
Abstract

This dissertation is concerned with two problems that lie at the interface of soft matter physics,
geometry, and asymptotic analysis, but otherwise have no bearing on one another. In the
first problem, I consider the equilibrium thermal fluctuations of deformable mechanical
frameworks. These frameworks have served as highly idealized representations of mechanical
structures that underlie a plethora of soft few-body systems at the submicron scale such
as colloidal clusters and DNA origami. When the holonomic constraints in a framework
cease to be linearly independent, singularities can appear in its configuration space, where it
becomes energetically softer. Consequently, the framework’s free-energy landscape becomes
dominated by the neighborhoods of points corresponding to these singularities. In the second
problem, I study the localization of elastic waves in thin elastic structures with spatially varying
curvature profiles, using a curved rod and a uniaxially curved shell as concrete examples.
Waves propagating on such structures have multiple components owing to the curvature-
mediated coupling of the tangential and normal components of the displacement field. Here,
using the semiclassical approximation, I show that these waves form localized, bound states
around points where the absolute curvature of the structure has a minimum. Both these
problems exemplify the subtle interplay between the mechanical properties of soft materials
and their geometry, which further sets the stage for many interesting consequences.
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Notation

Following the usual convention in physics literature, vectors in Rn are usually set in bold Latin
letters, e.g., v . Matrices are set in sans serif type, e.g., M. Operators are distinguished with a
hat, e.g., â. Integrals without explicit limits are to be integrated over the entire range (usually
−∞ to ∞) of the integration variable(s). Unless explicitly indicated, repeated indices are to be
summed over as usual. Other notational conventions are listed below.

∥v∥ Euclidean norm
p

v Tv of a vector v ∈Rn

In n ×n identity matrix
∇φ gradient of φ :Rn →R considered as a row vector, or

the m ×n Jacobian matrix of a map φ :Rn →Rm

(∇φ)T transpose gradient of φ :Rn →R considered as a column vector, or
the n ×m transpose of the Jacobian matrix of a map φ :Rn →Rm

∇∇φ n ×n Hessian matrix of a scalar function φ :Rn →R

detM determinant of a matrix M
kerM kernel (null space) of a matrix M
trM trace of a matrix M
O(·) of the order of

ix





Chapter 1
Introduction

This dissertation discusses two problems that are more or less unrelated apart from having
a common origin in soft matter physics. During the course of the discussion, we shall rely
on concepts from a potpourri of fields ranging from classical and quantum mechanics
to statistical mechanics to structural engineering. Elementary notions from differential
geometry and asymptotic analysis will also play a prominent role. This chapter provides
a whirlwind tour of the dissertation, highlighting the key results, and concludes with an
organizational summary.

Geometrical methods are now a mainstay of all branches of modern theoretical physics.
Furthermore, vigorous research efforts in the second half of the 20th century led to the
geometrization of the more classical fields of physics such as analytical mechanics [3, 156, 161]
and elasticity theory [4, 112]. In some sense, the unreasonable effectiveness of geometrical
methods in physics (among other mathematical sciences) should come as no surprise—after
all, many physical problems are best formulated mathematically in terms of configuration (or
parameter) spaces that are not Euclidean.

On a less abstract level, the intrinsic shape and structure of a physical system can also play
a major role in dictating its physical properties. This is particularly true for soft, deformable
materials, or “soft matter”—the stuff of everyday things. Indeed, mechanical pliability is often
intimately connected to geometry, a fact that is appetizingly illustrated by a slice of pizza,
which becomes stiff upon bending into a U shape, thanks to Gauss’s remarkable theorem.
Because soft materials are easily deformed, the presence of external perturbations such as
thermal fluctuations or applied fields can have dramatic effects on their stability. For this
reason, creating materials with designer microstructure to improve their strength has become
a central research theme in many disciplines, with applications cutting across several length
and energy scales.

Theoretical physics abounds with exactly solvable problems and “spherical cow” models
involving conserved quantities, rigid bodies, ideal fluids, point particles, impenetrable walls,
uniform fields, and elegant linear equations. Many of these models, however, stand in stark
contrast to the fantastic haphazardness of the real world, which is messy and nonlinear,
and continues to bewilder us as our experimental abilities evolve. For this reason, many
physical problems, especially those in condensed matter and materials physics—archetypal
examples of the sentiment that “more is different” [2]—can only be formulated approximately.
Furthermore, such problems often require the employment of a range of asymptotic and
perturbative methods for their solution. Such methods, perhaps fittingly, tend to be far
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2 Chapter 1. Introduction

less rigorous in comparison to the elegant logical structure usually found in other fields of
mathematics.

