnA48C1xfVSf1Pc8oJVkOLK+qR5K8DNgInDNf/v8nCbC4qp5NcgBwH3BZVT3Q82gjk+R9wDjw8qp6U9/zjFKSSWC8qobyBsDZfuRwKvD1qvrXqvo+cCNwds8zjVRV3Qt8p+85+lBV36qqR7rlZ4BHgRX9TjU6NeXZ7uIB3dfs/W1vHyU5ClgFfLrvWeai2R6HFcA3pl1+gnn0w0H/J8kYcArwYM+jjFR3WmUz8CTwxaqaT/v/UeD9wH/3PEdfCrg9ycYkqwd957M9Dplh3bz5zUlTkhwK3ARcXlVP9z3PKFXV81V1MnAUcGqSeXFqMcmbgCeramPfs/TotKr6eeAs4He6U8wDM9vj8ARw9LTLRwHf7GkW9aA7134T8Lmq+tu+5+lLVT0F3AOc2e8kI3Ma8ObuvPuNwGuTfLbfkUarqr7ZfX8S+DumTrMPzGyPw8PA8Ul+KsmBwFuBW3qeSSPSPSH7F8CjVfWRvucZtSTLkhzWLR8MvB74aq9DjUhV/X5VHVVVY0z9u7+rqn6z57FGJsni7kUYJFkMnAEM9BWLszoOVfUD4D3AbUw9Gfk3VbWj36lGK8lfAf8MvCLJE0ne2fdMI3QacBFTvzVu7r7e2PdQI7QcuDvJVqZ+UfpiVc27l3TOU0cC9yXZAjwEbKiqWwf5ALP6paySpOGY1UcOkqThMA6SpIZxkCQ1jIMkqWEcJEkN4yBJahgHSVLjfwCT+PmxWI4wJwAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "ax = summe.plot.barh()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### 12.3) Prozentwerte der Nennungen pro Variable\n", "\n", "Die vorhin berechneten Summen lassen sich auch in relative Häufigkeiten, also Prozentwerte, umrechnen. Dazu ermitteln wir mit **len()** die Anzahl der Zeilen im Dataframe.\n", "\n", "[How do I get the row count of a Pandas DataFrame?](https://stackoverflow.com/questions/15943769/how-do-i-get-the-row-count-of-a-pandas-dataframe)" ] }, { "cell_type": "code", "execution_count": 13, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "9" ] }, "execution_count": 13, "metadata": {}, "output_type": "execute_result" } ], "source": [ "len(daten.index)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Nun werden die Summen pro Variable durch die Anzahl der Zeilen des Dataframes dividiert. Dies ergibt die relativen Häufigkeiten (Prozentwerte)." ] }, { "cell_type": "code", "execution_count": 14, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "boss 22.2\n", "nike 44.4\n", "lacoste 44.4\n", "head 55.6\n", "dtype: float64" ] }, "execution_count": 14, "metadata": {}, "output_type": "execute_result" } ], "source": [ "prozent = ((summe/len(daten.index))*100).round(2)\n", "\n", "prozent.round(1)" ] }, { "cell_type": "code", "execution_count": 15, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYcAAAD4CAYAAAAHHSreAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAAN0klEQVR4nO3de4yldX3H8fens8hVF2FXQpbLtJS0AitL3FoshggaBNcKQikaaok2rDYtBVtjtrVZKxSzKcSYVkxdLAUv1HqphZYGgUXk0ojMwi67FKimTFUgktVysUSs9Ns/zrPt6fwG2ZVz5uyceb+SzZzzm+fM+f4gzJvnOTNnU1VIktTvZ0Y9gCRp12McJEkN4yBJahgHSVLDOEiSGotGPcCgLFmypCYnJ0c9hiTNKxs3btxWVUtnro9NHCYnJ5mamhr1GJI0ryT599nWvawkSWoYB0lSwzhIkhrGQZLUMA6SpIZxkCQ1jIMkqWEcJEkN4yBJahgHSVLDOEiSGsZBktQYmzfe2/LwE0yuuW7UY0jSnJpet2ooX9czB0lSwzhIkhrGQZLUMA6SpIZxkCQ1jIMkqWEcJEkN4yBJahgHSVJjoHFIMplk6yC/Zvd1p5MsGfTXlSTNzjMHSVJjGHGYSHJ5kvuS3JBkzySHJbk+ycYktyX5RYAkv5rkziT3JLkpyQHd+v7dY+9J8nEgQ5hTkvQchhGHw4HLqupI4HHgDGA9cF5VvRJ4L/Cx7tjbgWOr6hjgs8D7uvUPALd369cChwxhTknScxjGu7I+VFWbutsbgUngV4DPJ/97ArB79/Eg4G+THAi8CHioWz8eOB2gqq5L8h+zPVGS1cBqgImXLB3oJiRpIRvGmcMzfbefBfYDHq+qFX1/Xt59/i+Aj1bVcuBdwB59j63ne6KqWl9VK6tq5cReiwc1vyQteHPxgvSTwENJzgRIz9Hd5xYDD3e3z+l7zK3A2d3xpwAvnYM5JUmdufpppbOB30qyGbgPOLVb/xN6l5tuA7b1Hf9B4PgkdwMnAd+aozklSQz4NYeqmgaO6rt/ad+nT57l+GuAa2ZZ/x69KGz3nsFNKUl6Pv6egySpYRwkSQ3jIElqGAdJUsM4SJIaxkGS1DAOkqSGcZAkNYbxxnsjsXzZYqbWrRr1GJI0FjxzkCQ1jIMkqWEcJEkN4yBJahgHSVLDOEiSGsZBktQwDpKkhnGQJDWMgySpYRwkSQ3jIElqGAdJUsM4SJIaxkGS1DAOkqSGcZAkNYyDJKlhHCRJDeMgSWoYB0lSwzhIkhrGQZLUMA6SpIZxkCQ1jIMkqbFo1AMMypaHn2ByzXWjHkPSHJtet2rUI4wlzxwkSQ3jIElqGAdJUsM4SJIaxkGS1DAOkqSGcZAkNYyDJKlhHCRJDeMgSWo8bxyS/GDYQyRZkeSNw34eSdKO2VXOHFYAxkGSdhE7HIck+yTZkOTuJFuSnNr3ud9Mcm+SzUk+1a0d2h1/b/fxkG79zCRbu2NvTfIi4ELgrCSbkpyVZO8kVyS5K8k9/c8lSRq+nXlX1h8Cb6mqJ5MsAb6W5FrgCOD9wHFVtS3Jft3xHwU+WVVXJXkn8OfAacBa4A1V9XCSfavqR0nWAiur6ncBknwIuLmq3plkX+DrSW6qqv/sHyjJamA1wMRLlv50/wQkSY2duawU4ENJ7gVuApYBBwAnAl+oqm0AVfX97vhXA1d3tz8FvKa7fQdwZZJzgYnneK6TgDVJNgG3AHsAh8w8qKrWV9XKqlo5sdfindiKJOkn2Zkzh7OBpcArq+q/kkzT+6YdoHbg8QVQVe9O8svAKmBTkhWzHBvgjKp6cCfmkyQNyM6cOSwGHuvCcAJwaLe+Afj1JPsD9F1W+mfgrd3ts4Hbu88fVlV3VtVaYBtwMPAU8OK+5/oycF6SdI85Zqd3Jkn6qe1MHD4DrEwyRe+b/QMAVXUfcDHw1SSbgQ93x/8e8I7uMtTbgfO79Uu6F7S3ArcCm4GvAEdsf0EauAjYDbi3O+6iF7JJSdLOSdWOXBHa9e1+4OF14DkfGfUYkuaYf03oC5NkY1WtnLm+q/yegyRpF2IcJEkN4yBJahgHSVLDOEiSGsZBktQwDpKkxs68fcYubfmyxUz5886SNBCeOUiSGsZBktQwDpKkhnGQJDWMgySpYRwkSQ3jIElqGAdJUsM4SJIaxkGS1DAOkqSGcZAkNYyDJKlhHCRJDeMgSWoYB0lSwzhIkhrGQZLUMA6SpIZxkCQ1jIMkqWEcJEkN4yBJahgHSVLDOEiSGsZBktQwDpKkxqJRDzAoWx5+gsk11416DElzbHrdqlGPMJY8c5AkNYyDJKlhHCRJDeMgSWoYB0lSwzhIkhrGQZLUMA6SpIZxkCQ1RhKHJBcmeX13ezrJklHMIUma3UjePqOq1o7ieSVJO2aoZw5JJpPcn+TyJPcluSHJnkmuTPJrM47dM8n1Sc5NsneSK5LcleSeJKcOc05J0v83F5eVDgcuq6ojgceBM2Y5Zh/gH4Crq+py4P3AzVX1S8AJwCVJ9p75oCSrk0wlmXr26SeGtgFJWmjmIg4PVdWm7vZGYHKWY64B/rqqPtndPwlYk2QTcAuwB3DIzAdV1fqqWllVKyf2WjzgsSVp4ZqL1xye6bv9LLDnLMfcAZyS5OqqKiDAGVX14BzMJ0maYVf5Uda1wPeAj3X3vwyclyQASY4Z1WCStBDtKnEAuADYI8mfARcBuwH3Jtna3ZckzZGhXlaqqmngqL77l85yzGTf3Xf03X7X0AaTJP1Eu9KZgyRpF2EcJEkN4yBJahgHSVLDOEiSGsZBktQwDpKkhnGQJDVG8vc5DMPyZYuZWrdq1GNI0ljwzEGS1DAOkqSGcZAkNYyDJKlhHCRJDeMgSWoYB0lSwzhIkhrGQZLUMA6SpIZxkCQ1jIMkqWEcJEkN4yBJahgHSVLDOEiSGsZBktQwDpKkhnGQJDWMgySpYRwkSQ3jIElqGAdJUsM4SJIaxkGS1DAOkqTGolEPMChbHn6CyTXXjXoMjcD0ulWjHkEaO545SJIaxkGS1DAOkqSGcZAkNYyDJKlhHCRJDeMgSWoYB0lSwzhIkhpDiUOSySRbh/G1JUnD55mDJKkxzDgsSnJVknuTfCHJXklel+SeJFuSXJFkd4Ak65L8S3fspd3amUm2Jtmc5NYhzilJmmGYcfgFYH1VvQJ4Evh94ErgrKpaTu9N/347yX7AW4Aju2P/tHv8WuANVXU08OYhzilJmmGYcfh2Vd3R3f408Drgoar6127tKuB4euH4IfCJJKcDT3efvwO4Msm5wMRsT5BkdZKpJFPPPv3EsPYhSQvOMONQO3RQ1Y+BVwFfBE4Dru/W3w38MXAwsCnJ/rM8dn1VrayqlRN7LR7U3JK04A0zDockeXV3+23ATcBkkp/v1t4OfDXJPsDiqvon4AJgBUCSw6rqzqpaC2yjFwlJ0hwY5l/2cz9wTpKPA98Azge+Bnw+ySLgLuAvgf2Aa5LsAQR4T/f4S5Ic3q1tADYPcVZJUp+hxKGqpoEjZvnUBuCYGWuP0rusNPNrnD74ySRJO8Lfc5AkNYyDJKlhHCRJDeMgSWoYB0lSwzhIkhrGQZLUMA6SpMYwf0N6Ti1ftpipdatGPYYkjQXPHCRJDeMgSWoYB0lSwzhIkhrGQZLUMA6SpIZxkCQ1jIMkqWEcJEkN4yBJahgHSVLDOEiSGsZBktRIVY16hoFI8hTw4KjnGLIlwLZRDzEHFsI+F8IeYWHsc77v8dCqWjpzcWzesht4sKpWjnqIYUoyNe57hIWxz4WwR1gY+xzXPXpZSZLUMA6SpMY4xWH9qAeYAwthj7Aw9rkQ9ggLY59jucexeUFakjQ443TmIEkaEOMgSWrM+zgkOTnJg0m+mWTNqOcZlCRXJHksyda+tf2S3JjkG93Hl45yxhcqycFJvpLk/iT3JTm/Wx+bfSbZI8nXk2zu9vjBbn1s9tgvyUSSe5L8Y3d/rPaZZDrJliSbkkx1a2O1x+3mdRySTACXAacARwBvS3LEaKcamCuBk2esrQE2VNXhwIbu/nz2Y+APqurlwLHA73T//sZpn88AJ1bV0cAK4OQkxzJee+x3PnB/3/1x3OcJVbWi73cbxnGP8zsOwKuAb1bVv1XVj4DPAqeOeKaBqKpbge/PWD4VuKq7fRVw2lzONGhV9WhV3d3dforeN5VljNE+q+cH3d3duj/FGO1xuyQHAauAT/Qtj90+ZzGWe5zvcVgGfLvv/ne6tXF1QFU9Cr1vrMDLRjzPwCSZBI4B7mTM9tldatkEPAbcWFVjt8fOR4D3Af/dtzZu+yzghiQbk6zu1sZtj8D8f/uMzLLmz+bOM0n2Ab4IXFBVTyaz/Wudv6rqWWBFkn2BLyU5asQjDVySNwGPVdXGJK8d8TjDdFxVPZLkZcCNSR4Y9UDDMt/PHL4DHNx3/yDgkRHNMhe+m+RAgO7jYyOe5wVLshu9MHymqv6uWx67fQJU1ePALfReSxq3PR4HvDnJNL3Luycm+TRjts+qeqT7+BjwJXqXtsdqj9vN9zjcBRye5GeTvAh4K3DtiGcapmuBc7rb5wDXjHCWFyy9U4S/Au6vqg/3fWps9plkaXfGQJI9gdcDDzBGewSoqj+sqoOqapLef4c3V9VvMEb7TLJ3khdvvw2cBGxljPbYb97/hnSSN9K71jkBXFFVF492osFI8jfAa+m9HfB3gQ8Afw98DjgE+BZwZlXNfNF63kjyGuA2YAv/d536j+i97jAW+0zyCnovUk7Q+5+xz1XVhUn2Z0z2OFN3Wem9VfWmcdpnkp+jd7YAvUvyV1fVxeO0x37zPg6SpMGb75eVJElDYBwkSQ3jIElqGAdJUsM4SJIaxkGS1DAOkqTG/wDdkm80DqLgrwAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "ax = prozent.plot.barh()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "##### Absolute Häufigkeiten und Prozentwerte in einem Dataframe verknüpfen\n", "\n", "Ziel ist schließlich, alle ermittelten Ergebnisse in einem Dataframe (unsere Outputtabelle) zu verknüpfen. Unsere beiden bisherigen Ergebnisse (absolute und relative Häufigkeiten der Nennungen) verknüpft man wie folgt: Im ersten Schritt werden die beiden Ergebnisse jeweils in ein Dataframe umgewandelt, dabei wird jeweils ein Spaltenname (*Summe* bzw. *Prozent*) sowie ein Name für den Index (*Marke*) vergeben." ] }, { "cell_type": "code", "execution_count": 17, "metadata": {}, "outputs": [], "source": [ "s = pd.DataFrame(summe, columns = [\"Summe der Nennungen\"])\n", "s.index.name = \"Marke\"\n", "\n", "p = pd.DataFrame(prozent, columns = [\"Prozent der Befragten\"])\n", "p.index.name = \"Marke\"" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Danach werden diese beiden Dataframes zu einem neuen Dataframe zusammengefügt (dies geschieht anhand des in beiden Dataframes vorhandenen Index *Item*).\n", "\n", "[pandas.DataFrame.merge](https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.merge.html)" ] }, { "cell_type": "code", "execution_count": 18, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
Summe der NennungenProzent der Befragten
Marke
boss2.022.22
nike4.044.44
lacoste4.044.44
head5.055.56
\n", "