In this dissertation we discuss two problems, at two very different length and energy scales,
that have a common origin in soft matter physics. Connecting the two problems is the basic
notion that geometry, whether that of the abstract spaces describing a physical system, or
its intrinsic shape and structure, plays a crucial role in dictating its properties. Both these
problems, once formulated mathematically, have sufficient complexity that makes writing
down exact solutions difficult. At the same time, both the problems are simple enough that
asymptotic methods yield excellent approximate solutions, which means that we do not have
to restrict ourselves to analyses of numerical experiments alone. In the following sections, we
briefly summarize the main results of this dissertation, with subsequent chapters providing
more detailed descriptions.

1.1 Singular frameworks and thermal fluctuations
In the first part of the dissertation, we study the effect of thermal fluctuations on submicron
mechanical frameworks. Frameworks of similar nature have received extensive interest in
recent years, with considerable attention paid to nanoscale frameworks made out of DNA
origami [36, 114]. The problem is made fundamentally challenging due to the presence
of singularities in the configuration spaces of these frameworks, which cause conventional
approaches to break down [109].

1.1.1 Configuration spaces
Central to geometric mechanics is the idea that the configuration of a physical system, how-
ever complicated, can be fully described by a single point of a (usually high-dimensional)
configuration space. To illustrate this point in more familiar settings, consider, for instance,
the simple pendulum in Fig. 1.1(a). The pendulum’s configuration at any given moment is
fully specified by the angle θ1. Its configuration space is therefore equivalent to the circle
S1, which is a smooth manifold. To specify the configuration of the double pendulum in
Fig. 1.1(b), on the other hand, requires two angles θ1 and θ2, and its configuration space is
the torus S1 ×S1. Configuration spaces such as these, although abstract, have a one-to-one
correspondence with the possible configurations that the system can be in.

To shed some more light on the above discussion and make the definitions more precise,
consider a mechanical system with n degrees of freedom (DOF), whose configuration at any
given moment is fully described by a single configuration vector r ∈Rn . Constraints in such a
system are most clearly introduced by defining a constraint map f :Rn →Rm that vanishes
when the constraints are satisfied, with m being the number of constraints introduced. The
constraint in the simple pendulum, for instance, is described by the constraint map

f :R2 →R, f (r1,r2) = r 2
1 + r 2

2 −ℓ2, (1.1)

whereas the constraint map for the double pendulum would be of the form

f :R4 →R2, f (r1, . . . ,r4) =
(

r 2
1 + r 2

2 −ℓ2
1

(r3 − r1)2 + (r4 − r2)2 −ℓ2
2

)
. (1.2)
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Figure 1.1. (a) A simple pendulum and its configuration space Ω = S1. (b) A double
pendulum and its configuration space Ω= S1 ×S1. (c) Configuration space of a particle
constrained to move on two mutually perpendicular cylinders of equal radius is the
cylinders’ intersection curve, which is not a smooth manifold.

As we see from these examples, the constraint map f is a general nonlinear map in the
components of r . The linear approximation of f = [ f1(r ), . . . , fm(r )] is given by the m ×n
Jacobian matrix ∇ f whose i j th entry is ∂ j fi . With these definitions, the configuration space
of a general mechanical system is the zero level set Ω = {r ∈ Rn : f (r ) = 0}, which is the set
of points where the constraints are satisfied exactly. Standard theorems1 ensure that Ω is a
smooth (n −m)-dimensional manifold if the Jacobian ∇ f has full rank for all points in Ω.

Configuration spaces in both the above examples arose as a result of holonomic constraints
imposed on a physical system. However, the imposed holonomic constraints need not always
be well-behaved. To illustrate this point, consider a particle constrained to move on two
intersecting cylinders of equal radius with mutually perpendicular axes, as illustrated in
Fig. 1.1(c). If the particle is to obey both constraints simultaneously, it can only move on the
cylinders’ intersection curve, which forms the configuration space of the particle. As we see
from Fig. 1.1(c), the curve has two singularities where it self-intersects, which prevents the
configuration space from being a smooth manifold. Mathematically, the constraints in the
two-cylinder system are described by the map f : R3 → R2, defined by f (x, y, z) = (x2 + z2 −
1, y2 + z2 −1). At singularities, such as the ones in Fig. 1.1(c), direct computation reveals that
the Jacobian ∇ f drops rank.2 Such singularities, which arise when the constraints imposed
on a system cease to be linearly independent, are not merely pathological irregularities, and
they have been extensively studied in many fields, e.g., robotics and locomotion [123].

1.1.2 Frameworks
Soft few-body systems, composed of a small number of particles or units, interacting via
short-ranged forces are commonplace in soft matter physics. A quintessential example of

1These theorems are almost never explicitly invoked in classical mechanics. However, they are implicit in the
frequently used argument that a mechanical system with n degrees of freedom and m constraints has (n−m) degrees
of freedom, with the configuration space Ω parameterizable by (n −m) generalized coordinates.

2Since the Jacobian is an m ×n matrix, it drops rank whenever its rows—each representing a single linearized
constraint—cease to become linearly independent.
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Figure 1.2. DNA origami has been widely used to self-assemble a variety of objects at the
nanoscale. Depicted in the figure are (a) tensegrity structures [98]; (b), (c) linkage-based
mechanisms [111, 181]; (d) a rhombus-shaped nanoactuator [84]; and (e) self-assembled
polyhedra [70].

such a system is a colloidal cluster, which is composed of a small number of colloidal particles
with sizes typically ranging from 1 nm to 0.1 µm. Although the particles in a colloidal cluster
are held together by subtle effects of electrostatic and van der Waal forces, such details are
often irrelevant if our goal is to describe the more macroscopic properties of the cluster. To a
good approximation, therefore, the interactions between the different particles are effectively
described using central-force bonds connecting their centers. Configurations of the resulting
“bond skeleton”, with each bond at its respective rest length, describe the different ground
states of the cluster. Such colloidal skeletons are an example of a mechanical framework,
which is an assembly of rigid bars that connect point-like joints. Frameworks are indeed
holonomically constrained systems, not too different from the examples we have seen so far.

Apart from colloidal clusters, mechanical frameworks have been extensively used to under-
stand a variety of mechanical structures found in viruses [67], crystals [140] and minerals [79],
proteins [48], and of course, robots and machines [32, 41]. In recent years, nanoscale frame-
works made out of multihelix DNA bundles (often dubbed “DNA origami”) have received
extensive interest, with applications ranging from drug delivery [180] to self-assembly [98]. As
far as more generic descriptions of thermally driven frameworks are concerned, there has been
long-standing interest in the effect of thermal fluctuations on the mechanical properties of
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ordered and disordered lattices [172, 175, 179], and the folding of polymerized membranes [28,
125] and polyhedral nets [31, 117, 152]. There is, therefore, an arising need to understand
how thermal excitations affect the physical properties of these frameworks, but only some
attempts have been made so far [77, 147].

1.1.3 Free-energy landscapes

The effect of thermal fluctuations on a physical system is often represented by its free-energy
landscape in terms of a set of collective variables that provide a coarse-grained description
of its slowest dynamics. In theory [38, 50], one can obtain the free energy of a framework
by integrating out the fast modes that are transverse to its shape space, i.e., the subset of its
configuration space once rigid-body motions are removed. Doing this, however, becomes
nontrivial when the framework has shape-space singularities [32, 103, 182]. For concreteness,
consider the shape space of the planar four-bar linkage [55, 60, 153] with freely rotating joints
[Figs. 1.3(a) and 1.3(c)]. Though this linkage has one degree of freedom up to Euclidean
motions, it has two modes of deformation, one where the angle θ1 = θ2 and another where
θ1 ̸= θ2, meeting at two isolated singular points (θ1,θ2) = (0,0) and (π,π). One generically
expects the framework to be soft at these singularities, and indeed, as we see from the dashed,
blue curves in Fig. 1.3(b), the free energy diverges in a harmonic approximation of the elastic
energy [147]. These divergences must be cut off by higher-order nonlinear effects, yet how
this happens and to what extent remains to be understood.