" ], "text/plain": [ " Summe der Nennungen Prozent der Befragten\n", "Marke \n", "boss 2.0 22.22\n", "nike 4.0 44.44\n", "lacoste 4.0 44.44\n", "head 5.0 55.56" ] }, "execution_count": 18, "metadata": {}, "output_type": "execute_result" } ], "source": [ "set1 = pd.merge(s, p, how = 'outer', on = 'Marke')\n", "\n", "set1" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Fertig ist unsere erste Outputtabelle. Es gibt aber noch 2 weitere Auswertungsmöglichkeiten, die wir dieser Tabelle hinzufügen können." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### 12.4) Prozent der potenziell möglichen Nennungen\n", "\n", "Ev. interessiert uns, wie groß der Anteil der abgegebenen Nennungen relativ zu den insgesamt theoretisch möglichen Nennungen ist. Dazu wird mit **len()** die Anzahl der Spalten (Variablen) ermittelt. ACHTUNG: Dies funktioniert nur, wenn alle im Dataframe vorhandenen Spalten in die Analyse einfließen - wie es in unserem Beispiel der Fall ist. Man kann auf **len()** auch verzichten und in weiterer Folge einfach '4' eintragen, da wir 4 interessierende Spalten haben, bzw. '9' für die Anzahl der Zeilen." ] }, { "cell_type": "code", "execution_count": 19, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "4" ] }, "execution_count": 19, "metadata": {}, "output_type": "execute_result" } ], "source": [ "len(daten.columns)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Nun wird die Gesamtzahl der Zellen ermittelt..." ] }, { "cell_type": "code", "execution_count": 20, "metadata": {}, "outputs": [], "source": [ "zellen = (len(daten.index)*len(daten.columns))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "... und unsere Häufigkeiten dazu in Beziehung gesetzt." ] }, { "cell_type": "code", "execution_count": 21, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "Marke\n", "boss 5.56\n", "nike 11.11\n", "lacoste 11.11\n", "head 13.89\n", "dtype: float64" ] }, "execution_count": 21, "metadata": {}, "output_type": "execute_result" } ], "source": [ "prozent2 = ((summe/zellen)*100).round(2)\n", "\n", "prozent2" ] }, { "cell_type": "code", "execution_count": 22, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZUAAAD4CAYAAAAkRnsLAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAAQp0lEQVR4nO3de5BkZX3G8e/josCCLOIi4gKOEoIiKOjGgKZIKaLIGlDRqCGEUks0FbloLINFinhJzFagjDFeURFUxCiagCFy9YKSSFhgYRcRscIqbEgQDaBQqOAvf/TBjJuBaeDtPt0730/V1Jzz9unup6em55n3nO7TqSokSWrhYX0HkCRtPCwVSVIzlookqRlLRZLUjKUiSWpmk74D9G3p0qU1MzPTdwxJmiqXXXbZLVW17YbjC75UZmZmWLVqVd8xJGmqJPn+XOPu/pIkNWOpSJKasVQkSc1YKpKkZiwVSVIzlookqRlLRZLUjKUiSWrGUpEkNWOpSJKasVQkSc1YKpKkZhb8CSXXrL+NmWPP7juGJI3VupUrRnK7zlQkSc1YKpKkZiwVSVIzlookqRlLRZLUjKUiSWrGUpEkNWOpSJKasVQkSc1MRKkkmUmydgS3uy7J0ta3K0ma20SUiiRp4zBJpbIoyUeTXJ3kvCSbJ9k5yTlJLkvyjSRPAkjye0kuSXJFkguSbNeNP7q77hVJPgKk10ckSQvMJJXKLsAHquopwK3AIcBJwJFV9QzgLcAHu22/CexdVXsBnwXe2o3/BfDNbvwsYKfxxZckTdJZiq+vqtXd8mXADPAs4PPJryYcm3bfdwD+Icn2wCOA67vxfYGXAlTV2Un+Z647SnIEcATAoq22bfogJGkhm6SZys9mLd8DbAPcWlV7zvp6cnf53wPvr6o9gNcDm826bs13R1V1UlUtr6rlixYvaZVfkha8SSqVDd0OXJ/k5QAZeFp32RJgfbd8+KzrXAQc2m3/QuBRY8oqSWKySwUGBfHaJFcCVwMHd+NvZ7Bb7BvALbO2fwewb5LLgecDPxhjVkla8CbimEpVrQN2n7V+4qyLD5hj+zOBM+cY/xGDMrnXm9qllCTNZ9JnKpKkKWKpSJKasVQkSc1YKpKkZiwVSVIzlookqRlLRZLUjKUiSWpmIt782Kc9li1h1coVfceQpI2CMxVJUjOWiiSpGUtFktSMpSJJasZSkSQ1Y6lIkpqxVCRJzVgqkqRmLBVJUjOWiiSpGUtFktSMpSJJasZSkSQ1Y6lIkpqxVCRJzVgqkqRmLBVJUjOWiiSpGUtFktSMpSJJasZSkSQ1Y6lIkpqxVCRJzVgqkqRmLBVJUjOWiiSpmU36DtC3NetvY+bYs/uOIWnM1q1c0XeEjZIzFUlSM5aKJKkZS0WS1IylIklqxlKRJDVjqUiSmrFUJEnNWCqSpGYsFUlSM5aKJKmZkZVKkp+O6rZn3ceeSQ4c9f1IkoYz7TOVPQFLRZImxMhLJcmWSS5McnmSNUkOnnXZHyW5KsmVST7VjT2+2/6q7vtO3fjLk6zttr0oySOAdwKvSLI6ySuSbJHk5CSXJrli9n1JkkZvHGcpvgt4SVXdnmQp8K0kZwG7AccBz66qW5Js023/fuCTVXVqktcA7wNeDBwPvKCq1ifZuqp+nuR4YHlVvREgybuBr1TVa5JsDfx7kguq6o7ZgZIcARwBsGirbUf88CVp4RjH7q8A705yFXABsAzYDngucEZV3QJQVT/utt8H+Ey3/Cngd7rli4FTkrwOWHQf9/V84Ngkq4GvAZsBO224UVWdVFXLq2r5osVLHtqjkyT9yjhmKocC2wLPqKpfJFnH4I99gBri+gVQVW9I8tvACmB1kj3n2DbAIVV1bYvgkqQHZhwzlSXAzV2hPAd4fDd+IfD7SR4NMGv3178Cr+yWDwW+2V2+c1VdUlXHA7cAOwI/AR45677OBY5Mku46e43uYUmSNjSOUjkNWJ5kFYOS+A5AVV0N/BXw9SRXAu/ptj8KeHW3u+ww4Ohu/ITuQP9a4CLgSuCrwG73HqgH3gU8HLiq2+5dY3h8kqROqobZA7Xx2nT7XWr7w9/bdwxJY+bHCT80SS6rquUbjk/7+1QkSRPEUpEkNWOpSJKasVQkSc1YKpKkZiwVSVIzlookqZlxnKZlou2xbAmrfL26JDXhTEWS1MxQpZJkuyQfT/Llbn23JK8dbTRJ0rQZdqZyCoOTNT6uW/8ucMwI8kiSptiwpbK0qj4H/BKgqu4G7hlZKknSVBq2VO7oTlFfAEn2Bm4bWSpJ0lQa9tVfbwbOAnZOcjGDD9162chSSZKm0rCl8mPgd4FdGXy64rXAniPKJEmaUsPu/voCsF1VXV1Vaxl8jvzJo4slSZpGw5bKG4B/SvLYJAcC7wMOHF0sSdI0Gmr3V1VdmuQo4DzgLmD/qvrhSJNJkqbO/ZZKki/RveKrs5jBq74+noSqOmiU4SRJ02W+mcqJY0khSdoo3G+pVNXXkywCzq2q540pkyRpSs17oL6q7gHuTLJkDHkkSVNs2Pep3AWsSXI+cMe9g1V11EhSSZKm0rClcnb3JUnSfRr2JcWnjjqIJGn6DVUqSXYB/hrYDdjs3vGqeuKIckmSptCw76j/BPAh4G7gOcAngU+NKpQkaToNWyqbV9WFQKrq+1X1duC5o4slSZpGQ7/6K8nDgOuSvBFYDzxmdLEkSdNo2JnKMQxO0XIU8AzgMODwEWWSJE2poU8o2S3+FHj16OJIkqbZfCeUPOv+LveEkpKk2eabqewD3ACcDlzC4FMfJUma03yl8lhgf+BVwB8weFf96VV19aiDSZKmz/0eqK+qe6rqnKo6HNgb+B7wtSRHjiWdJGmqzHugPsmmwAoGs5UZBh8l/MXRxhqfNetvY+ZYT2smLTTrVq7oO8JGab4D9acCuwNfBt5RVWvHkkqSNJXmm6kcxuBU978JHJX86jh9gKqqrUaYTZI0Zeb75Mdh3xwpSdLQ76iXJGlelookqRlLRZLUjKUiSWrGUpEkNWOpSJKamapSSfLOJM/rltclWdp3JknS/xn2kx8nQlUd33cGSdJ9m8iZSpKZJNck+WiSq5Ocl2TzJKckedkG226e5Jwkr0uyRZKTk1ya5IokB/f1GCRpIZrIUunsAnygqp4C3AocMsc2WwJfAj5TVR8FjgO+UlW/BTwHOCHJFhteKckRSVYlWXXPnbeN7AFI0kIzyaVyfVWt7pYvY3CG5A2dCXyiqj7ZrT8fODbJauBrwGbAThteqapOqqrlVbV80eIljWNL0sI1ycdUfjZr+R5g8zm2uRh4YZLPVFUxONHlIVV17TgCSpJ+3STPVIZxPPAj4IPd+rnAkelOp5xkr76CSdJCNO2lAnAMsFmSvwHeBTwcuCrJ2m5dkjQmE7n7q6rWMfhwsHvXT5xjm5lZq6+etfz6kQWTJN2vjWGmIkmaEJaKJKkZS0WS1IylIklqxlKRJDVjqUiSmrFUJEnNWCqSpGYm8s2P47THsiWsWrmi7xiStFFwpiJJasZSkSQ1Y6lIkpqxVCRJzVgqkqRmLBVJUjOWiiSpGUtFktSMpSJJasZSkSQ1Y6lIkpqxVCRJzVgqkqRmLBVJUjOWiiSpGUtFktSMpSJJasZSkSQ1Y6lIkpqxVCRJzVgqkqRmLBVJUjOWiiSpGUtFktSMpSJJasZSkSQ1s0nfAfq2Zv1tzBx7dt8x1JN1K1f0HUHaqDhTkSQ1Y6lIkpqxVCRJzVgqkqRmLBVJUjOWiiSpGUtFktSMpSJJasZSkSQ1M1GlkmQmydq+c0iSHpyJKhVJ0nSbxFLZJMmpSa5KckaSxUn2S3JFkjVJTk6yKUCSlUm+3W17Yjf28iRrk1yZ5KJ+H4okLSyTWCq7AidV1VOB24E3A6cAr6iqPRicBPOPk2wDvAR4SrftX3bXPx54QVU9DTho3OElaSGbxFK5oaou7pY/DewHXF9V3+3GTgX2ZVA4dwEfS/JS4M7u8ouBU5K8Dlg01x0kOSLJqiSr7rnztlE9DklacCaxVGqojaruBp4JfAF4MXBON/4G4M+BHYHVSR49x3VPqqrlVbV80eIlrXJL0oI3iaWyU5J9uuVXARcAM0l+oxs7DPh6ki2BJVX1L8AxwJ4ASXauqkuq6njgFgblIkkag0n8kK5rgMOTfAS4Djga+Bbw+SSbAJcCHwa2Ac5MshkQ4E3d9U9Isks3diFw5ZjzS9KCNVGlUlXrgN3muOhCYK8Nxm5isPtrw9t4aftkkqRhTOLuL0nSlLJUJEnNWCqSpGYsFUlSM5aKJKkZS0WS1IylIklqxlKRJDUzUW9+7MMey5awauWKvmNI0kbBmYokqRlLRZLUjKUiSWrGUpEkNWOpSJKasVQkSc1YKpKkZiwVSVIzlookqRlLRZLUjKUiSWrGUpEkNWOpSJKaSVX1naFXSX4CXNt3jgdhKXBL3yEeBHOPl7nHZxozw4PP/fiq2nbDwQV/6nvg2qpa3neIByrJKnOPj7nHaxpzT2NmaJ/b3V+SpGYsFUlSM5YKnNR3gAfJ3ONl7vGaxtzTmBka517wB+olSe04U5EkNWOpSJKaWbClkuSAJNcm+V6SY/vOM4wkOyb5apJrklyd5Oi+Mz0QSRYluSLJP/edZVhJtk5yRpLvdD/3ffrONIwkb+p+R9YmOT3JZn1nmkuSk5PcnGTtrLFtkpyf5Lru+6P6zDiX+8h9Qvd7clWSf0yydY8R5zRX7lmXvSVJJVn6UO5jQZZKkkXAB4AXArsBr0qyW7+phnI38KdV9WRgb+BPpiT3vY4Gruk7xAP0d8A5VfUk4GlMQf4ky4CjgOVVtTuwCHhlv6nu0ynAARuMHQtcWFW7ABd265PmFP5/7vOB3avqqcB3gbeNO9QQTuH/5ybJjsD+wA8e6h0syFIBngl8r6r+o6p+DnwWOLjnTPOqqpuq6vJu+ScM/sAt6zfVcJLsAKwAPtZ3lmEl2QrYF/g4QFX9vKpu7TXU8DYBNk+yCbAY+M+e88ypqi4CfrzB8MHAqd3yqcCLx5lpGHPlrqrzqurubvVbwA5jDzaP+/h5A/wt8FbgIb9ya6GWyjLghlnrNzIlf5zvlWQG2Au4pOcow3ovg1/aX/ac44F4IvBD4BPdbruPJdmi71Dzqar1wIkM/uu8Cbitqs7rN9UDsl1V3QSDf6SAx/Sc58F4DfDlvkMMI8lBwPqqurLF7S3UUskcY1Pz2uokWwJfAI6pqtv7zjOfJC8Cbq6qy/rO8gBtAjwd+FBV7QXcwWTuivk13TGIg4EnAI8Dtkjyh/2mWjiSHMdgV/VpfWeZT5LFwHHA8a1uc6GWyo3AjrPWd2BCdw9sKMnDGRTKaVX1xb7zDOnZwEFJ1jHY1fjcJJ/uN9JQbgRurKp7Z4NnMCiZSfc84Pqq+mFV/QL4IvCsnjM9EP+dZHuA7vvNPecZWpLDgRcBh9Z0vAlwZwb/fFzZPT93AC5P8tgHe4MLtVQuBXZJ8oQkj2BwEPOsnjPNK0kY7N+/pqre03eeYVXV26pqh6qaYfCz/kpVTfx/zlX1X8ANSXbthvYDvt1jpGH9ANg7yeLud2Y/puAFBrOcBRzeLR8OnNljlqElOQD4M+Cgqrqz7zzDqKo1VfWYqprpnp83Ak/vfvcflAVZKt3BtDcC5zJ4sn2uqq7uN9VQng0cxuA//dXd14F9h9rIHQmcluQqYE/g3f3GmV83szoDuBxYw+B5PpGnEElyOvBvwK5JbkzyWmAlsH+S6xi8Imllnxnnch+53w88Eji/e25+uNeQc7iP3G3vYzpmaJKkabAgZyqSpNGwVCRJzVgqkqRmLBVJUjOWiiSpGUtFktSMpSJJauZ/AUZy9MBW9kxfAAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "ax = prozent2.plot.barh()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Schließlich wird dieses Ergebnis noch in ein Dataframe umgewandelt." ] }, { "cell_type": "code", "execution_count": 24, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
Prozent d ges mögl Nennungen
Marke
boss5.56
nike11.11
lacoste11.11
head13.89
\n", "
" ], "text/plain": [ " Prozent d ges mögl Nennungen\n", "Marke \n", "boss 5.56\n", "nike 11.11\n", "lacoste 11.11\n", "head 13.89" ] }, "execution_count": 24, "metadata": {}, "output_type": "execute_result" } ], "source": [ "p2 = pd.DataFrame(prozent2, columns = ['Prozent d ges mögl Nennungen'])\n", "\n", "p2.index.name = 'Marke'\n", "\n", "p2" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### 12.5) Prozent der gesamten tatsächlichen Nennungen\n", "\n", "Auch die relative Anzahl unserer Häufigkeiten pro Variable an den gesamten abgegebenen Nennungen über alle Variablen hinweg können wir berechnen. Ermitteln wir dazu zuerst die Summe aller abgegebenen Nennungen (über alle 4 Variablen hinweg)..." ] }, { "cell_type": "code", "execution_count": 25, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "15.0" ] }, "execution_count": 25, "metadata": {}, "output_type": "execute_result" } ], "source": [ "anzahl = summe.sum(axis = 0)\n", "\n", "anzahl" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "... und setzen unsere Häufigkeiten pro Variable nun dazu in Beziehung." ] }, { "cell_type": "code", "execution_count": 26, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "Marke\n", "boss 13.33\n", "nike 26.67\n", "lacoste 26.67\n", "head 33.33\n", "dtype: float64" ] }, "execution_count": 26, "metadata": {}, "output_type": "execute_result" } ], "source": [ "prozent3 = ((summe/anzahl)*100).round(2)\n", "\n", "prozent3" ] }, { "cell_type": "code", "execution_count": 27, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZUAAAD4CAYAAAAkRnsLAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAAQDUlEQVR4nO3dfbBcdX3H8ffHgDxqFIJIEbyVUlsEDTW1Wh3qIyqZioKo1KFUHdFO5UGn0zK1g6jVZpQ6jvWhQkXAilbFCg4VERQROiIJBBJE1CnxITJSpIDIoDV++8ee2NvMTbKE396zJ/f9msncs7895+5nzzL3w++c3bOpKiRJauEhfQeQJG0/LBVJUjOWiiSpGUtFktSMpSJJamaHvgP0bcmSJTUzM9N3DEkalFWrVt1RVXttOr7gS2VmZoaVK1f2HUOSBiXJ9+Ya9/CXJKkZS0WS1IylIklqxlKRJDVjqUiSmrFUJEnNWCqSpGYsFUlSM5aKJKkZS0WS1IylIklqxlKRJDWz4C8ouWb93cycenHfMSRpXq1bsXwiv9eZiiSpGUtFktSMpSJJasZSkSQ1Y6lIkpqxVCRJzVgqkqRmLBVJUjOWiiSpmakolSQzSdZO4PeuS7Kk9e+VJM1tKkpFkrR9mKZSWZTkrCQ3Jbk0yS5JDkhySZJVSb6W5HcAkvxxkmuSXJ/ksiR7d+N7dtten+TDQHp9RpK0wExTqRwIfKCqngDcBRwNnAmcWFVPBv4S+GC37lXAU6vqUOCTwF91428BrurGLwL2n7/4kqRpukrxrVW1ulteBcwAfwh8Ovn1hGOn7udjgH9Nsg/wUODWbvww4CiAqro4yX/P9UBJTgBOAFj08L2aPglJWsimaaby81nLG4A9gLuqaumsf7/b3f+PwPur6hDgdcDOs7atrT1QVZ1ZVcuqatmiXRe3yi9JC940lcqm7gFuTXIMQEae1N23GFjfLR8/a5srgVd2678QeOQ8ZZUkMd2lAqOCeE2SG4CbgCO78dMZHRb7GnDHrPXfChyW5DrgcOD785hVkha8qTinUlXrgINn3T5j1t0vmGP9C4EL5xj/CaMy2eiN7VJKkrZm2mcqkqQBsVQkSc1YKpKkZiwVSVIzlookqRlLRZLUjKUiSWrGUpEkNTMVH37s0yH7LmbliuV9x5Ck7YIzFUlSM5aKJKkZS0WS1IylIklqxlKRJDVjqUiSmrFUJEnNWCqSpGYsFUlSM5aKJKkZS0WS1IylIklqxlKRJDVjqUiSmrFUJEnNWCqSpGYsFUlSM5aKJKkZS0WS1IylIklqxlKRJDVjqUiSmrFUJEnNWCqSpGYsFUlSM5aKJKmZHfoO0Lc16+9m5tSL+44haZ6tW7G87wjbJWcqkqRmLBVJUjOWiiSpGUtFktSMpSJJasZSkSQ1Y6lIkpqxVCRJzVgqkqRmLBVJUjMTK5Uk907qd896jKVJjpj040iSxjP0mcpSwFKRpCkx8VJJsnuSy5Ncl2RNkiNn3fenSW5MckOSj3Vjj+3Wv7H7uX83fkyStd26VyZ5KPA24OVJVid5eZLdkpyd5Nok189+LEnS5M3HVYrvB15SVfckWQJ8PclFwEHAm4GnV9UdSfbo1n8/cF5VnZvk1cD7gBcDpwHPr6r1SR5RVb9IchqwrKreAJDkncCXq+rVSR4BfCPJZVX1s9mBkpwAnACw6OF7TfjpS9LCMR+HvwK8M8mNwGXAvsDewLOBz1TVHQBVdWe3/tOA87vljwHP6JavBs5J8lpg0WYe63Dg1CSrgSuAnYH9N12pqs6sqmVVtWzRrosf3LOTJP3afMxUXgnsBTy5qv4nyTpGf+wD1BjbF0BVvT7JHwDLgdVJls6xboCjq+qWFsElSQ/MfMxUFgO3d4XyLOCx3fjlwMuS7Akw6/DXfwCv6JZfCVzV3X9AVV1TVacBdwD7AT8FHjbrsb4InJgk3TaHTu5pSZI2NR+l8nFgWZKVjEriWwBVdRPwDuCrSW4A3tOtfxLwqu5w2XHAyd34u7sT/WuBK4EbgK8AB208UQ+8HdgRuLFb7+3z8PwkSZ1UjXMEavu10z4H1j7Hv7fvGJLmmV8n/OAkWVVVyzYdH/rnVCRJU8RSkSQ1Y6lIkpqxVCRJzVgqkqRmLBVJUjOWiiSpmfm4TMtUO2Tfxaz0/eqS1IQzFUlSM2OVSpK9k3wkyRe62wclec1ko0mShmbcmco5jC7W+Bvd7W8Dp0wgjyRpwMYtlSVV9SngVwBV9Utgw8RSSZIGadxS+Vl3ifoCSPJU4O6JpZIkDdK47/56E3ARcECSqxl96dZLJ5ZKkjRI45bKncAfAY9n9O2KtwBLJ5RJkjRQ4x7+ugDYu6puqqq1jL5H/uzJxZIkDdG4pfJ64HNJHp3kCOB9wBGTiyVJGqKxDn9V1bVJTgIuBe4HnldV/zXRZJKkwdliqST5PN07vjq7MnrX10eSUFUvmmQ4SdKwbG2mcsa8pJAkbRe2WCpV9dUki4AvVtVz5ymTJGmgtnqivqo2APclWTwPeSRJAzbu51TuB9Yk+RLws42DVXXSRFJJkgZp3FK5uPsnSdJmjfuW4nMnHUSSNHxjlUqSA4G/Bw4Cdt44XlWPm1AuSdIAjfuJ+o8CHwJ+CTwLOA/42KRCSZKGadxS2aWqLgdSVd+rqtOBZ08uliRpiMZ+91eShwDfSfIGYD3wqMnFkiQN0bgzlVMYXaLlJODJwHHA8RPKJEkaqLEvKNkt3gu8anJxJElDtrULSl60pfu9oKQkabatzVSeBvwA+ARwDaNvfZQkaU5bK5VHA88DjgX+hNGn6j9RVTdNOpgkaXi2eKK+qjZU1SVVdTzwVOC7wBVJTpyXdJKkQdnqifokOwHLGc1WZhh9lfBnJxtr/qxZfzczp3pZM2mhWbdied8RtktbO1F/LnAw8AXgrVW1dl5SSZIGaWszleMYXer+t4GTkl+fpw9QVfXwCWaTJA3M1r75cdwPR0qSNPYn6iVJ2ipLRZLUjKUiSWrGUpEkNWOpSJKasVQkSc0MqlSSvC3Jc7vldUmW9J1JkvR/xv3mx6lQVaf1nUGStHlTOVNJMpPk5iRnJbkpyaVJdklyTpKXbrLuLkkuSfLaJLslOTvJtUmuT3JkX89BkhaiqSyVzoHAB6rqCcBdwNFzrLM78Hng/Ko6C3gz8OWq+n3gWcC7k+y26UZJTkiyMsnKDffdPbEnIEkLzTSXyq1VtbpbXsXoCsmbuhD4aFWd190+HDg1yWrgCmBnYP9NN6qqM6tqWVUtW7Tr4saxJWnhmuZzKj+ftbwB2GWOda4GXpjk/KoqRhe6PLqqbpmPgJKk/2+aZyrjOA34CfDB7vYXgRPTXU45yaF9BZOkhWjopQJwCrBzkncBbwd2BG5Msra7LUmaJ1N5+Kuq1jH6crCNt8+YY52ZWTdfNWv5dRMLJknaou1hpiJJmhKWiiSpGUtFktSMpSJJasZSkSQ1Y6lIkpqxVCRJzVgqkqRmpvLDj/PpkH0Xs3LF8r5jSNJ2wZmKJKkZS0WS1IylIklqxlKRJDVjqUiSmrFUJEnNWCqSpGYsFUlSM5aKJKkZS0WS1IylIklqxlKRJDVjqUiSmrFUJEnNWCqSpGYsFUlSM5aKJKkZS0WS1IylIklqxlKRJDVjqUiSmrFUJEnNWCqSpGYsFUlSM5aKJKkZS0WS1MwOfQfo25r1dzNz6sV9x1AP1q1Y3ncEabvjTEWS1IylIklqxlKRJDVjqUiSmrFUJEnNWCqSpGYsFUlSM5aKJKkZS0WS1MxUlUqSmSRr+84hSdo2U1UqkqRhm8ZS2SHJuUluTPKZJLsmeU6S65OsSXJ2kp0AkqxI8s1u3TO6sWOSrE1yQ5Ir+30qkrSwTGOpPB44s6qeCNwDvAk4B3h5VR3C6CKYf55kD+AlwBO6df+u2/404PlV9STgRfMdXpIWsmkslR9U1dXd8r8AzwFurapvd2PnAocxKpz7gX9OchRwX3f/1cA5SV4LLJrrAZKckGRlkpUb7rt7Us9DkhacaSyVGmulql8CTwEuAF4MXNKNvx74W2A/YHWSPefY9syqWlZVyxbturhVbkla8KaxVPZP8rRu+VjgMmAmyW91Y8cBX02yO7C4qv4dOAVYCpDkgKq6pqpOA+5gVC6SpHkwjV/SdTNwfJIPA98BTga+Dnw6yQ7AtcA/AXsAFybZGQjwxm77dyc5sBu7HLhhnvNL0oI1VaVSVeuAg+a463Lg0E3GbmN0+GvT33FU+2SSpHFM4+EvSdJAWSqSpGYsFUlSM5aKJKkZS0WS1IylIklqxlKRJDVjqUiSmpmqDz/24ZB9F7NyxfK+Y0jSdsGZiiSpGUtFktSMpSJJasZSkSQ1Y6lIkpqxVCRJzVgqkqRmLBVJUjOWiiSpGUtFktSMpSJJasZSkSQ1Y6lIkppJVfWdoVdJfgrc0neOB2EJcEffIR6EIecfcnYwf9+Gnv+xVbXXpoML/tL3wC1VtazvENsqyUrz92PI2cH8fRt6/s3x8JckqRlLRZLUjKUCZ/Yd4EEyf3+GnB3M37eh55/Tgj9RL0lqx5mKJKkZS0WS1MyCLZUkL0hyS5LvJjm17zwPVJJ1SdYkWZ1kZd95tibJ2UluT7J21tgeSb6U5Dvdz0f2mXFLNpP/9CTru9dgdZIj+sy4JUn2S/KVJDcnuSnJyd341L8GW8g+iP2fZOck30hyQ5f/rd341O/7bbEgz6kkWQR8G3ge8EPgWuDYqvpmr8EegCTrgGVVNYgPTyU5DLgXOK+qDu7G3gXcWVUrumJ/ZFX9dZ85N2cz+U8H7q2qM/rMNo4k+wD7VNV1SR4GrAJeDPwZU/4abCH7yxjA/k8SYLequjfJjsBVwMnAUUz5vt8WC3Wm8hTgu1X1n1X1C+CTwJE9Z9quVdWVwJ2bDB8JnNstn8voD8VU2kz+waiq26rqum75p8DNwL4M4DXYQvZBqJF7u5s7dv+KAez7bbFQS2Vf4Aezbv+QAf1H2ing0iSrkpzQd5httHdV3QajPxzAo3rOsy3ekOTG7vDYIA5fJJkBDgWuYWCvwSbZYSD7P8miJKuB24EvVdXg9v24FmqpZI6xoR0HfHpV/R7wQuAvusMzml8fAg4AlgK3Af/Qa5oxJNkduAA4paru6TvPAzFH9sHs/6raUFVLgccAT0lycM+RJmahlsoPgf1m3X4M8KOesmyTqvpR9/N24N8YHdIbmh93x8s3Hje/vec8D0hV/bj7Y/Er4Cym/DXojudfAHy8qj7bDQ/iNZgr+9D2P0BV3QVcAbyAgez7B2qhlsq1wIFJfjPJQ4FXABf1nGlsSXbrTliSZDfgcGDtlreaShcBx3fLxwMX9pjlAdv4B6HzEqb4NehOFn8EuLmq3jPrrql/DTaXfSj7P8leSR7RLe8CPBf4FgPY99tiQb77C6B7++F7gUXA2VX1jn4TjS/J4xjNTmB0penzpz1/kk8Az2R0ue8fA28BPgd8Ctgf+D5wTFVN5cnwzeR/JqNDLwWsA1638Rj5tEnyDOBrwBrgV93w3zA6NzHVr8EWsh/LAPZ/kicyOhG/iNH/yH+qqt6WZE+mfN9viwVbKpKk9hbq4S9J0gRYKpKkZiwVSVIzlookqRlLRZLUjKUiSWrGUpEkNfO/Gqk/7aMAtWUAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "ax = prozent3.plot.barh()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Schließlich überführen wir auch dieses Ergebnis in ein Dataframe." ] }, { "cell_type": "code", "execution_count": 28, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
Prozent d ges tats Nennungen
Marke
boss13.33
nike26.67
lacoste26.67
head33.33
\n", "
" ], "text/plain": [ " Prozent d ges tats Nennungen\n", "Marke \n", "boss 13.33\n", "nike 26.67\n", "lacoste 26.67\n", "head 33.33" ] }, "execution_count": 28, "metadata": {}, "output_type": "execute_result" } ], "source": [ "p3 = pd.DataFrame(prozent3, columns = [\"Prozent d ges tats Nennungen\"])\n", "\n", "p3.index.name = \"Marke\"\n", "\n", "p3" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### 12.6) Zusammenführung in finales Dataframe, Grafiken, Output speichern\n", "\n", "Jetzt müssen wir unsere beiden letzten Ergebnisse noch in unser weiter oben bereits begonnenes finales Outputdataframe einfügen. Man kann jeweils 2 Dataframes zusammenführen. In den beiden folgenden Schritten wird somit jeweils ein weiteres Ergebnis in unser finales Dataframe integriert." ] }, { "cell_type": "code", "execution_count": 29, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
Summe der NennungenProzent der BefragtenProzent d ges mögl Nennungen
Marke
boss2.022.225.56
nike4.044.4411.11
lacoste4.044.4411.11
head5.055.5613.89
\n", "
" ], "text/plain": [ " Summe der Nennungen Prozent der Befragten \\\n", "Marke \n", "boss 2.0 22.22 \n", "nike 4.0 44.44 \n", "lacoste 4.0 44.44 \n", "head 5.0 55.56 \n", "\n", " Prozent d ges mögl Nennungen \n", "Marke \n", "boss 5.56 \n", "nike 11.11 \n", "lacoste 11.11 \n", "head 13.89 " ] }, "execution_count": 29, "metadata": {}, "output_type": "execute_result" } ], "source": [ "set2 = pd.merge(set1, p2, how = 'outer', on = 'Marke')\n", "\n", "set2" ] }, { "cell_type": "code", "execution_count": 30, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
Summe der NennungenProzent der BefragtenProzent d ges mögl NennungenProzent d ges tats Nennungen
Marke
boss2.022.225.5613.33
nike4.044.4411.1126.67
lacoste4.044.4411.1126.67
head5.055.5613.8933.33
\n", "