In Chapters 2 and 3, we develop a formalism to understand the thermal equilibration of
common bar-joint frameworks that have isolated shape-space singularities. We show that
the divergent contributions to the free energy arising in the harmonic approximation to the
elastic energy are suppressed by anharmonic, quartic-order corrections. These findings show
the existence of energetic free-energy barriers between configurations near the singularities
and configurations farther from the singularities. Our results are consistent with a closely
related work [68, 77] on singular colloidal clusters, but allow for isolated singularities of
the shape space. We demonstrate our results using both the four-bar linkage as well as
a flat, triangulated origami [18]. In addition to these two systems with one-dimensional
configuration spaces, we also demonstrate the versatility of our methods using the five-bar
linkage, which is a framework with a two-dimensional configuration space. The analyses
presented in these chapters have direct consequences in the design and employment of
nanoscale frameworks in applications ranging from self-assembly [98] to drug delivery [180],
where relative thermodynamic stability of different configurations is of paramount importance.

1.2 Thin structures, elastic waves, and bound states

In the second part of this dissertation, we consider the trapping of elastic waves in thin elastic
structures with spatially varying curvature profiles [108]. This problem was partly motivated
by a fascinating acoustic phenomenon.
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Figure 1.3. (a) The shape space of a four-bar linkage visualized as two intersecting curves
on a torus. (b) Its free energy A (θ1) as a function of the angle θ1. (c) Four-bar linkage in
the real world; photograph by J. Beau, Photographie Sportive (1898).

1.2.1 Can one hear the shape of a shell?

Take an ordinary hand saw used for cutting wood. Clamp down the handle end of the saw
using your feet and bend its tip using your dominant hand so that its overall shape is similar
to the letter S (see Fig. 1.4). The saw is now a “singing” saw: bowing it or striking it with a
mallet produces a sharp, sustained sound. But how does the saw sing, and more importantly,
why does it have to be shaped like an S? Although the sonorousness of the common saw has
been known at least since the 19th century [160], the first scientific explanation for it was
provided only in the early 90s by Scott and Woodhouse [150]. These authors modeled the saw
as a thin elastic shell with a varying curvature profile and showed that the saw’s sonority is due
to vibrations that get trapped around its inflection point, where the local curvature vanishes.
As trapped vibrations remain confined to the immediate vicinity of the inflection point, it
reduces energy dissipation through the two ends of the saw, resulting in a sustained note. In a
very recent work, Shankar et al. [151] reported that these vibrations have a topological origin
on the basis of jumps in an integer-valued invariant as we move across the inflection point.

Despite the efforts of the above-mentioned authors, several critical questions remain
unanswered: What kinds of waves on thin structures get trapped? Do we really need an
inflection point to observe trapped waves? Is there a difference between the vibrational
spectrum of one-dimensional and two-dimensional thin structures, i.e., rods vs. shells? Is
it possible to compute, even approximately, the shapes and frequencies of the vibrational
modes? In this dissertation, we explore these questions using a thin shell and a rod as concrete
examples.
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ζ

Figure 1.4. An ordinary hand saw, when bent into the shape of the letter S can be played
like a musical instrument using a violin’s bow or a mallet. A sustained note is produced
on bowing or hitting the saw close to its inflection point, which is called a sweet spot
by saw enthusiasts. In most models of thin elastic structures, such as the saw here, the
displacement field is broken up into a normal (e.g., ζ) and tangential (e.g., u) component,
which remain coupled if the structure is curved. Photographs sourced from Ref. [151].

Central to understanding the trapping of waves in elastodynamic systems, such as the
musical saw, is a commonplace eigenvalue problem of the form

D̂ψ=ω2ψ. (1.3)

Here, D̂ is a self-adjoint linear differential operator, ψ is the wave field, and ω is the frequency
of vibration. A trapped wave is a solution ψ to Eq. (1.3) satisfying the prescribed boundary
conditions and decaying exponentially as we approach the physical boundaries. In physics,
particularly in quantum-mechanical contexts, such solutions are called localized or bound
states [143–145]—vocabulary that we will continue to use.

In elastodynamic problems involving thin structures, the wave field ψ is almost always
composed of displacements—broken up into tangential and normal components—from
the neutral, undeformed configuration of the structure. The operator D̂, the exact nature
of which is model-dependent, is a square matrix of spatial derivatives that act on ψ. An
uncurved elastic structure can support three basic wave types: extensional and shear waves,
which respectively propagate by stretching and shearing the structure, and involve only the
tangential components (e.g., u in Fig. 1.4); and flexural waves that propagate by bending
the structure and involve only the normal component (e.g., ζ in Fig. 1.4). By contrast, if the
structure is curved, the normal and tangential components remain coupled. In this case, we
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can only speak of waves that are predominantly flexural or extensional or shear-like, based
on which component is more dominant in magnitude. It this curvature-mediated coupling
between the various components that ultimately leads to the formation of bound states in
curved structures.