" ], "text/plain": [ " Summe der Nennungen Prozent der Befragten \\\n", "Marke \n", "boss 2.0 22.22 \n", "nike 4.0 44.44 \n", "lacoste 4.0 44.44 \n", "head 5.0 55.56 \n", "\n", " Prozent d ges mögl Nennungen Prozent d ges tats Nennungen \n", "Marke \n", "boss 5.56 13.33 \n", "nike 11.11 26.67 \n", "lacoste 11.11 26.67 \n", "head 13.89 33.33 " ] }, "execution_count": 30, "metadata": {}, "output_type": "execute_result" } ], "source": [ "set3 = pd.merge(set2, p3, how = 'outer', on = 'Marke')\n", "\n", "set3" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Sehen wir uns diese finalen Ergebnisse nun noch grafisch an. " ] }, { "cell_type": "code", "execution_count": 31, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAiEAAAEUCAYAAAD9SOYEAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAAoHElEQVR4nO3de3RV1bn+8e9LiAGFBlFEFEliyzXZYQcCEpRLBBMqFxGNWlADKJJisWqLipwqSv2VU2nr4dJSFYytaGlB65VTigUxahuTEgn32BJQZMhFE6EQJWH+/shmnwAh7IQkKyTPZwwGe68191rvmmSYx7nmXtOcc4iIiIjUt2ZeFyAiIiJNk0KIiIiIeEIhRERERDyhECIiIiKeUAgRERERTyiEiIiIiCeae12A1y688EIXHR3tdRkiIiKNUm5u7j7nXLvK9jX5EBIdHU1OTo7XZYiIiDRKZrbjVPt0O0ZEREQ8oRAiIiIinlAIEREREU8ohIiIiIgnFEJERETEEwohIiIi4gmFEBEREfGEQoiIiIh4QiFEREREPKEQIiIiIp5QCBERERFPKISIiIiIJxRCRERExBNNfhXdjfs34nve53UZInKWyU/P97oEkbOeRkJERETEEwohIiIi4gmFEBEREfGEQoiIiIh4QiFEREREPKEQIiIiIp5QCBERERFPKISIiIiIJxRCRERExBMKISIiIuKJJv/Y9tivvyFn+06vy5AzMbPY6wpERKQGGsRIiJlFm9mGOjhuoZldWNvHFRERkTPXIEKIiIiIND0NKYSEmdkzZrbRzFaaWUsz+7aZ/a+Z5ZrZu2bWDcDMRprZP8xsnZmtMrP2ge0XBD67zsx+C5inVyQiIiKn1JBCSGdggXMuFigCbgCeBqY653oDPwZ+HWibBfRzziUAfwAeCGx/FMgKbH8N6FR/5YuIiEh1NKSJqdudc3mB17lANNAf+JNZcEAjIvB3R2CpmXUAzgG2B7YPBMYAOOfeNLMvKzuRmd0F3AXQKVKDJSIiIl5oSCMhX1d4XQa0BYqcc/4Kf7oH9s8D5jvnfMBkoEWFz7rTncg597RzLtE5l9juXIUQERERLzSkEHKir4DtZpYGYOV6BvZFArsCr9MrfGYtMC7Q/rvA+fVUq4iIiFRTQw4hUB4o7jCzj4CNwHWB7TMpv03zLrCvQvvHgIFm9k8gBdADQERERBooc+60dy8atcRLwlzOXa28LkPOhB5WJiLSYJlZrnMusdJ9TT2ERHTo7DqkP+V1GSIiIp4qnD28To5bVQhp6LdjREREpJFSCBERERFPKISIiIiIJxRCRERExBMKISIiIuIJhRARERHxhEKIiIiIeEIhRERERDyhECIiIiKeaO51AV7zXRpJTh09JU5EREROTSMhIiIi4gmFEBEREfGEQoiIiIh4QiFEREREPKEQIiIiIp5QCBERERFPKISIiIiIJxRCRERExBMKISIiIuIJhRARERHxhEKIiIiIeEIhRERERDyhECIiIiKeUAgRERERTyiEiIiIiCcUQkRERMQTCiEiIiLiCYUQERER8YRCiIiIiHhCIUREREQ8oRAiIiIinlAIEREREU8ohIiIiIgnFEJERETEEwohIiIi4gmFEBEREfGEQoiIiIh4QiFEREREPKEQIiIiIp5QCBERERFPNPe6AK9t3L8R3/M+r8sQabTy0/O9LkFEGiiNhIiIiIgnFEJERETEEwohIiIi4gmFEBEREfGEQoiIiIh4QiFEREREPKEQIiIiIp5QCBERERFPKISIiIiIJ5r8E1Njv/6GnO07vS6j8ZtZ7HUFIiLSwNTZSIiZHayrY1c4h9/Mrq3r84iIiEjtO9tvx/gBhRAREZGzUJ2HEDNrZWZvm9k/zSzfzK6rsO92M1tvZh+Z2e8D26IC7dcH/u4U2J5mZhsCbdea2TnA48DNZpZnZjeb2XlmttjMPjSzdRXPJSIiIg1LfcwJKQGud859ZWYXAn83s9eAHsAM4Ern3D4zaxtoPx/4nXPueTObCMwFRgOPAKnOuV1m1sY5942ZPQIkOud+AGBm/w/4m3Nuopm1AbLNbJVz7j/1cJ0iIiJSDfVxO8aA/2dm64FVwKVAe+BqYJlzbh+Ac+6LQPsk4MXA698DVwVevwdkmtkkIOwU50oBHjKzPGAN0ALodFJBZneZWY6Z5ew95M7s6kRERKRG6mMkZBzQDujtnDtiZoWUhwMDQkkADsA5l2FmVwDDgTwz81fS1oAbnHNbqzygc08DTwMkXhKmFCIiIuKB+hgJiQT2BAJIMhAV2P42cJOZXQBQ4XbM+8AtgdfjgKzA/m875/7hnHsE2AdcBhwAWlc411+AqWZmgc8k1N1liYiIyJmojxCyBEg0sxzKQ8UWAOfcRuAJ4B0z+wj4ZaD9PcCEwO2b24AfBrY/GZjYugFYC3wErAZ6HJuYCswCwoH1gXaz6uH6REREpAbMuaZ9NyLxkjCXc1crr8to/PSwMhGRJsnMcp1ziZXua+ohJKJDZ9ch/SmvyxARkUoUzh7udQlyhqoKIWf7w8pERETkLKUQIiIiIp5QCBERERFPKISIiIiIJxRCRERExBMKISIiIuIJhRARERHxhEKIiIiIeEIhRERERDxRH6voNmi+SyPJ0RP5RERE6p1GQkRERMQTCiEiIiLiiZBCiJm1N7NFZrYi8L6Hmd1Rt6WJiIhIYxbqSEgm8BfgksD7bcC9dVCPiIiINBGhhpALnXN/BI4COOdKgbI6q0pEREQavVBDyH/M7ALAAZhZP6C4zqoSERGRRi/Ur+jeD7wGfNvM3gPaATfWWVUiIiLS6IUaQr4ABgFdAQO2Av46qklERESagFBvxywH2jvnNjrnNgBJwOK6K0tEREQau1BDSAbwZzO72MyuBeYC19ZdWSIiItLYhXQ7xjn3oZndA6wESoBrnHN767QyERERadSqDCFm9jqBb8QEnEv5t2IWmRnOuVF1WZyIiIg0XqcbCZlTL1WIiIhIk1NlCHHOvWNmYcBfnHND66kmERERaQJOOzHVOVcGHDKzyHqoR0RERJqIUJ8TUgLkm9lfgf8c2+icu6dOqhIREZFGL9QQ8mbgj4iIiEitCPUrus/XdSEiIiLStIQUQsysM/AzoAfQ4th259zldVSXiIiINHKhPjH1OeA3QCmQDPwO+H1dFSUiIiKNX6ghpKVz7m3AnHM7nHMzgavrriwRERFp7EL+doyZNQMKzOwHwC7gororS0RERBq7UEdC7qX8ke33AL2B24D0OqpJREREmoCQF7ALvDwITKi7ckRERKSpON0Cdq9VtV8L2ImIiEhNnW4kJAn4BHgJ+AdgdV6RiIiINAmnCyEXA9cA3wPGUv7U1JeccxvrujARERFp3KqcmOqcK3PO/a9zLh3oB3wMrDGzqfVSnYiIiDRap52YamYRwHDKR0OigbnAy3VbloiIiDR2p5uY+jwQB6wAHnPObaiXqkRERKTRM+fcqXeaHQX+E3hbsaEBzjn3rTqsrV60jGnpvjPzO16XIdJo5afne12CiHjIzHKdc4mV7atyJMQ5F+rDzERERESqRSFDREREPKEQIiIiIp5QCBERERFPKISIiIiIJxRCRERExBMKISIiIuIJhRARERHxhEKIiIiIeOK0a8c0drFff0PO9p1el9H4zSz2ugIREWlgzqqREDN73MyGBl4XmtmFXtckIiIiNXNWjYQ45x7xugYRERGpHQ1yJMTMos1ss5k9Y2YbzWylmbU0s0wzu/GEti3N7H/NbJKZnWdmi83sQzNbZ2bXeXUNIiIiUrUGGUICOgMLnHOxQBFwQyVtWgGvAy86554BZgB/c871AZKBJ83svHqqV0RERKqhIYeQ7c65vMDrXCC6kjavAs85534XeJ8CPGRmecAaoAXQ6cQPmdldZpZjZjl7D7laLltERERC0ZBDyNcVXpdR+fyV94DvmpkF3htwg3POH/jTyTm3+cQPOeeeds4lOucS251rJ+4WERGRetCQQ0goHgH2A78OvP8LMPVYKDGzBK8KExERkaqd7SEE4F6ghZn9HJgFhAPrzWxD4L2IiIg0QA3yK7rOuUIgrsL7OZW0ia7wdkKF15PrrDARERGpNeZc056YGdGhs+uQ/pTXZYiISCUKZw/3ugQ5Q2aW65xLrGxfY7gdIyIiImchhRARERHxhEKIiIiIeEIhRERERDyhECIiIiKeUAgRERERTyiEiIiIiCcUQkRERMQTCiEiIiLiiQb52Pb65Ls0khw9kU9ERKTeaSREREREPKEQIiIiIp5QCBERERFPKISIiIiIJxRCRERExBMKISIiIuIJhRARERHxhEKIiIiIeEIhRERERDyhECIiIiKeUAgRERERTyiEiIiIiCcUQkRERMQTCiEiIiLiCYUQERER8YRCiIiIiHhCIUREREQ8oRAiIiIinlAIEREREU8ohIiIiIgnFEJERETEEwohIiIi4gmFEBEREfFEc68LEBFpTI4cOcKnn35KSUmJ16WI1KsWLVrQsWNHwsPDQ/6MQoiISC369NNPad26NdHR0ZiZ1+WI1AvnHPv37+fTTz8lJiYm5M/pdoyISC0qKSnhggsuUACRJsXMuOCCC6o9AqgQIiJSyxRApCmqyc+9QoiISCMTFhaG3+8nLi6OtLQ0Dh06VO81ZGZm8tlnn522XWFhIXFxcWd0rujoaHw+H36/H5/Px6uvvnraz/zpT3+ie/fuJCcnn9G5jwn1euV4mhMiIlKHoh96s1aPVzh7+GnbtGzZkry8PADGjRvHwoULuf/++4P7y8rKCAsLq9W6TpSZmUlcXByXXHJJrR73VLWvXr2aCy+8kK1bt5KSksJ1111X5XEWLVrEr3/965NCSGlpKc2bV/9XY11db2OnkRARkUZswIABfPzxx6xZs4bk5GTGjh2Lz+ejpKSECRMm4PP5SEhIYPXq1QDceeed+P1+/H4/7dq147HHHgPgySefpE+fPsTHx/Poo48C5aMY3bt3Z9KkScTGxpKSksLhw4dZtmwZOTk5jBs3Dr/fz+HDh4+rKTc3l549e5KUlMSCBQuC28vKypg2bVrwPL/97W8BTqq9Kl999RXnn39+8P0LL7xA37598fv9TJ48mbKyMh5//HGysrLIyMhg2rRpZGZmkpaWxsiRI0lJSeHgwYMMGTKEXr16nTSyMmvWLLp168Y111zD9773PebMmVPp9ebm5jJo0CB69+5Namoqu3fvBmDw4ME8+OCD9O3bly5duvDuu+/W9J+2UWjyIyEb92/E93zVP9TScOSn53tdgshZo7S0lBUrVjBs2DAAsrOz2bBhAzExMfziF78AID8/ny1btpCSksK2bdt49tlnAdixYwepqamMHz+elStXUlBQQHZ2Ns45Ro0axdq1a+nUqRMFBQW89NJLPPPMM9x0000sX76cW2+9lfnz5zNnzhwSExNPqmvChAnMmzePQYMGMW3atOD2RYsWERkZyYcffsjXX3/NlVdeSUpKykm1VyY5ORnnHP/+97/54x//CMDmzZtZunQp7733HuHh4UyZMoUlS5bwyCOP8Le//S1YX2ZmJh988AHr16+nbdu2lJaW8sorr/Ctb32Lffv20a9fP0aNGkVubi7Lly9n3bp1lJaW0qtXL3r37s2NN9543PUeOXKEqVOn8uqrr9KuXTuWLl3KjBkzWLx4cfDfJTs7m7feeovHHnuMVatW1dK/+NmnyYcQEZHG5vDhw/j9fqB8JOSOO+7g/fffp2/fvsFf4llZWUydOhWAbt26ERUVxbZt24iPj6ekpIS0tDTmz59PVFQU8+bNY+XKlSQkJABw8OBBCgoK6NSpEzExMcFz9e7dm8LCwiprKy4upqioiEGDBgFw2223sWLFCgBWrlzJ+vXrWbZsWbBtQUEB55xzznG1V+bY7Zh//etfDBkyhMGDB/P222+Tm5tLnz59gv1y0UUXVfr5a665hrZt2wLlXzd9+OGHWbt2Lc2aNWPXrl18/vnnZGVlcd1119GyZUsARo4cWemxtm7dyoYNG7jmmmuA8hGeDh06BPePGTMm5P5q7BRCREQamYpzQio677zzgq+dc6f8fEZGBmPGjGHo0KHBttOnT2fy5MnHtSssLCQiIiL4Piws7KRbLydyzp3yWxTOOebNm0dqaupx29esWXNc7VX59re/Tfv27dm0aRPOOdLT0/nZz3522s9VPP6SJUvYu3cvubm5hIeHEx0dTUlJSZV9duJ1xMbG8sEHH1S6/1ifhYWFUVpaGtIxGyvNCRERaYIGDhzIkiVLANi2bRs7d+6ka9euLFiwgAMHDvDQQw8F26amprJ48WIOHjwIwK5du9izZ0+Vx2/dujUHDhw4aXubNm2IjIwkKysLIFjDsfP85je/4ciRI8G6/vOf/1Truvbs2cP27duJiopiyJAhLFu2LFjrF198wY4dO057jOLiYi666CLCw8NZvXp18DNXXXUVr7/+OiUlJRw8eJA33/y/SccVr7dr167s3bs3GEKOHDnCxo0bq3UdTYVGQkREmqApU6aQkZGBz+ejefPmZGZmEhERwZw5cwgPDw/eYsnIyCAjI4PNmzeTlJQEQKtWrXjhhReq/IbN+PHjycjIoGXLlnzwwQfBWxgAzz33HBMnTuTcc889btTjzjvvpLCwkF69euGco127dvz5z38O6XqSk5MJCwvjyJEjzJ49m/bt29O+fXt++tOfkpKSwtGjRwkPD2fBggVERUVVeaxx48YxcuRIEhMT8fv9dOvWDYA+ffowatQoevbsSVRUFImJiURGRlZ6vcuWLeOee+6huLiY0tJS7r33XmJjY0O6lqbEQh1eaqxaxrR035n5Ha/LkBBpYqo0dJs3b6Z79+5elyF15ODBg7Rq1YpDhw4xcOBAnn76aXr16uV1WQ1GZT//ZpbrnDt5hjIaCREREQnZXXfdxaZNmygpKSE9PV0B5AwphIiIiIToxRdf9LqERkUTU0VERMQTCiEiIiLiiSZ/Oyb262/I2b7T6zKqZ2ax1xWIiIicsQY1EmJm0Wa2wes6REREpO41qBAiIiJnLiwsDL/fT1xcHGlpaRw6dKjeawh1afvCwkLi4uLqoaLQFRUVce211/LZZ59x4403nrb9mjVrGDFiRKXbzYzXX389uG3EiBGsWbOmNss9qzXE2zHNzex5IAHYBtwOJAFzKK/3Q+D7zrmvzWw2MAooBVY6535sZmnAo0AZUOycG+jFRYiIADAzspaPd/rbsRUf2z5u3DgWLlzI/fffH9xfVlZW5YPGasPZvLR9mzZteOuttwCC69jUVMeOHXniiSdOuc5MU9cQR0K6Ak875+KBr4D7gUzgZuecj/Ig8n0zawtcD8QG2v408PlHgFTnXE/KA4qISJM1YMAAPv74Y9asWUNycjJjx47F5/NRUlLChAkT8Pl8JCQksHr1aqD8qaV+vx+/30+7du147LHHAHjyySfp06cP8fHxPProo0D5KEb37t2ZNGkSsbGxpKSkcPjw4UqXtq8oNzeXnj17kpSUxIIFCyqt++jRo0yZMoXY2FhGjBjBtddeGwwEubm5DBo0iN69e5Oamsru3bsBmDt3Lj169CA+Pp5bbrnlpGNmZmYyevRoRo4cSUxMDPPnz+eXv/wlCQkJ9OvXjy+++AKAvLw8+vXrR3x8PNdffz1ffvklAB9++CHx8fEkJSUxbdq0kEZwevbsSWRkJH/9619P2neq6xg8eDAPPvggffv2pUuXLrz77rvB+seMGcOwYcPo3LkzDzzwQPBYrVq1Cr5etmwZ48ePB8qf5HrPPffQv39/Lr/88mAf1qR/T1XXmWiIIeQT59x7gdcvAEOA7c65bYFtzwMDKQ8oJcCzZjYGODbe+B6QaWaTgEqjvpndZWY5Zpaz91DTfmKsiDRepaWlrFixAp/PB0B2djZPPPEEmzZtCv7yz8/P56WXXiI9PZ2SkhKeffZZ8vLyePXVV7ngggsYP348K1eupKCggOzsbPLy8sjNzWXt2rUAFBQUcPfdd7Nx40batGnD8uXLufHGG0lMTGTJkiXk5eUd98h2gAkTJjB