1.2.2 Semiclassical approximation
The usual line of attack, when faced with an equation similar to Eq. (1.3), is to look for plane-
wave solutions of the form ψ ∼ e±i kx . Such an endeavor, however, fails if the coefficients
of the derivatives in D̂ are not constants, which is the case for a thin structure with a vary-
ing curvature profile.3 The semiclassical approximation or the Wentzel–Kramers–Brillouin
(WKB) approximation is a widely used method to obtain approximate solutions to differential
equations where these coefficients are slowly varying. In asymptotic analysis, it is usually in-
troduced as an approximate method to find solutions to differential equations whose highest
derivative is multiplied by a small parameter [6]. A representative example from physics is the
time-independent Schrödinger equation for a particle of mass m in a potential V (x),[

− ħ2

2m
∂2

x +V (x)

]
ψ(x) = Eψ(x), (1.4)

where the WKB method is frequently employed to find asymptotic solutions in the limit the
(reduced) Planck’s constant ħ→ 0. At first glance, such a limit is perplexing and makes no
physical sense as ħ is a fundamental constant, whose value is fixed by the units we choose
to work in. In reality, the limit ħ→ 0 represents the situation where the value of ħ is much
smaller compared to the angular momentum scale, which is often the case with macroscopic
systems described by classical physics. It is in this context that the WKB method gets the
alternative moniker of semiclassical approximation.

Modern reformulations of the semiclassical method, based on the Weyl symbol calculus,
provide unparalleled insights into the connection between classical and quantum mechanics.
Weyl calculus provides an elegant way to set up a one-to-one association between differential
operators (e.g., powers of ∂x ) defined on Hilbert spaces and ordinary functions defined on a
position-momentum phase space. For instance, under the Weyl transform, the momentum
operator k̂ = −i∂x gets mapped to the momentum k. Likewise, the Schrödinger operator
Ĥ =−∂2

x /2m +V (x), gets mapped to the classical Hamiltonian of a point particle H(x,k) =
k2/2m+V (x). (For simplicity, we have suppressed factors of ħ.) To make use of Weyl calculus,
it is customary to express the derivatives of a given differential operator D(x,∂x ) in terms of k̂
and its powers. Then, using an integral transform, the operator can be mapped to an ordinary
function—called its Weyl symbol—defined on an x-k phase space, i.e.,

D̂ (x,∂x ) = D̂
(
x, i k̂

)
(Hilbert space) ⇌ D (x,k) (phase space). (1.5)

Once the operator is in its symbol form, it can be expanded and approximated just like any
other ordinary function, providing a direct path towards obtaining asymptotic solutions to
wave equations.

3To be clear, as the exact form of the operator D̂ depends on the shell or rod model we choose to work with, even
when the curvature is a constant, a plain-wave solution may not be applicable.
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For matrix operators that act on multicomponent wave fields, such as the one in Eq. (1.3),
the corresponding Weyl symbol D is called the dispersion matrix—an ordinary matrix, whose
entries are functions defined on an x-k phase space. The eigenvalues λ(x,k) of the disper-
sion matrix serve as ray Hamiltonians of the different wave types represented by Eq. (1.3).
This leads us to the phase space representation of waves as rays that satisfy the Hamilton’s
equations

ẋ = ∂kλ(x,k) and k̇ =−∂xλ(x,k). (1.6)

The advantage provided by the semiclassical approximation cannot be overstated: we have
effectively reduced the wave equation to a Hamiltonian system describing point particles, a
system that is much more easier to analyze.

1.2.3 Bound states in thin elastic structures
The semiclassical approximation also provides a direct route to extract the bound-state fre-
quencies by “quantizing” the ray trajectories in the phase space. As bound waves are bounded
in the phase space as well, the rays corresponding to these waves appear in the form of closed
orbits when visualized [see Fig. 1.5]. Each bound orbit is associated with a wave of a specific
frequency ω. The single valuedness of the wave field as we traverse the orbit requires the
overall phase to be a half-integral multiple of 2π, which leads to the famous Bohr–Sommerfeld
quantization rule. Additional complications and subtleties arise when the wave field has more
than one component, which leads to a corrected quantization condition of the form∮

dx k(x) = 2
(
n + 1

2

)
π− (

γG +γNG
)

. (1.7)

Here γG and γNG are extra phases that arise because of the multicomponent nature of the
problem. The phase γG is a geometric phase [10, 130], which was very recently shown to
be responsible for the topological protection of equatorial oceanic waves on the Earth’s
surface [165]. That said, for the two example systems we study in this work, both the extra
phases γG and γNG vanish. Although one might expect this observation to change based on
the equations we work with, it seems to be a generic result, which we expect to hold in other
models of curved structures as well.