37txTLvAG8PLLL1NYWEh+fj7PPvvsceuwTJ06lWXLlpGbm8vEiROZMWMGALNnz2bdunWsX7+ehQsXVnrcDRs28OKLL5Kdnc2MGTM499xzWbduHUlJSfzud78D4Pbbb+e///u/Wb9+PT6fLxjEJkyYwMKFC/nggw+qNZL0X//1X/z0pz89bltV1wHl/3bZ2dk89dRTwfNDeUBaunQp+fn5LF26lE8++eS059+9ezdZWVm88cYbwTWBatK/VdVVUw3xdkxIqcA5V2pmfSkPKbcAPwCuds5lmNkVwHAgz8z8zrn9J3z2aeBpgMRLwpRCRKRROXz4cHDtlwEDBnDHHXfw/vvv07dvX2JiYgDIyspi6tSpAHTr1o2oqCi2bdtGfHw8JSUlpKWlMX/+fKKiopg3bx4rV64kISEBKH90eUFBAZ06dSImJiZ4rlCWpi8uLqaoqIhBgwYBcNttt7FixYqT2mVlZZGWlkazZs24+OKLSU5OBmDr1q1s2LCBa665Bii/tdShQwcA4uPjGTduHKNHj2b06NGVnj85OZnWrVvTunVrIiMjg7dJfD4f69evP6m+9PR00tLSKCoq4sCBA/Tv3x+AsWPH8sYbb1R5rccMGDAA4LiRg6quA2DMmDHAyX06ZMiQ4Ho1PXr0YMeOHVx22WVVnn/06NE0a9aMHj168PnnnwM169+q6qqphhhCOplZknPuA+B7wCpgspl9xzn3MXAb8I6ZtQLOdc69ZWZ/Bz4GMLNvO+f+AfzDzEYClwH7Kz+ViEjjU3FOSEUVl6uvat2wjIwMxowZw9ChQ4Ntp0+fzuTJk49rV1hYGFyWHsonxJ546+VEzjnM7LTXcKr6nHPExsZWOory5ptvsnbtWl577TVmzZrFxo0bad78+F9zFett1qxZ8H2zZs0oLS2tdj2hmjFjBk888USwnqquo2KdYWFhx9V1Yn8f21exT0tKSio9VsXrqEn/VlVXTTXE2zGbgXQzWw+0BX4FTAD+ZGb5wFFgIdAaeCPQ7h3gvsDnnzSz/MBXfdcCH9X3BYiINHQDBw5kyZIlAGzbto2dO3fStWtXFixYwIEDB4LD9gCpqaksXryYgwcPArBr1y727NlT5fErLm1fUZs2bYiMjCQrKwsgWMOJrrrqKpYvX87Ro0f5/PPPg98o6dq1K3v37j3u9sHGjRs5evQon3zyCcnJyfz85z+nqKgoWG91REZGcv755wdHLX7/+98zaNAgzj//fFq3bs3f//53AP7whz9U67gpKSl8+eWXfPTRR1VeR021b9+ezZs3c/ToUV555ZXTtq9u/9aVBjUS4pwrBHpUsuttyr8tU9FuoG8lxxhT+5WJiDQuU6ZMISMjA5/PR/PmzcnMzCQiIoI5c+YQHh4evMWSkZFBRkYGmzdvJikpCSifBPnCCy9UOS/ixKXtK84Lee6555g4cSLnnnsuqamplX7+hhtu4O233yYuLo4uXbpwxRVXEBkZyTnnnMOyZcu45557KC4uprS0lHvvvZcuXbpw6623UlxcjHOO++67jzZt2tSob55//nkyMjI4dOgQl19+Oc899xwAixYtYtKkSZx33nkMHjw4eFskVDNmzOC6664DOOV1xMbG1qjm2bNnM2LECC677DLi4uJOG8Cq2781ret07EyHmM52ER06uw7pT3ldhkitKZw93OsSmrTKljKXmjl48CCtWrVi//799O3bl/fee4+LL77Y83qg/Jf+7t27+Z//+R/P6jlTddG/lf38m1mucy6xsvYNaiRERETkmBEjRlBUVMQ333zDT37yE08DCJTPOfnZz35GaWkpUVFRZGZmelrPmWoI/asQIiIiDVJDe7LozTffzM033+x1GbWmIfRvQ5yYKiIiIk2AQoiIiIh4QiFEREREPKEQIiIiIp5QCBERaWTCwsLw+/3ExcWRlpbGoUOHTv+hWpaZmclnn3122naFhYUhLQRXG/Ly8oKr49ZGu4rMjB/96EfB93PmzGHmzJnVLbHJ0bdjRETqkO95X60eLz89/7RtKj62fdy4cSxcuJD7778/uL+srKxaC7DVRGZmJnFxcVxyySV1ep7qyMvLIycnh2uvvbZW2lUUERHByy+/zPTp07nwwgvPtNQmQyMhIiKN2IABA/j4449Zs2YNycnJjB07Fp/PR0lJCRMmTMDn85GQkMDq1asBuPPOO/H7/fj9ftq1axdcKfXJJ5+kT58+xMfH8+ijjwLloxjdu3dn0qRJxMbGkpKSwuHDh1m2bBk5OTmMGzcOv99/0noyubm59OzZk6SkpOBqvieqyVLzc+fOpUePHsTHx3PLLbccd7xvvvmGRx55hKVLl+L3+1m6dCnZ2dn079+fhIQE+vfvz9atWytt98477wT7JCEhodLH0Tdv3py77rqLX/3qVyft27t3LzfccAN9+vShT58+vPde+ULxM2fOZOLEiQwePJjLL7+cuXPnVtmvAIMHDyYnJweAffv2ER0dDZSHvjFjxjBs2DA6d+7MAw88EDz/okWL6NKlC4MHD2bSpEn84Ac/qFFddUEjISIijVRpaSkrVqxg2LBhAGRnZ7NhwwZiYmL4xS9+AUB+fj5btmwhJSWFbdu28eyzzwKwY8cOUlNTGT9+PCtXrqSgoIDs7Gycc4waNYq1a9fSqVMnCgoKeOmll3jmmWe46aabWL58Obfeeivz589nzpw5JCae/KDMCRMmMG/ePAYNGsS0adMqrb3iUvN79uyhe/fuTJw4MbjU/Kuvvkq7du1YunQpM2bMYPHixcyePZvt27cTERFBUVHRccc755xzePzxx8nJyWH+/PkAfPXVV6xdu5bmzZuzatUqHn74YZYvX35Su5EjR7JgwQKuvPJKDh48SIsWLSqt+e677yY+Pv64AADwwx/+kPvuu4+rrrqKnTt3kpqayubNmwHYsmULq1ev5sCBA3Tt2pXvf//7AKfs16rk5eWxbt06IiIi6Nq1K1OnTiUsLIxZs2bxz3/+k9atW3P11VfTs2fPGtUVHh5e5flrosmHEN+lkeToMdci0ogcPnw4uPbLgAEDuOOOO3j//ffp27cvMTExQPlS7lOnTgWgW7duREVFsW3bNuLj4ykpKSEtLY358+cTFRXFvHnzWLlyJQkJ5Ut4HTx4kIKCAjp16kRMTEzwXKEs715cXExRURGDBg0C4LbbbmPFihUntavJUvPx8fGMGzeO0aNHM3r06NP2U3FxMenp6RQUFGBmHDlypNJ2V155Jffffz/jxo1jzJgxdOzYsdJ23/rWt7j99tuZO3fucWvlrFq1ik2bNgXff/XVV8HRlOHDhxMREUFERAQXXXQRn3/+OUC1+xVgyJAhwfVsevTowY4dO9i3bx+DBg2ibdu2AKSlpbFt27Ya1XWq6z4TTT6EiIg0NhXnhFR03nnnBV9XtW5YRkYGY8aMYejQocG206dPZ/Lkyce1KywsPGlp+RNvvZzIOXfcsvNVtTvV9lMtNf/mm2+ydu1aXnvtNWbNmsXGjRtp3vzUv+Z+8pOfkJyczCuvvEJhYSGDBw+utN1DDz3E8OHDeeutt+jXrx+rVq2iW7dulba999576dWrFxMmTAhuO3r06EmL+B1zYv+VlpZWuv1YvzZv3pyjR48CUFJSctpjVfXvXJO6apvmhIiINEEDBw5kyZIlAGzbto2dO3fStWtXFixYwIEDB3jooYeCbVNTU1m8eHFwZdZdu3axZ8+eKo/funXrSudOtGnThsjISLKysgCCNZyoukvNHz16lE8++YTk5GR+/vOfU1RUdNJKsifWVFxczKWXXgpw3DowJ7b717/+hc/n48EHHyQxMZEtW7ac8rrbtm3LTTfdxKJFi4LbUlJSgrd2gEoDYqiio6PJzc0FCM6RqUrfvn155513+PLLLyktLWX58uV1UldNKYSIiDRBU6ZMoaysDJ/Px80330xmZiYRERHMmTOH/Pz84ETMhQsXkpKSwtixY0lKSsLn83HjjTdWGjAqGj9+PBkZGZVOTH3uuee4++67SUpKqvT/wqF8qfmOHTsSFxfH5MmTT1pq/sEHH6Rnz574/X7ef/99ysrKuPXWW4MTbe+77z7atGlz3DGTk5PZtGlTcMLpAw88wPTp07nyyispKys7ZbunnnqKuLg4evbsScuWLfnud79b5bX/6Ec/Yt++fcH3c+fOJScnh/j4eHr06MHChQur/HxVfvzjH/Ob3/yG/v37H3eOU7n00kt5+OGHueKKKxg6dCg9evQI3rKpzbpqyqoaqmkKEhMT3bGZxiIiZ6qypcylZupiqfmm6Fg/lpaWcv311zNx4kSuv/76OjlXZT//ZpbrnDt5hjKaEyIiIg1UQ1hqvjGYOXMmq1atoqSkhJSUlJAm7dYXhRAREWmQGsJS843BnDlzvC7hlDQnRERERDyhECIiUsua+lw7aZpq8nOvECIiUotatGjB/v37FUSkSXHOsX///lM+TfZUNCdERKQWdezYkU8//ZS9e/d6XYpIvWrRokW1n6qqECIiUovCw8ODj0YXkarpdoyIiIh4QiFEREREPKEQIiIiIp5o8o9tN7MDwFav6zjLXQicfhEDOR3145lTH5459eGZUx8eL8o5166yHZqYCltP9Ux7CY2Z5agPz5z68cypD8+c+vDMqQ9Dp9sxIiIi4gmFEBEREfGEQgg87XUBjYD6sHaoH8+c+vDMqQ/PnPowRE1+YqqIiIh4QyMhIiIi4okmG0LMbJiZbTWzj83sIa/rOVuY2WIz22NmGypsa2tmfzWzgsDf53tZY0NnZpeZ2Woz22xmG83sh4Ht6scQmVkLM8s2s48CffhYYLv6sJrMLMzM1pnZG4H36sNqMrNCM8s3szwzywlsUz+GoEmGEDMLAxYA3wV6AN8zsx7eVnXWyASGnbDtIeBt51xn4O3Aezm1UuBHzrnuQD/g7sDPn/oxdF8DVzvnegJ+YJiZ9UN9WBM/BDZXeK8+rJlk55y/wldz1Y8haJIhBOgLfOyc+7dz7hvgD8B1Htd0VnDOrQW+OGHzdcDzgdfPA6Prs6azjXNut3Pun4HXByj/BXAp6seQuXIHA2/DA38c6sNqMbOOwHDg2Qqb1Ye1Q/0YgqYaQi4FPqnw/tPANqmZ9s653VD+Cxa4yON6zhpmFg0kAP9A/VgtgdsIecAe4K/OOfVh9T0FPAAcrbBNfVh9DlhpZrlmdldgm/oxBE31ialWyTZ9TUjqlZm1ApYD9zrnvjKr7MdSTsU5Vwb4zawN8IqZxXlc0lnFzEYAe5xzuWY22ONyznZXOuc+M7OLgL+a2RavCzpbNNWRkE+Byyq87wh85lEtjcHnZtYBIPD3Ho/rafDMLJzyALLEOfdyYLP6sQacc0XAGsrnKqkPQ3clMMrMCim/JX21mb2A+rDanHOfBf7eA7xC+S1/9WMImmoI+RDobGYxZnYOcAvwmsc1nc1eA9IDr9OBVz2spcGz8iGPRcBm59wvK+xSP4bIzNoFRkAws5bAUGAL6sOQOeemO+c6OueiKf9v4N+cc7eiPqwWMzvPzFofew2kABtQP4akyT6szMyupfx+aBiw2Dn3hLcVnR3M7CVgMOWrRH4OPAr8Gfgj0AnYCaQ5506cvCoBZnYV8C6Qz//di3+Y8nkh6scQmFk85ZP9wij/n6k/OuceN7MLUB9WW+B2zI+dcyPUh9VjZpdTPvoB5VMcXnTOPaF+DE2TDSEiIiLiraZ6O0ZEREQ8phAiIiIinlAIEREREU8ohIiIiIgnFEJERETEEwohIiIi4gmFEBEREfGEQoiIiIh44v8DQW8sSgswptAAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "ax = set3[['Prozent der Befragten', 'Prozent d ges mögl Nennungen',\n", " 'Prozent d ges tats Nennungen']].plot.barh(figsize = (8.5,4.5))\n", "\n", "# 'ax = set3.plot.barh(figsize = (8.5,4.5))' um alles (also alle 4 Balken pro Marke) zu visualisieren;\n", "# dies macht aber nicht viel Sinn, da Prozentwerte und absolute Häufigkeiten vermischt würden." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Sortieren wird die Balken noch der Länge nach absteigend..." ] }, { "cell_type": "code", "execution_count": 32, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAiEAAAEUCAYAAAD9SOYEAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAAoCUlEQVR4nO3de3gV1b3/8feXgAGBExQRL0iCVa7ZIdGABuWSgsEKKCIplqgBBMnRYlGrgrQIUk45hdN6uLQUBUMrtZwGrVrlFLEgxktDUiLhHvsjXoBHLpoIhSgJ6/dHNvskkMtOSDIh+byehyd7ZtbM/s5KHvfHNbNnmXMOERERkfrWzOsCREREpGlSCBERERFPKISIiIiIJxRCRERExBMKISIiIuIJhRARERHxRHOvC/DaJZdc4iIiIrwuQ0REpFHKyso67JzrUN62Jh9CIiIiyMzM9LoMERGRRsnMPqlomy7HiIiIiCcUQkRERMQTCiEiIiLiCYUQERER8YRCiIiIiHhCIUREREQ8oRAiIiIinlAIEREREU8ohIiIiIgnFEJERETEEwohIiIi4gmFEBEREfGEQoiIiIh4osnPorv9yHZ8K31elyEiIuKpnOScen9PjYSIiIiIJxRCRERExBMKISIiIuIJhRARERHxhEKIiIiIeEIhRERERDyhECIiIiKeUAgRERERTyiEiIiIiCcUQkRERMQTTf6x7b2++ZbMvZ96XYaInG9mFXhdgch5r0GMhJhZhJltq4Pj5pnZJbV9XBERETl3DSKEiIiISNPTkEJIiJk9Z2bbzWydmbUys++Y2f+aWZaZvWtm3QHMbISZ/d3MtpjZejPr6F/f3r/vFjP7LWCenpGIiIhUqCGFkGuBJc65XkA+cBewDJjinLse+DHwa3/bdOBG51wM8EfgCf/6p4F0//rXgM71V76IiIhUR0O6MXWvcy7b/zoLiAD6AX8yCwxohPp/dgJWm9nlwAXAXv/6AcAoAOfcG2b2VXlvZGYPAA8AdA7TYImIiIgXGtJIyDelXhcDFwP5zrnoUv96+LcvAhY753zAZKBlqX1dVW/knFvmnIt1zsV2uFAhRERExAsNKYSc6Wtgr5klAliJ3v5tYcA+/+vkUvtsApL87b8HXFRPtYqIiEg1NeQQAiWB4n4z+wjYDtzhXz+Lkss07wKHS7WfDQwws38ACYAeACIiItJAmXNVXr1o1GKvCHGZD7TxugwROd/oYWUiQTGzLOdcbHnbGtKNqZ7IcVcTUfis12XIOcibN8zrEkREpAYa+uUYERERaaQUQkRERMQTCiEiIiLiCYUQERER8YRCiIiIiHhCIUREREQ8oRAiIiIinlAIEREREU8ohIiIiIgnmvwTU31XhpGpJ26KiIjUO42EiIiIiCcUQkRERMQTCiEiIiLiCYUQERER8YRCiIiIiHhCIUREREQ8oRAiIiIinlAIEREREU8ohIiIiIgnFEJERETEEwohIiIi4gmFEBEREfGEQoiIiIh4QiFEREREPKEQIiIiIp5QCBERERFPKISIiIiIJxRCRERExBMKISIiIuIJhRARERHxhEKIiIiIeEIhRERERDyhECIiIiKeUAgRERERTyiEiIiIiCcUQkRERMQTCiEiIiLiCYUQERER8YRCiIiIiHhCIUREREQ80dzrAry2/ch2fCt9XpchIiLlyEnO8boEqUMaCRERERFPKISIiIiIJxRCRERExBMKISIiIuIJhRARERHxhEKIiIiIeEIhRERERDyhECIiIiKeUAgRERERTzT5J6b2+uZbMvd+6nUZIo3XrAKvKxCRBqrORkLM7FhdHbvUe0Sb2W11/T4iIiJS+873yzHRgEKIiIjIeajOQ4iZtTGzt83sH2aWY2Z3lNp2n5ltNbOPzOz3/nXh/vZb/T87+9cnmtk2f9tNZnYB8AwwxsyyzWyMmbU2sxVmttnMtpR+LxEREWlY6uOekELgTufc12Z2CfChmb0G9ARmADc55w6b2cX+9ouB3znnVprZBGAhMBKYCQx1zu0zs3bOuW/NbCYQ65z7IYCZ/QfwN+fcBDNrB2SY2Xrn3L/q4TxFRESkGurjcowB/2FmW4H1wJVAR+C7QJpz7jCAc+5Lf/s44A/+178Hbva/fg9INbNJQEgF75UATDOzbGAj0BLofFZBZg+YWaaZZR467s7t7ERERKRG6mMkJAnoAFzvnDtpZnmUhAMDgkkADsA5l2JmNwDDgGwziy6nrQF3Oed2V3pA55YBywBirwhRChEREfFAfYyEhAEH/QEkHgj3r38b+L6ZtQcodTnmfeBu/+skIN2//TvOub8752YCh4GrgKNA21Lv9VdgipmZf5+YujstERERORf1EUJWAbFmlklJqNgF4JzbDswF3jGzj4Bf+ts/DIz3X765F/iRf/18/42t24BNwEfABqDn6RtTgTlAC2Crv92cejg/ERERqQFzrmlfjYi9IsRlPtDG6zJEGi89rEykSTOzLOdcbHnbmvwTU3Pc1UQUPut1GY1e3rxhXpcgIiINzPn+sDIRERE5TymEiIiIiCcUQkRERMQTCiEiIiLiCYUQERER8YRCiIiIiHhCIUREREQ8oRAiIiIinlAIEREREU80+Sem+q4MI1NP8xQREal3GgkRERERTyiEiIiIiCeCCiFm1tHMlpvZWv9yTzO7v25LExERkcYs2JGQVOCvwBX+5T3A1DqoR0RERJqIYEPIJc65/wFOATjnioDiOqtKREREGr1gQ8i/zKw94ADM7EagoM6qEhERkUYv2K/oPgq8BnzHzN4DOgCj66wqERERafSCDSFfAgOBboABu4HoOqpJREREmoBgL8esATo657Y757YBccCKuitLREREGrtgQ0gK8Gczu8zMbgMWArfVXVkiIiLS2AV1OcY5t9nMHgbWAYXALc65Q3VamYiIiDRqlYYQM3sd/zdi/C6k5Fsxy80M59ztdVmciIiINF5VjYQsqJcqREREpMmpNIQ4594xsxDgr865IfVUk4iIiDQBVd6Y6pwrBo6bWVg91CMiIiJNRLDPCSkEcszsLeBfp1c65x6uk6pERESk0Qs2hLzh/yciIiJSK4L9iu7Kui5EREREmpagQoiZXQv8HOgJtDy93jl3dR3VJSIiIo1csE9MfQH4DVAExAO/A35fV0WJiIhI4xdsCGnlnHsbMOfcJ865WcB3664sERERaeyC/naMmTUDcs3sh8A+4NK6K0tEREQau2BHQqZS8sj2h4HrgXuB5DqqSURERJqAoCew8788Boyvu3JERESkqahqArvXKtuuCexERESkpqoaCYkDPgNeAv4OWJ1XJCIiIk1CVSHkMuAW4AfAWEqemvqSc257XRcmIiIijVulN6Y654qdc//rnEsGbgQ+Bjaa2ZR6qU5EREQarSpvTDWzUGAYJaMhEcBC4OW6LUtEREQau6puTF0JRAJrgdnOuW31UpWIiIg0euacq3ij2SngX/7F0g0NcM65f6vD2upFqy6t3DWzrvG6DBERKUdOco7XJcg5MrMs51xsedsqHQlxzgX7MDMRERGRalHIEBEREU8ohIiIiIgnFEJERETEEwohIiIi4gmFEBEREfGEQoiIiIh4QiFEREREPKEQIiIiIp6ocu6Yxq7XN9+SufdTr8sQabxmFXhdgYg0UOfVSIiZPWNmQ/yv88zsEq9rEhERkZo5r0ZCnHMzva5BREREakeDHAkxswgz22lmz5nZdjNbZ2atzCzVzEaf0baVmf2vmU0ys9ZmtsLMNpvZFjO7w6tzEBERkco1yBDidy2wxDnXC8gH7iqnTRvgdeAPzrnngBnA35xzfYB4YL6Zta6nekVERKQaGnII2eucy/a/zgIiymnzKvCCc+53/uUEYJqZZQMbgZZA5zN3MrMHzCzTzDIPHXe1XLaIiIgEoyGHkG9KvS6m/PtX3gO+Z2bmXzbgLudctP9fZ+fczjN3cs4tc87FOudiO1xoZ24WERGRetCQQ0gwZgJHgF/7l/8KTDkdSswsxqvCREREpHLnewgBmAq0NLNfAHOAFsBWM9vmXxYREZEGqEF+Rdc5lwdEllpeUE6biFKL40u9nlxnhYmIiEitaZAhpD7luKuJKHzW6zIavbx5w7wuQUREGpjGcDlGREREzkMKISIiIuIJhRARERHxhEKIiIiIeEIhRERERDyhECIiIiKeUAgRERERTyiEiIiIiCcUQkRERMQTTf6Jqb4rw8jU0zxFRETqnUZCRERExBMKISIiIuIJhRARERHxhEKIiIiIeEIhRERERDyhECIiIiKeUAgRERERTyiEiIiIiCcUQkRERMQTCiEiIiLiCYUQERER8YRCiIiIiHhCIUREREQ8oRAiIiIinlAIEREREU8ohIiIiIgnFEJERETEEwohIiIi4gmFEBEREfGEQoiIiIh4QiFEREREPKEQIiIiIp5QCBERERFPNPe6ABGRxuTkyZN8/vnnFBYWel2KSL1q2bIlnTp1okWLFkHvoxAiIlKLPv/8c9q2bUtERARm5nU5IvXCOceRI0f4/PPP6dKlS9D76XKMiEgtKiwspH379gog0qSYGe3bt6/2CKBCiIhILVMAkaaoJn/3CiEiIo1MSEgI0dHRREZGkpiYyPHjx+u9htTUVPbv319lu7y8PCIjI+uhouDl5+dz2223sX//fkaPHl1l+40bNzJ8+PBy15sZr7/+emDd8OHD2bhxY22We17TPSEiInUoYtobtXq8vHnDqmzTqlUrsrOzAUhKSmLp0qU8+uijge3FxcWEhITUal1nSk1NJTIykiuuuKJO36cutGvXjjfffBOAtLS0czpWp06dmDt3LiNGjKiN0hodjYSIiDRi/fv35+OPP2bjxo3Ex8czduxYfD4fhYWFjB8/Hp/PR0xMDBs2bABg4sSJREdHEx0dTYcOHZg9ezYA8+fPp0+fPkRFRfH0008DJaMYPXr0YNKkSfTq1YuEhAROnDhBWloamZmZJCUlER0dzYkTJ8rUlJWVRe/evYmLi2PJkiXl1n3q1CkefPBBevXqxfDhw7ntttsCgSArK4uBAwdy/fXXM3ToUA4cOADAwoUL6dmzJ1FRUdx9991nHTM1NZWRI0cyYsQIunTpwuLFi/nlL39JTEwMN954I19++SUA2dnZ3HjjjURFRXHnnXfy1VdfAbB582aioqKIi4vj8ccfD2oEp3fv3oSFhfHWW2+dta2i8xg0aBBPPvkkffv2pWvXrrz77ruB+keNGsWtt97KtddeyxNPPBE4Vps2bQKv09LSGDduHADjxo3j4Ycfpl+/flx99dWBPqxJ/1ZU17lo8iMh249sx7fS53UZIrUmJznH6xKkgSgqKmLt2rXceuutAGRkZLBt2za6dOnCf/3XfwGQk5PDrl27SEhIYM+ePTz//PMAfPLJJwwdOpRx48axbt06cnNzycjIwDnH7bffzqZNm+jcuTO5ubm89NJLPPfcc3z/+99nzZo13HPPPSxevJgFCxYQGxt7Vl3jx49n0aJFDBw4kMcff7zc2l9++WXy8vLIycnh4MGD9OjRgwkTJnDy5EmmTJnCq6++SocOHVi9ejUzZsxgxYoVzJs3j7179xIaGkp+fn65x922bRtbtmyhsLCQa665hv/8z/9ky5YtPPLII/zud79j6tSp3HfffYH6Zs6cyezZs3n22WcZP348y5Yto1+/fkybNi3o38NPfvITfvKTn3DLLbcE1lV2Hqd/dxkZGbz55pvMnj2b9evXAyUBacuWLYSGhtKtWzemTJnCVVddVen7HzhwgPT0dHbt2sXtt9/O6NGja9S/ldVVU00+hIiINDYnTpwgOjoaKBkJuf/++3n//ffp27dv4OuT6enpTJkyBYDu3bsTHh7Onj17iIqKorCwkMTERBYvXkx4eDiLFi1i3bp1xMTEAHDs2DFyc3Pp3LkzXbp0CbzX9ddfT15eXqW1FRQUkJ+fz8CBAwG49957Wbt27Vnt0tPTSUxMpFmzZlx22WXEx8cDsHv3brZt2xb4QC8uLubyyy8HICoqiqSkJEaOHMnIkSPLff/4+Hjatm1L27ZtCQsLC1wm8fl8bN269az6kpOTSUxMJD8/n6NHj9KvXz8Axo4dy1/+8pdKz/W0/v37A5QZOajsPABGjRoFnN2ngwcPJiwsDICePXvyySefVBlCRo4cSbNmzejZsydffPEFULP+rayumlIIERFpZErfE1Ja69atA6+dcxXun5KSwqhRoxgyZEig7fTp05k8eXKZdnl5eYSGhgaWQ0JCzrr0cibnXFDfoqioPuccvXr14oMPPjhr2xtvvMGmTZt47bXXmDNnDtu3b6d587Ifc6XrbdasWWC5WbNmFBUVVbueYM2YMYO5c+cG6qnsPErXGRISUqauM/v79LbSfXrm12RL73P6PGrSv5XVVVO6J0REpAkaMGAAq1atAmDPnj18+umndOvWjSVLlnD06NEylxuGDh3KihUrOHbsGAD79u3j4MGDlR6/bdu2HD169Kz17dq1IywsjPT0dIBADWe6+eabWbNmDadOneKLL74IfKOkW7duHDp0KPAhefLkSbZv386pU6f47LPPiI+P5xe/+AX5+fmBeqsjLCyMiy66KDBq8fvf/56BAwdy0UUX0bZtWz788EMA/vjHP1bruAkJCXz11Vd89NFHlZ5HTXXs2JGdO3dy6tQpXnnllSrbV7d/64pGQkREmqAHH3yQlJQUfD4fzZs3JzU1ldDQUBYsWECLFi0Cl1hSUlJISUlh586dxMXFASU3Qb744ouVfsNm3LhxpKSk0KpVKz744ANatWoV2PbCCy8wYcIELrzwQoYOHVru/nfddRdvv/02kZGRdO3alRtuuIGwsDAuuOAC0tLSePjhhykoKKCoqIipU6fStWtX7rnnHgoKCnDO8cgjj9CuXbsa9c3KlStJSUnh+PHjXH311bzwwgsALF++nEmTJtG6dWsGDRoUuCwSrBkzZnDHHXcAVHgevXr1qlHN8+bNY/jw4Vx11VVERkZWGcCq2781rasqdq5DTOe7Vl1auWtmXeN1GSK1Rjememvnzp306NHD6zIahWPHjtGmTRuOHDlC3759ee+997jssss8rwdKPvQPHDjAf//3f3tWz7mqi/4t7+/fzLKcc2ffoYxGQkREpIEaPnw4+fn5fPvtt/z0pz/1NIBAyT0nP//5zykqKiI8PJzU1FRP6zlXDaF/FUJERKRBamhPFh0zZgxjxozxuoxa0xD6VzemioiIiCcUQkRERMQTTf5yTK9vviVz76delyHBmlXgdQUiIlJLGtRIiJlFmNk2r+sQERGRutegQoiIiJy7kJAQoqOjiYyMJDExkePHj9d7Dampqezfv7/Kdnl5eUFNBFcbsrOzA7Pj1ka70syMxx57LLC8YMECZs2aVd0Sm5yGeDmmuZmtBGKAPcB9QBywgJJ6NwP/7pz7xszmAbcDRcA659yPzSwReBooBgqccwO8OAkREQBmVe+BVlUfr+pLkqUf256UlMTSpUt59NFHA9uLi4srfdBYbUhNTSUyMpIrrriiTt+nOrKzs8nMzOS2226rlXalhYaG8vLLLzN9+nQuueSScy21yWiIIyHdgGXOuSjga+BRIBUY45zzURJE/t3MLgbuBHr52/7Mv/9MYKhzrjclAUVEpMnq378/H3/8MRs3biQ+Pp6xY8fi8/koLCxk/Pjx+Hw+YmJi2LBhAwATJ04kOjqa6OhoOnTowOzZswGYP38+ffr0ISoqiqeffhooGcXo0aMHkyZNolevXiQkJHDixAnS0tLIzMwkKSmJ6Ojos+aTycrKonfv3sTFxbFkyZJy667JVPMLFy6kZ8+eREVFcffdd5c53rfffsvMmTNZvXo10dHRrF69moyMDPr160dMTAz9+vVj9+7d5bZ75513An0SExNT7uPomzdvzgMPPMCvfvWrs7YdOnSIu+66iz59+tCnTx/ee+89AGbNmsWECRMYNGgQV199NQsXLqy0XwEGDRpEZmYmAIcPHyYiIgIoCX2jRo3i1ltv5dprr+WJJ54IvP/y5cvp2rUrgwYNYtKkSfzwhz+sUV11oSGGkM+cc+/5X78IDAb2Ouf2+NetBAZQElAKgefNbBRwerzxPSDVzCYB5UZ9M3vAzDLNLPPQ8ab9xFgRabyKiopYu3YtPp8PgIyMDObOncuOHTsCH/45OTm89NJLJCcnU1hYyPPPP092djavvvoq7du3Z9y4caxbt47c3FwyMjLIzs4mKyuLTZs2AZCbm8tDDz3E9u3badeuHWvWrGH06NHExsayatUqsrOzyzyyHWD8+PEsXLiwwknSgDJTzT///PNl5jKZMmUKaWlpZGVlMWHCBGbMmAGUPMV0y5YtbN26laVLl5Y53gUXXMAzzzzDmDFjyM7OZsyYMXTv3p1NmzaxZcsWnnnmGZ566qly2y1YsIAlS5aQnZ3Nu+++e9b5nPbQQw+xatUqCgrKjlb96Ec/4pFHHmHz5s2sWbOGiRMnBrbt2rWLv/71r2RkZDB79mxOnjxZYb9WJTs7m9WrV5OTk8Pq1av57LPP2L9/P3PmzOHDDz/krbfeYteuXedUV21riJdjgkoFzrkiM+tLSUi5G/gh8F3nXIqZ3QAMA7LNLNo5d+SMfZcBywBirwhRChGRRuXEiROBuV/69+/P/fffz/vvv0/fvn3p0qULUDKV+5QpUwDo3r074eHh7Nmzh6ioKAoLC0lMTGTx4sWEh4ezaNEi1q1bR0xMDFDyuO/c3Fw6d+5Mly5dAu8VzPTuBQUF5OfnM3DgQADuvfde1q5de1a7mkw1HxUVRVJSEiNHjmTkyJFV9lNBQQHJycnk5uZiZhV+0N500008+uijJCUlMWrUKDp16lRuu3/7t3/jvvvuY+HChWWCyvr169mxY0dg+euvvw6MpgwbNozQ0FBCQ0O59NJL+eKLLwCq3a8AgwcPDsxn07NnTz755BMOHz7MwIEDufjiiwFITExkz549NaqrovM+Fw0xhHQ2szjn3AfAD4D1wGQzu8Y59zFwL/COmbUBLnTOvWlmHwIfA5jZd5xzfwf+bmYjgKuAI+W/lYhI41P6npDSWrduHXhd2bxhKSkpjBo1iiFDhgTaTp8+ncmTJ5dpl5eXd9bU8mdeejmTc67MtPOVtatofUVTzb/xxhts2rSJ1157jTlz5rB9+3aaN6/4Y+6nP/0p8fHxvPLKK+Tl5TFo0KBy202bNo1hw4bx5ptvcuONN7J+/Xq6d+9ebtupU6dy3XXXMX78+MC6U6dOnTWJ32ln9l9RUVG560/3a/PmzTl16hQAhYWFVR6rst9zTeqqbQ3xcsxOINnMtgIXA78CxgN/MrMc4BSwFGgL/MXf7h3gEf/+880sx/9V303AR/V9AiIiDd2AAQNYtWoVAHv27OHTTz+lW7duLFmyhKNHjzJt2rRA26FDh7JixYrAzKz79u3j4MGDlR6/bdu25d470a5dO8LCwkhPTwcI1HCm6k41f+rUKT777DPi4+P5xS9+QX5+/lkzyZ5ZU0FBAVdeeSVAmXlgzmz3z3/+E5/Px5NPPklsbGyZSxpnuvjii/n+97/P8uXLA+sSEhJYvHhxYLm8gBisiIgIsrKyAAL3yFSmb9++vPPOO3z11VcUFRWVuaxTm3XVVIMKIc65POdcT+dcinMuyjl3l3PuuHPubedcjHPO55yb4Jz7xjl3wDnX19/O55xb6T/GKP9ypHPuR66pTxMsIlKOBx98kOLiYnw+H2PGjCE1NZXQ0FAWLFhATk5O4EbMpUuXkpCQwNixY4mLi8Pn8zF69OhyA0Zp48aNIyUlpdwbU1944QUeeugh4uLiKry/4q677qJTp05ERkYyefLks6aaf/LJJ+nduzfR0dG8//77FBcXc8899wRutH3kkUdo165dmWPGx8ezY8eOwA2nTzzxBNOnT+emm26iuLi4wnbPPvsskZGR9O7dm1atWvG9732v0nN/7LHHOHz4cGB54cKFZGZmEhUVRc+ePc+6X6U6fvzjH/Ob3/yGfv36lXmPilx55ZU89dRT3HDDDQwZMoSePXsGLtnUZl01ZU39Mzr08mvd5cnPel1GteTNG+Z1CSJSgfKmMpeaqYup5pui0/1YVFTEnXfeyYQJE7jzzjvr5L3K+/s3syznXGx57RviPSEiIiINYqr5xmDWrFmsX7+ewsJCEhISgrppt74ohIiISIPUEKaabwwWLFjgdQkValD3hIiIiEjToRAiIiIinlAIEREREU8ohIiIiIgnFEJERBqZkJAQoqOjiYyMJDExkePHj1e9Uy1LTU1l//79VbbLy8sjMjLynN4rIiICn89HdHQ0Pp+PV199tcp9/vSnP9GjR4/A4+DPVbDnK2Xp2zEiInXIt9JXq8fLSc6psk3px7YnJSWxdOlSHn300cD24uJiQkLKnd+z1qSmphIZGckVV1xRq8etqPYNGzZwySWXsHv3bhISErjjjjsqPc7y5cv59a9/fVYIKSoqqvRR7xWpq/Nt7DQSIiLSiPXv35+PP/6YjRs3Eh8fz9ixY/H5fBQWFjJ+/PjAE0Y3bNgAwMSJEwNPS+3QoQOzZ88GYP78+fTp04eoqCiefvppoOIp59PS0sjMzCQpKancJ6ZmZWXRu3dv4uLiArP5QknAePzxxwPv89vf/hbgrNor8/XXX3PRRRcFll988UX69u1LdHQ0kydPpri4mGeeeYb09HRSUlJ4/PHHSU1NJTExkREjRpCQkMCxY8cYPHgw11133VkjK3PmzKF79+7ccsst/OAHP2DBggXlnm9WVhYDBw7k+uuvZ+jQoRw4cACAQYMG8eSTT9K3b1+6du3Ku+++W9NfbaOgECIi0kgVFRWxdu3awAd3RkYGc+fOZceOHYEP/5ycHF566SWSk5MpLCzk+eefJzs7m1dffZX27dszbtw41q1bR25uLhkZGWRnZ5OVlcWmTZuA8qecHz16NLGxsaxatYrs7OyzHs0+fvx4Fi5ceNYkdMuXLycsLIzNmzezefNmnnvuOfbu3XtW7eWJj48nMjKSgQMH8rOf/QwoeXrn6tWree+998jOziYkJIRVq1Yxc+bMQH3z588H4IMPPmDlypX87W9/o2XLlrzyyiv84x//YMOGDTz22GM458jMzGTNmjVs2bKFl19+mczMTICzzrd58+ZMmTKFtLQ0srKymDBhAjNmzCjze8nIyODZZ58NhLymqslfjvFdGUamHoMuIo3IiRMnAtPA9+/fn/vvv5/333+fvn370qVLFwDS09OZMmUKAN27dyc8PJw9e/YQFRVFYWEhiYmJLF68mPDwcBYtWsS6deuIiYkBSh4DnpubS+fOnas95XxBQQH5+fkMHDgQgHvvvZe1a9cCsG7dOrZu3RqYmK2goIDc3FwuuOCCMrWX5/TlmH/+858MHjyYQYMG8fbbb5OVlUWfPn0C/XLppZeWu/8tt9wSmO7eOcdTTz3Fpk2baNasGfv27eOLL74gPT2dO+64IxCqRowYUe6xdu/ezbZt27jllluAkhGeyy+/PLB91KhRQfdXY9fkQ4iISGNT+p6Q0lq3bh14Xdm8YSkpKYwaNYohQ4YE2k6fPp3JkyeXaZeXl1fhlPMVcc5hZhVuW7RoEUOHDi2zfuPGjWVqr8x3vvMdOnbsyI4dO3DOkZyczM9//vMq9yt9/FWrVnHo0CGysrJo0aIFERERFBYWVtpnZ55Hr169zhrpOe10n4WEhFBUVBTUMRsrXY4REWmCBgwYwKpVqwDYs2cPn376Kd26dWPJkiUcPXqUadOmBdoOHTqUFStWcOzYMQD27dvHwYMHKz1+27Zty51pt127doSFhZGeng4QqOH0+/zmN7/h5MmTgbr+9a9/Veu8Dh48yN69ewkPD2fw4MGkpaUFav3yyy/55JNPqjxGQUEBl156KS1atGDDhg2BfW6++WZef/11CgsLOXbsGG+88Ua559utWzcOHToUCCEnT55k+/bt1TqPpkIjISIiTdCDDz5ISkoKPp+P5s2bk5qaSmhoKAsWLKBFixaBSywpKSmkpKSwc+dO4uLiAGjTpg0vvvhipd+wGTduHCkpKbRq1YoPPvigzH0hL7zwAhMmTODCCy8sM+oxceJE8vLyuO6663DO0aFDB/785z8HdT7x8fGEhIRw8uRJ5s2bR8eOHenYsSM/+9nPSEhI4NSpU7Ro0YIlS5YQHh5e6bGSkpIYMWIEsbGxREdH0717dwD69OnD7bffTu/evQkPDyc2NpawsLByzzctLY2HH36YgoICioqKmDp1Kr169QrqXJoSC3Z4qbGKjY11p28uEhE5V+VNZS6Nx7Fjx2jTpg3Hjx9nwIABLFu2jOuuu87rshqM8v7+zSzLORdbXnuNhIiIiATpgQceYMeOHRQWFpKcnKwAco4UQkRERIL0hz/8wesSGhXdmCoiIiKeUAgREallTf1eO2maavJ3rxAiIlKLWrZsyZEjRxREpElxznHkyBFatmxZrf10T4iISC3q1KkTn3/+OYcOHfK6FJF61bJlSzp16lStfRRCRERqUYsWLSp9vLiI/B9djhERERFPKISIiIiIJxRCRERExBNN/rHtZnYU2O11Hee5S4DDXhfRCKgfz5368NypD8+d+rCscOdch/I26MZU2F3RM+0lOGaWqT48d+rHc6c+PHfqw3OnPgyeLseIiIiIJxRCRERExBMKIbDM6wIaAfVh7VA/njv14blTH5479WGQmvyNqSIiIuINjYSIiIiIJ5psCDGzW81st5l9bGbTvK7nfGFmK8zsoJltK7XuYjN7y8xy/T8v8rLGhs7MrjKzDWa208y2m9mP/OvVj0Eys5ZmlmFmH/n7cLZ/vfqwmswsxMy2mNlf/Mvqw2oyszwzyzGzbDPL9K9TPwahSYYQMwsBlgDfA3oCPzCznt5Wdd5IBW49Y9004G3n3LXA2/5lqVgR8JhzrgdwI/CQ/+9P/Ri8b4DvOud6A9HArWZ2I+rDmvgRsLPUsvqwZuKdc9GlvpqrfgxCkwwhQF/gY+fc/3POfQv8EbjD45rOC865TcCXZ6y+A1jpf70SGFmfNZ1vnHMHnHP/8L8+SskHwJWoH4PmShzzL7bw/3OoD6vFzDoBw4DnS61WH9YO9WMQmmoIuRL4rNTy5/51UjMdnXMHoOQDFrjU43rOG2YWAcQAf0f9WC3+ywjZwEHgLeec+rD6ngWeAE6VWqc+rD4HrDOzLDN7wL9O/RiEpvrEVCtnnb4mJPXKzNoAa4Cpzrmvzcr7s5SKOOeKgWgzawe8YmaRHpd0XjGz4cBB51yWmQ3yuJzz3U3Ouf1mdinwlpnt8rqg80VTHQn5HLiq1HInYL9HtTQGX5jZ5QD+nwc9rqfBM7MWlASQVc65l/2r1Y814JzLBzZScq+S+jB4NwG3m1keJZekv2tmL6I+rDbn3H7/z4PAK5Rc8lc/BqGphpDNwLVm1sXMLgDuBl7zuKbz2WtAsv91MvCqh7U0eFYy5LEc2Omc+2WpTerHIJlZB/8ICGbWChgC7EJ9GDTn3HTnXCfnXAQl/w38m3PuHtSH1WJmrc2s7enXQAKwDfVjUJrsw8rM7DZKroeGACucc3O9rej8YGYvAYMomSXyC+Bp4M/A/wCdgU+BROfcmTevip+Z3Qy8C+Twf9fin6LkvhD1YxDMLIqSm/1CKPmfqf9xzj1jZu1RH1ab/3LMj51zw9WH1WNmV1My+gEltzj8wTk3V/0YnCYbQkRERMRbTfVyjIiIiHhMIUREREQ8oRAiIiIinlAIEREREU8ohIiIiIgnFEJERETEEwohIiIi4gmFEBEREfHE/we5Q28+eEdwhQAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "ax = set3[['Prozent d ges mögl Nennungen',\n", " 'Prozent d ges tats Nennungen', 'Prozent der Befragten']].plot.barh(figsize = (8.5,4.5))\n", "\n", "# gleich Grafik wie vorhin, nur sind die Balken nun nach Größe angeordnet..." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "##### \"Styling\" der Outputtabelle\n", "\n", "Man kann die Outputtabelle auch gestalten, z.B. in die Beschriftung der X-Achse '%' einfügen. Dies hat jedoch nur ästethische Auswirkungen und wird nicht im Dataframe zur weiteren Verwendung gespeichert.\n", "\n", "[Finer Control: Display Values](https://pandas.pydata.org/pandas-docs/stable/user_guide/style.html#Finer-Control:-Display-Values)" ] }, { "cell_type": "code", "execution_count": 38, "metadata": {}, "outputs": [ { "data": { "text/html": [ "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
Summe der Nennungen Prozent der Befragten Prozent d ges mögl Nennungen Prozent d ges tats Nennungen
Marke
boss222.2%5.6%13.3%
nike444.4%11.1%26.7%
lacoste444.4%11.1%26.7%
head555.6%13.9%33.3%
" ], "text/plain": [ "" ] }, "execution_count": 38, "metadata": {}, "output_type": "execute_result" } ], "source": [ "set3.style.format({\n", " \"Summe der Nennungen\" : \"{:.0f}\", # 0 Dezimalstellen\n", " 'Prozent der Befragten' : '{:.1f}%', # 1 Dezimalstelle und '%'\n", " \"Prozent d ges mögl Nennungen\" : \"{:.1f}%\",\n", " \"Prozent d ges tats Nennungen\" : \"{:.1f}%\"\n", "})" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "##### Speichern des Dataframes\n", "\n", "Obige Tabelle (ohne das \"Styling\") kann mit **to_clipboard()** exportiert (d.h. in die Zwischenablage kopiert) werden, damit man sie dann bspw. leicht in Excel oder ähnlichen Programmen einfügen und weiterverwenden kann." ] }, { "cell_type": "code", "execution_count": 34, "metadata": {}, "outputs": [], "source": [ "set3.to_clipboard(decimal = \",\")\n", "\n", "# Angabe von 'decimal = \",\"' ist wichtig, da ansonsten ein '.' als Dezimaltrennzeichen verwendet wird;\n", "# dies ist im deutschsprachigen Raum jedoch nicht üblich und führt zu Problemen, bspw. wenn man den Output in eine Excel-Tabelle einfügt." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Exkurs: Aufruf der Funktion **mr()** zur Auswertungen von Mehrfachantworten\n", "\n", "Alles was in diesem Notebook bisher behandelt wurde, habe ich in der Funktion **mr()** zusammengefasst. Unter folgendem Link finden sich alle weiteren Infos dazu:\n", "\n", "[mr - multiple responses](https://github.com/manfred2020/multiple-responses)" ] }, { "cell_type": "code", "execution_count": 35, "metadata": {}, "outputs": [], "source": [ "from mr import mr # Import der Funktion 'mr' aus dem Modul (dem File) 'mr'" ] }, { "cell_type": "code", "execution_count": 37, "metadata": {}, "outputs": [ { "data": { "text/html": [ "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
Anz Nennungen % Befragte % mögl Nennungen % tatsächl Nennungen
boss222.2%5.6%13.3%
nike444.4%11.1%26.7%
lacoste444.4%11.1%26.7%
head555.6%13.9%33.3%
" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAhMAAAEUCAYAAACRTrQBAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAAfyElEQVR4nO3deZQV5Z3/8feXTTQQQFEPgooajUJ30yC7G7ggo6i4opgIYSIGfo6OcYsb4hZBSWJ0hjGo88NMDDJxISQ6kWAUgyuNtGzi9gONoycC4oLI/vz+6Eun1Ua6u7q5dPt+nXNP1616qup7H5H+8FTdeiKlhCRJUk01yncBkiSpfjNMSJKkTAwTkiQpE8OEJEnKxDAhSZIyMUxIkqRMmuS7gNrStm3b1LFjx3yXIUlSgzR37twVKaXdK9vWYMJEx44dKSkpyXcZkiQ1SBHx9ta2eZlDkiRlYpiQJEmZGCYkSVImhglJkpSJYUKSJGVimJAkSZkYJiRJUiaGCUmSlIlhQpIkZWKYkCRJmRgmJElSJoYJSZKUiWFCkiRl0mBmDV20chGF9xfmuwxJkvJqwbAF2/2cjkxIkqRMDBOSJCkTw4QkScrEMCFJkjIxTEiSpEwME5IkKRPDhCRJysQwIUmSMjFMSJKkTAwTkiQpkwbzOO3O69ZTsvSdfJchqb4Z+3G+K5DqvVodmYiIjhGxsDaPmTvusohoW9vHlSRJ2XmZQ5IkZVIXYaJxRNwTEYsiYkZE7BwRB0TEnyJibkT8NSIOBoiIkyLixYiYFxEzI2LP3PrdcvvOi4hfAVEHdUqSpFpQF2HiQODfU0qdgY+A04FJwL+klA4FLgMm5trOBnqnlLoCDwJX5NZfD8zOrZ8O7FMHdUqSpFpQFzdgLk0pleaW5wIdgb7A7yLKBxh2yv3sAEyNiHZAM2Bpbv2RwGkAKaXHImJVZSeKiJHASIB9Wjl4IUlSPtTFyMS6CsubgF2Bj1JKxRVeh+S23wX8W0qpELgAaF5h37StE6WUJqWUuqeUuu++i2FCkqR82B43YH4CLI2IMwGiTJfctlbA/+aWh1XY5xng3Fz7fwLabIc6JUlSDWyvb3OcC/xzRLwCLAJOya0fS9nlj78CKyq0vwE4MiJeBgYAPkBCkqQdVKS0zasJ9UL3vRqnkpEt8l2GpPrGh1ZJVRIRc1NK3Svb1mCegLkg7U/HtXfkuwxlsGzcifkuQZJUAz60SpIkZWKYkCRJmRgmJElSJoYJSZKUiWFCkiRlYpiQJEmZGCYkSVImhglJkpSJYUKSJGXSYJ6AWdi+FSU+QVGSpO3OkQlJkpSJYUKSJGVimJAkSZkYJiRJUiaGCUmSlIlhQpIkZWKYkCRJmRgmJElSJoYJSZKUiWFCkiRlYpiQJEmZGCYkSVImhglJkpSJYUKSJGVimJAkSZkYJiRJUiaGCUmSlIlhQpIkZWKYkCRJmRgmJElSJoYJSZKUiWFCkiRlYpiQJEmZGCYkSVImhglJkpSJYUKSJGVimJAkSZkYJiRJUiaGCUmSlIlhQpIkZdIk3wXUlkUrF1F4f2G+y5AkVWLBsAX5LkF1yJEJSZKUiWFCkiRlYpiQJEmZGCYkSVImhglJkpSJYUKSJGVimJAkSZkYJiRJUiaGCUmSlEmDeQJm53XrKVn6Tr7LkBqusR/nuwJJO6htjkxExOq6LiIiiiPihLo+jyRJqn07ymWOYsAwIUlSPVTlMBERLSLiyYh4OSIWRMQpFbadFxHzI+KViPiv3Lp9c+3n537uk1t/ZkQszLV9JiKaATcCQyKiNCKGRMS3IuI/I2JORMyreC5JkrRjqc49E2uBU1NKn0REW+CFiJgOdAKuAQ5LKa2IiF1z7f8N+HVK6f6IGAHcCQwGxgDHp5T+NyJap5TWR8QYoHtK6UKAiPgp8JeU0oiIaA28FBEzU0qf1cJnliRJtag6lzkC+GlEzAdmAu2BPYGjgYdSSisAUkof5tr3AX6bW/4v4PDc8rPA5Ig4H2i8lXMNAH4SEaXA00BzYJ+vFBQxMiJKIqJk+ZpUjY8iSZJqS3VGJs4FdgcOTSltiIhllP2SD6Aqv8kTQErpRxHRCzgRKI2I4kraBnB6Sum1rz1gSpOASQDd92psmpAkKQ+qMzLRCvggFyT6A/vm1j8JnBURuwFUuMzxHHB2bvlcYHZu+wEppRdTSmOAFcDewKdAywrnegL4l4iI3D5dq/3JJEnSdlGdMPEA0D0iSigLB0sAUkqLgFuAWRHxCvDzXPuLgB/kLot8H7g4t/723A2cC4FngFeAp4BOW27ABG4CmgLzc+1uyvIhJUlS3YmUGsbVge57NU4lI1vkuwyp4fKhVdI3WkTMTSl1r2xbg3kC5oK0Px3X3pHvMhq8ZeNOzHcJkqQdzI7y0CpJklRPGSYkSVImhglJkpSJYUKSJGVimJAkSZkYJiRJUiaGCUmSlIlhQpIkZWKYkCRJmTSYJ2AWtm9FiU9nlCRpu3NkQpIkZWKYkCRJmRgmJElSJoYJSZKUiWFCkiRlYpiQJEmZGCYkSVImhglJkpSJYUKSJGVimJAkSZkYJiRJUiaGCUmSlIlhQpIkZWKYkCRJmRgmJElSJoYJSZKUiWFCkiRlYpiQJEmZGCYkSVImhglJkpSJYUKSJGVimJAkSZkYJiRJUiaGCUmSlIlhQpIkZWKYkCRJmRgmJElSJoYJSZKUiWFCkiRlYpiQJEmZNMl3AbVl0cpFFN5fmO8yJEmVWDBsQb5LUB1yZEKSJGVimJAkSZkYJiRJUiaGCUmSlIlhQpIkZWKYkCRJmRgmJElSJoYJSZKUiWFCkiRl0mCegNl53XpKlr6T7