Because the extra phases vanish, the analysis becomes less cumbersome, and ultimately
leads to impressive agreement between the bound-state frequencies obtained through quan-
tization and those seen in numerical experiments. The basic result from a combined semi-
classical and numerical analysis is as follows: for the variably curved rod, which supports
only extensional and flexural waves, only extensional waves form bound states; and in the
case of the shell, all three wave types, i.e., flexural, extensional, and shear, exhibit bound
states. For both the shell and the rod, the bound states develop around points where the
absolute curvature has a minimum. The localization of flexural waves around the inflection
point of a musical saw, which is what both Scott and Woodhouse [150] and Shankar et al.
[151] restricted their attention to, is a special case of this more generic observation. Many
practical applications of elastic waves, from acoustic cloaking to negative refraction, rely on
delicate aspects of wave localization. The vast majority of these applications, however, require
designer materials with intricate microstructures. Being able to induce localization by a mere
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Figure 1.5. (a) Phase-space representation of waves as rays, showing bound and unbound
waves. (b) A predominantly flexural bound state in a uniaxially curved shell with a
curvature minimum at x = 0 obtained by solving Eq. (1.3) numerically. Here x is an
arc-length coordinate, ζ and u, v are the normal and tangential components of the
displacement field, respectively; see Fig. 1.4 and Chapter 5 for more details.

change of the material geometry is clearly advantageous. For this reason, the results presented
here lay the groundwork for the design of even simpler instruments capable of inducing wave
localization.

1.3 Organizational summary
In Chapter 2 we review basic facts about frameworks, their configuration spaces, and de-
rive asymptotic expressions for their elastic energies. Chapter 3 deals with the effect that
thermal fluctuations have on these frameworks, and presents a detailed calculation of the
free-energy profiles for three example frameworks. Chapters 4 and 5 are concerned with the
second problem discussed in this dissertation. The semiclassical approximation is reviewed in
Chapter 4, with special attention paid to multicomponent wave equations. Chapter 5 makes
use of the semiclassical approximation to understand the formation of bound states in thin
elastic structures.



Chapter 2
Constraints, frameworks, and singularities⋆

This chapter provides background material for the first part of this dissertation. First, we
discuss holonomic constraints and how they can sculpt the configuration space of a classi-
cal mechanical system in a nontrivial manner. Next, we extend the general discussion on
constraints to look at the zero-temperature behavior of mechanical frameworks and their
configuration spaces. Finally, we derive two expressions for the energy of a mechanical
framework to be used in the next chapter.

In classical mechanics, the concept of a configuration space makes it possible for us to
abstract away a physical system as a single point, no matter how complicated the system
is (see Fig. 2.1). The elegance behind the notion of a configuration space can be seen by
considering the simple example of a rigid body, composed of an infinite number of particles.
Yet, its configuration space is just a six-dimensional space whose points have a one-to-one
correspondence with the location and the spatial orientation of the rigid body in Euclidean 3-
space. In many example systems, such as the rigid body, the nature of a system’s configuration
space is entirely dictated by the (holonomic) constraints imposed on it, so we discuss them
first.

2.1 Geometry of constraints

Consider a system of N classical particles in d dimensions. If the position of the i th par-
ticle is given by the position vector ri ∈ Rd , then the entire configuration of the system
can be fully described at any moment using a configuration vector r ∈ R ⊆ Rn defined by
r = (r1,r2, . . . ,rN ), with n = N d . We shall call the set R as the ambient space.1 Let us now
impose m ≤ n holonomic constraints on the coordinates r1,r2, . . . ,rN by defining smooth
functions fi : R ⊆Rn →R, i = 1,2, . . . ,m that vanish when the constraints are satisfied. As an
example, consider a system composed of a single particle with the coordinate r = (r1,r2,r3)

⋆This chapter and the next are expanded versions of M. Mannattil, J. M. Schwarz, C. D. Santangelo, Phys. Rev.
Lett. 128, 208005 (2022). The problem discussed in this paper emerged during conversations with my coauthors. I
was responsible for all the analytical calculations and numerical experiments, and wrote the paper with inputs from
my coauthors.

1Many authors [94, 102] call R as the configuration space. However, when constraints are imposed on the
system, the actual configuration space is usually a lower-dimensional subset of R. To make this distinction, we will
call R as the ambient space.
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q

configuration space Ω

system

Figure 2.1. A classical system of point particles and rigid bodies can be represented by a
single configuration vector q of a high-dimensional configuration space Ω, which may
or may not be a smooth manifold. (Inspired by Fig. 20.1 of Ref. [133].)

in R3. In this case n = 3 and the ambient space is equivalent to the physical space the particle
moves in, i.e., R =R3. Now, consider the constraints

f1(r1,r2,r3) = r 2
2 + r 2

3 −a2,

f2(r1,r2,r3) = r 2
1 + r 2

3 −b2,
(2.1)

where a,b > 0 are constants. Geometrically, this corresponds to constraining a particle to
move on two mutually perpendicular cylinders in R.

For the general case, we will first look at the constraints individually. Each constraint
function fi has an associated zero level set Ωi = f −1

i (0) = {r ∈R : fi (r ) = 0} whose elements
satisfy the i th constraint exactly. If for all points r ∈Ωi , the gradient ∇ fi (r ) is nonzero, then
by the preimage theorem, Ωi is an (n −1)-dimensional submanifold of the ambient space
R [58, 92]. For the example system in Eq. (2.1), the level set Ω1 corresponding to the first
constraint function f1 is a cylinder of radius a lying along the r1 axis. Meanwhile, the level
set Ω2 is a cylinder of radius b lying along the r2 axis. Although these constraints may seem
somewhat abstract, they are in fact the ones seen in a three-slider mechanism (Fig. 2.2). Since
the gradients ∇ f1 and ∇ f2 never vanish for any point in Ω1 and Ω2, they are both smooth
submanifolds of R. At each point r ∈ Ωi we can identify two vector spaces, namely the
tangent space TrΩi = {v ∈ Rn : ∇ fi (r ) · v = 0} and the normal space2 NrΩi = (TrΩi )⊥, the
orthogonal complement of the tangent space in Rn under the standard Euclidean dot product.
From these definitions, we see that the direct sum TrΩi ⊕NrΩi =Rn .

The m constraint functions fi can also be considered together as a single constraint map
f : R ⊆ Rn → Rm with f (r ) = [ f1(r ), f2(r ), . . . , fm(r )]. The zero level set Ω of this map is a
subset of the ambient space where all m constraints functions fi vanish, i.e., it is formed by
the intersection of the zero level sets corresponding to each constraint: Ω=Ω1∩Ω2∩·· ·∩Ωm .
The constraint map f has an m×n Jacobian matrix J=∇ f and since m ≤ n, it has a maximum
possible rank of m. A point r̄ on Ω is called regular if the Jacobian J has maximum rank at
that point. As we have used here, from here on, an overbar on a point denotes that it belongs
to Ω. In the case of maps, the preimage theorem [92] states that if each r̄ ∈Ω is regular, then

2Here it is the rather trivial one-dimensional space spanned by {∇ fi }.
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(0, r2)

(0, r1)

(r3,0) a

b

y

x

r2

r1 Ω2
Ω1

Σ
singularity

r2

r1

Figure 2.2. The intersection curves of two cylinders with mutually perpendicular axes
can be (a) curves that are smooth manifolds; or (b) a curve with a self-intersection, i.e.,
a singularity. (c) A physical realization of the constraints in Eq. (2.1) is the three-slider
mechanism [11], which is composed of three particles (the “sliders”) that can freely move
on two mutually perpendicular axes (the “rails”). The particles are connected by rigid
bars of length a and b, which gives rise to the constraints in Eq. (2.1).

Ω is a smooth submanifold of R of dimension n −m and codimension m.3 Since Ω is the set
of points where all the constraints are obeyed, it forms the configuration space of the system.

Given a configuration space Ω, we identify the tangent space Tr̄Ω = kerJ(r̄ ) = {v ∈ Rn :
J(r̄ )v = 0} and the normal space Nr̄Ω= (Tr̄Ω)⊥, the orthogonal complement of the tangent
space in Rn under the standard Euclidean dot product. Using the rank-nullity theorem, we
see that dimTr̄Ω= n−m. As Ω is an (n−m)-dimensional submanifold of Rn , it is theoretically
possible to find a smooth parameterization ψ such that all points r̄ ∈ Ω can be written
as r̄ = ψ(ξ), where ξ = (ξ1,ξ2, . . . ,ξn−m) ∈ Rn−m . We also remark that one generally needs
multiple such parameterizations to cover all points in Ω. The collective coordinates ξi used
to parameterize Ω could be any set of coordinates, although it is more convenient to choose
coordinates physically relevant to the system.