zKkhmvsx/muQNIOKi8jExFxY0Qcm1teFhFt81GHJEnKLi8jEymlMfk4ryRJqn11OjIRER0j4tWIuCciFkXEjIjYOSImR8QZX2q7c0T8KSLOj4hvRcR/RsSciJgXEafUZZ2SJKnmtsdljgOBf08pdQY+Ak6vpE0L4A/Ab1NK9wDXAH9JKfUA+gO3R8S3tkOtkiSpmrZHmFiaUirNLc8FOlbS5vfA/00p/Tr3fgDwk4goBZ4GmgP7fHmniBgZESURUbJ8TarlsiVJUlVsjzCxrsLyJiq/T+NZ4J8iInLvAzg9pVSce+2TUnr1yzullCallLqnlLrvvkt8ebMkSdoOdpTnTIwBVgITc++fAP5lS7iIiK75KkySJH29HSVMAPwr0DwibgNuApoC8yNiYe69JEnaAdXpV0NTSsuAggrvJ1TSpmOFtz+osHxBnRUmSZJqTYN5AuaCtD8d196R7zIavGXjTsx3CZKkHcyOdJlDkiTVQ4YJSZKUiWFCkiRlYpiQJEmZGCYkSVImhglJkpSJYUKSJGVimJAkSZkYJiRJUiYN5gmYhe1bUeLTGSVJ2u4cmZAkSZkYJiRJUiaGCUmSlIlhQpIkZWKYkCRJmRgmJElSJoYJSZKUiWFCkiRlYpiQJEmZGCYkSVImhglJkpSJYUKSJGVimJAkSZkYJiRJUiaGCUmSlIlhQpIkZWKYkCRJmRgmJElSJoYJSZKUiWFCkiRlYpiQJEmZGCYkSVImhglJkpRJk3wXIEnKZsOGDbz77rusXbs236WoAWjevDkdOnSgadOmVd7HMCFJ9dy7775Ly5Yt6dixIxGR73JUj6WUWLlyJe+++y777bdflffzMock1XNr165lt912M0gos4hgt912q/Yol2FCkhoAg4RqS03+LBkmJEmZLF++nMMPP5yCggKmTZtWvv6UU07hvffey3TsmTNnMmbMGKZPn864ceO22X7s2LFMmDCh0vW77LILH3zwQfm6Fi1aZKpN/+A9E5LUwHT8yWO1erxl40782u1Tpkxh2LBhnH322QwcOJDBgwfzhz/8gW7durHXXntlOvexxx7LscceC8DJJ5+c6Vht27blZz/7GePHj890HH2VIxOSpEyaNm3K559/zrp162jUqBEbN27kjjvu4PLLL9/qPsOHD2fUqFH079+f/fffn1mzZjFixAgOOeQQhg8fXt5uypQpFBYWUlBQwJVXXlm+/r777uOggw6iX79+nH/++Vx44YXbrHPEiBFMnTqVDz/88CvbfvOb39CzZ0+Ki4u54IIL2LRpE1A2enHNNdfQpUsXevfuzd///vfy+i+66CL69u3L/vvvz0MPPQTA008/zaBBg8qPe+GFFzJ58mQAOnbsyPXXX0+3bt0oLCxkyZIlQNnIznHHHUe3bt244IIL2HfffVmxYkWN6sqXBjMysWjlIgrvL8x3GVKtWTBsQb5LkKpk6NChDB06lF//+teMHz+eiRMnct5557HLLrt87X6rVq3iL3/5C9OnT+ekk07i2Wef5d5776VHjx6Ulpayxx57cOWVVzJ37lzatGnDgAEDmDZtGj179uSmm27i5ZdfpmXLlhx99NF06dJlm3W2aNGCESNG8Mtf/pIbbrihfP2rr77K1KlTefbZZ2natCmjR4/mgQce4LzzzuOzzz6jd+/e3HLLLVxxxRXcc889XHvttQC8//77zJ49myVLlnDyySdzxhlnbLOGtm3b8vLLLzNx4kQmTJjAvffeyw033MDRRx/NVVddxZ/+9CcmTZqUqa58aDBhQpKUH61ateKxx8ouraxatYrx48fzyCOPcP7557Nq1SouvfRS+vTp85X9TjrpJCKCwsJC9txzTwoLy/5B2LlzZ5YtW8bbb79Nv3792H333QE499xzeeaZZwA46qij2HXXXQE488wzef3116tU60UXXURxcTGXXnpp+bonn3ySuXPn0qNHDwA+//xz9thjDwCaNWtWPtJw6KGH8uc//7l8v8GDB9OoUSM6depU5ZGB0047rfxYjzzyCACzZ8/m0UcfBWDgwIG0adMmU135YJiQJNWaG2+8kWuuuYYpU6Zw6KGHMnToUE455RSeeuqpr7TdaaedAGjUqFH58pb3GzdupEmTyn9FpZRqXF/r1q0ZOnQoEydO/MLxhg0bxq233vqV9k2bNi3/dkPjxo3ZuHHjV+qvWFOTJk3YvHlz+fovf8Vyyz4Vj7W1z1PTuvLBeyYkSbXijTfe4L333uOoo45izZo1NGrUiIio8ZM5e/XqxaxZs1ixYgWbNm1iypQpHHXUUfTs2ZNZs2axatUqNm7cyMMPP1yt4/74xz/mV7/6Vfkv4GOOOYaHHnqo/JseH374IW+//XaNat53331ZvHgx69at4+OPP+bJJ5/c5j6HH344//3f/w3AjBkzWLVqVa3XVdcME5KkWnHNNddw8803A3DOOecwefJkevfuzWWXXVaj47Vr145bb72V/v3706VLF7p168Ypp5xC+/btufrqq+nVqxfHHnssnTp1olWrVlU+btu2bTn11FNZt24dAJ06deLmm29mwIABFBUVcdxxx/H+++/XqOa9996bs846i6KiIs4991y6du26zX2uv/56ZsyYQbdu3fif//kf2rVrR8uWLWu1rroWWYaLdiQ777dz+s7Y7+S7DKnWeAOmqurVV1/lkEMOyXcZ29Xq1atp0aIFGzdu5NRTT2XEiBGceuqp+S6rRtatW0fjxo1p0qQJzz//PKNGjaK0tDSvNVX2Zyoi5qaUulfW3nsmJEn1ztixY5k5cyZr165lwIABDB48ON8l1dg777zDWWedxebNm2nWrBn33HNPvkuqNsOEJKneqewpl/XVgQceyLx58/JdRibeMyFJkjIxTEiSpEwazGWOzuvWU7L0nXyXoaoa+3G+K5Ak1ZI6GZmIiI4RsbAuji1JknYsXuaQJGVSkynIp02bxuLFi7d57Kq2O+GEE/joo4/o27fvNtt27NixfCKtiiZPnlzphGGTJ0+mUaNGzJ8/v3xdQUEBy5Yt2+a5vinq8jJHk4i4H+gKvA6cB/QBJuTOOwcYlVJaFxHjgJOBjcCMlNJlEXEmcD2wCfg4pXRkHdYqSQ3H2Ko/wKlqx/v6y5I1mYJ82rRpDBo0iE6dOn3tsava7vHHHwfgueee+9p2NdWhQwduueUWpk6dWifHr+/qcmTiu8CklFIR8AnwY2AyMCSlVEhZoBgVEbsCpwKdc21vzu0/Bjg+pdSFsqAhSdoBVXcK8ueee47p06dz+eWXU1xczFtvvcU999xDjx496NKlC6effjpr1qyptN2dd95Jp06dKCoq4uyzzwbghRdeoE+fPnTt2pW+ffvy2muvAbBp0yYuu+wyCgsLKSoq4q677iqv4a677vrKVOBfZ9CgQSxatKj82BXNmDGDPn360K1bN84880xWr14NbH3K8bFjxzJixAj69evH/vvvz5133gnAsmXLKCgoKD/uhAkTGDt2LAD9+vXjyiuvpGfPnhx00EH89a9/BWDNmjXlT9wcMmQIvXr1oqSkpEZ1ZVGXYeJvKaVnc8u/AY4BlqaUtkztdj9wJGVBYy1wb0ScBqzJbX8WmBwR5wONKztBRIyMiJKIKFm+pmE8yVOS6puhQ4fyxBNPMHDgQMaOHbvNKcj79u3LySefzO23305paSkHHHAAp512GnPmzOGVV17hkEMO4b777qu03bhx45g3bx7z58/n7rvvBuCQQw5h9uzZzJs3jxtvvJGrr74agEmTJrF06dLy9ueee255DVumAh81alSVnlnRqFEjrrjiCn76059+Yf2KFSu4+eabmTlzJi+//DLdu3fn5z//+TbPs2TJEp544gleeuklbrjhBjZs2LDNGjZu3MhLL73EHXfcUT6F+sSJE2nTpg3z58/nuuuuY+7cuZnqqqm6vMxRpd/uKaWNEdGTsrBxNnAhcHRK6UcR0Qs4ESiNiOKU0sov7TsJmATQfa/GpglJyoOaTkFe0cKFC7n22mv56KOPWL16Nccff3yl7bbMeTF48ODyp15+8sknDB8+nDfeeIOIKP/FPHPmTH70ox+Vzz66ZcpyqHwq8G0ZOnQot9xyC0uXLi1f98ILL7B48WIOO+wwANavX/+Fz7q185x44onstNNO7LTTTuyxxx5VmsK84rG23K8xe/ZsLr74YqDsPo6ioqJMddVUXYaJfSKiT0rpeeAcYCZwQUR8J6X0JvB9YFZEtAB2SSk9HhEvAG8CRMQBKaUXgRcj4iRgb2Bl5aeSJO0IqjMFeUXDhw9n2rRpdOnShcmTJ/P0009X2u6xxx7jmWeeYfr06dx0000sWrSI6667jv79+/Poo4+ybNky+vXrB5RN4b1lmu4vq2wq8G1p0qQJl156KePHjy9fl1LiuOOOY8qUKdU6T8Xpy7dsq+3py2tSV03V5WWOV4FhETEf2BX4BfAD4HcRsQDYDNwNtAT+mGs3C7gkt//tEbEg9xXTZ4BX6rBWSVJG1ZmCvGXLlnz66afl7z/99FPatWvHhg0beOCBByptt3nzZv72t7/Rv39/brvttvJRjI8//pj27dsDZd+82GLAgAHcfffd5b8sP/zww8yfcfjw4cycOZPly5cD0Lt3b5599lnefPNNoOwehtdff/3rDrFVe+65Jx988AErV65k3bp1/PGPf9zmPhWnL1+8eDELFiyo9bqqok7CREppWUqpU0rpRymlopTS6SmlNSmlJ1NKXVNKhSmlESmldSml91NKPXPtClNK9+eOcVrufUFK6eLUUKY3laQGqjpTkJ999tncfvvtdO3albfeeoubbrqJXr16cdxxx3HwwQdX2u6NN97ge9/7HoWFhXTt2pVLLrmE1q1bc8UVV3DVVVdx2GGHsWnTpvJ9f/jDH7LPPvtQVFREly5d+O1vf5v5MzZr1oyLLrqIDz74AIDdd9+dyZMnc84551BUVETv3r1rfENj06ZNGTNmDL169WLQoEFf6IetGT16NMuXL6eoqIjx48dTVFREq1atarWuqmgwU5Dv1O7A1G7YHfkuo1qWjTsx3yVIagC+iVOQq8ymTZvYsGEDzZs356233uKYY47h9ddfp1mzZpmO6xTkkiR9Q6xZs4b+/fuzYcMGUkr8x3/8R+YgUROGCUmS6qmWLVuWP1cin3yctiRJysQwIUmSMjFMSJKkTAwTkiQpE8OEJCmTmkxBPnbsWNq3b09xcTEHH3wwo0aN+sLTH7d2nl69etG1a9fyia6yKC0tLZ9tVNn4bQ5JamAK7y+s1eMtGLbga7fXZApygEsuuYTLLruMzZs3c+SRRzJr1iz69++/1fZPPvkkBx98MPfff/9Xtm3atInGjSudE3KrSktLKSkp4YQTTqjWfvoqRyYkSZlUdwryL1u/fj1r166lTZs2ALz11lsMHDiQQw89lCOOOIIlS5ZQWlrKFVdcweOPP05xcTGff/45LVq0KH9i5PPPP8+NN95Ijx49KCgoYOTIkeXzVsyZM4eioiL69OnD5ZdfTkFBAevXr2fMmDFMnTqV4uJipk6dymeffcaIESPo0aMHXbt25fe//32d9VlDY5iQJGVS3SnIt/jFL35BcXEx7dq146CDDqK4uBiAkSNHctdddzF37lwmTJjA6NGjKS4u5sYbb2TIkCGUlpay884789lnn1FQUMCLL77I4YcfzoUXXsicOXNYuHAhn3/+efncFj/4wQ+4++67ef7558tHL5o1a/aF4w0ZMoRbbrmFo48+mjlz5vDUU09x+eWX89lnn9Vp3zUUDeYyR2H7VpT4eGpJ2u5qOgX5lsscGzZs4IwzzuDBBx9k0KBBPPfcc5x55pnl7datW1fpeRs3bszpp59e/v6pp57itttuY82aNXz44Yd07tyZI444gk8//ZS+ffsCZcFnaxNozZgxg+nTpzNhwgSgbNbOd955x0eVV0GDCROSpPyryRTkTZs2ZeDAgTzzzDOccMIJtG7dmtLS0m2eq3nz5uUjDWvXrmX06NGUlJSw9957M3bsWNauXbvVKbork1Li4Ycf5rvf/W6V91EZL3NIkmpFdaYgryilxHPPPccBBxzAt7/9bfbbbz9+97vflW975ZVXtnnuLedo27Ytq1ev5qGHHgKgTZs2tGzZkhdeeAGABx98sHyfL0+Dfvzxx3PXXXeVB5B58+ZV49N/sxkmJEm1ojpTkMM/7pkoKChg48aNjB49GoAHHniA++67jy5dutC5c+cq3QjZunVrzj//fAoLCxk8eDA9evQo33bfffcxcuRI+vTpQ0qJVq1aAdC/f38WL15cfgPmddddx4YNGygqKqKgoIDrrrsua5d8YzSYKci7d++edoTJTiRpe3MK8q+3evVqWrRoAcC4ceN4//33+eUvf5nnqnZsTkEuSVIFjz32GLfeeisbN25k3333ZfLkyfkuqcExTEiSGrQhQ4YwZMiQfJfRoHnPhCRJysQwIUkNQEO5/035V5M/S4YJSarnmjdvzsqVKw0UyiylxMqVK2nevHm19vOeCUmq5zp06MC7777L8uXL812KGoDmzZvToUOHau1jmJCkeq5p06bst99++S5D32Be5pAkSZkYJiRJUiaGCUmSlEmDeZx2RHwKvJbvOuq5tsCKfBfRANiP2dmH2dmH2dmHX7RvSmn3yjY0pBswX9vaM8NVNRFRYh9mZz9mZx9mZx9mZx9WnZc5JElSJoYJSZKUSUMKE5PyXUADYB/WDvsxO/swO/swO/uwihrMDZiSJCk/GtLIhCRJyoN6FyYiYmBEvBYRb0bET3LrxkfE/Ij4dYV234+Ii/NX6Y4jIv4zIj6IiIUV1u0aEX+OiDdyP9vk1h+W68s5EfGd3LrWEfFERES+PkO+RcTeEfFURLwaEYu2/NmyH6snIppHxEsR8UquH2/IrbcfqykiGkfEvIj4Y+69fVgNEbEsIhZERGlElOTW2Yc1VK/CREQ0Bv4d+CegE3BORHQB+qaUioDGEVEYETsDw4GJeSt2xzIZGPildT8BnkwpHQg8mXsPcClwOnA1MCq37jrgp+mbfU1sI3BpSukQoDfwfyKiE/Zjda0Djk4pdQGKgYER0Rv7sSYuBl6t8N4+rL7+KaXiCl//tA9rqF6FCaAn8GZK6f+llNYDDwInA81y6XBnYANwOXBnSmlD/krdcaSUngE+/NLqU4D7c8v3A4Nzyxso68ddgA0RcQDQPqU0azuUusNKKb2fUno5t/wpZX+Jt8d+rJZUZnXubdPcK2E/VktEdABOBO6tsNo+zM4+rKmUUr15AWcA91Z4/33g34ArgFLgZ0A74A/5rnVHewEdgYUV3n/0pe2rcj+LgReAp4AOlAW2A/Nd/470yvXlO8C37cca9V/j3P+vq4HxuXX2Y/X68CHgUKAf8Ef7sEZ9uBR4GZgLjLQPs73q2xMwK7s2lVJKtwG3AUTEvcCYiPghMACYn1K6eTvWWK+llEopG8YnIo4E3itbjKmUpfNLU0p/z1+F+RURLYCHgX9NKX2ytcul9uPWpZQ2AcUR0Rp4NCIKvqZtKfbjF0TEIOCDlNLciOi3rfb24VYdllJ6LyL2AP4cEUu21tA+3Lb6dpnjXWDvCu87UPYfFYCI6JpbfB04L6V0FlAQEQduvxLrjb9HRDuA3M8PKm7MXTa6FrgJuD73+g1w0Xauc4cREU0pCxIPpJQeya22H2sopfQR8DRl9/PYj1V3GHByRCyj7F/IR0fEb7APqyWl9F7u5wfAo5RdRrcPa6i+hYk5wIERsV9ENAPOBqZX2H4TMIay67CNc+s2U3adS180HRiWWx4G/P5L24cBj6WUVlHWf5v5Bvdl7i+R+4BXU0o/r7DJfqyGiNg9NyJB7kbpY4El2I9VllK6KqXUIaXUkbK/A/+SUvoe9mGVRcS3IqLllmXKRrEXYh/WXL6vs1T3BZxA2cjDW8A1FdYPBq6v8H4CsICyf0Xmve4899kU4H3KhuPeBf4Z2I2yu5XfyP3ctUL7XSi7Ntg09/6IXF/OBQ7K9+fJUx8eTtmNgvMpu95fmvuzaD9Wrx+LgHm5flwIjMmttx9r1p/9+Mc9E/Zh1fttf+CV3GvRlt8l9mHNXz4BU5IkZVLfLnNIkqQdjGFCkiRlYpiQJEmZGCYkSVImhglJkpSJYUKSJGVimJAkSZkYJiRJUib/H3FY0mulGwoGAAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "mr(daten, \"nike\", \"head\", \"boss\", \"lacoste\") # das Dataframe 'daten' wurde ja zu Beginn schon importiert\n", "\n", "# das Dataframe ('daten') sowie die auszuwertenden Spalten werden angegeben. Das war's." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "\n", " \n", " \n", " \n", "
https://github.com/manfred2020/DA_mit_Python
" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.7.10" } }, "nbformat": 4, "nbformat_minor": 4 }