It is also useful to analyze the intersection of the constraint level sets, say Ωi and Ω j ,
locally at a point r̄ ∈Ω. If the Jacobian J is full rank, then its rows, i.e., the gradients ∇ fi of the
constraint functions fi , are independent. Consequently, the tangent spaces Tr̄Ωi and Tr̄Ω j —
defined as sets of vectors perpendicular to ∇ fi and ∇ f j —are different subspaces. Since both
tangent spaces are (n −1)-dimensional subspaces of Rn , the fact they are different implies (by
dimension counting) Tr̄Ωi +Tr̄Ω j =Rn . In other words, we say that the manifolds Ωi and Ω j

are transverse to each other [58]. Hence, the Jacobian being full rank ensures that the level
sets Ωi of all constraints are pairwise transverse.

Going back to our example, the configuration space Ω in Fig. 2.2 is composed of the curves
obtained by the intersection of the cylinders Ω1 and Ω2. When the cylinder radii satisfy a ̸= b,
then Ω is made up of two disconnected closed curves as illustrated in Fig. 2.2(a). Since n = 3
and m = 2, the configuration space Ω has a dimension equal to n −m = 1, consistent with

3This is equivalent to the familiar notion that imposing m well-behaved constraints on a system with n degrees
of freedom reduces its number of degrees of freedom to n −m.



14 Chapter 2. Constraints, frameworks, and singularities

the fact that the curves are one-dimensional. The tangent spaces Tr̄Ω1 and Tr̄Ω2 for a point
r̄ ∈Ω can be identified with the tangent planes of the two cylinders at that point. It is clear
that there is no point in Ω where the two cylinders share a common tangent plane and it can
be shown (by direct computation) that the Jacobian of the constraint map never drops rank.
Hence, the intersection shown in Fig. 2.2(a) is indeed a transverse intersection.

More generally, there could be points r̄ ∈Ω where the Jacobian J(r̄ ) is not full rank. Such
points are called singular points. If the Jacobian is rank deficient, at least two of its rows, say
∇ fi and ∇ f j , are not independent and thus Tr̄Ωi = Tr̄Ω j . By the arguments in the preceding
paragraphs, this would also imply that the corresponding level sets Ωi and Ω j cannot be
mutually transverse since Tr̄Ωi +Tr̄Ω j ̸= Rn . Such a situation can be seen in Fig. 2.2(b),
where the two cylinders have the same radius, in which case Ω reduces to a self-intersecting
curve.4 It is clear that the two cylinders share a common tangent plane at the point of self-
intersection. Since the tangent spaces are not mutually independent at this point, their sum
cannot possibly be equal to R3.

To summarize, when a set of constraints is imposed on a mechanical system, its con-
figuration space can become nontrivial. Singularities may occur in the configuration space
at points where the Jacobian of the constraint map drops rank. This means that, at these
singular points, some of the constraints are equivalent to linear order. Geometrically, this
corresponds to a nontransversal intersection of the zero level sets of the constraint functions
at that point.

2.2 Frameworks
Let us now turn our attention to bar-joint frameworks made of N ≥ 3 point-like joints in
d dimensions connected by m < N d − 1

2 d(d +1) freely rotating, massless bars. If the joints

have position vectors r1,r2, . . . ,rN ∈Rd in the lab frame, the framework’s configuration can
be fully described at any given moment using a configuration vector r ∈ RN d defined by
r = (r1,r2, . . . ,rN ). Let the i th bar in the framework have a length ℓi . It is clear that the length
ℓ(ri ) can always be considered as a function of the configuration vector r describing the
entire framework.

As before, the configuration space Ω of the framework is the set of configurations such
that the length of the i th bar ℓi is equal to its rest length ℓ̄i . Configurations in Ω are deformed
states of the framework or the configurations obtained from such states after a rigid motion in
d-dimensional space (i.e., after rotations, reflections, or translations). To separate the actual
deformations of the framework from trivial rigid motions, it is more useful to consider the
shape space Σ [86, 87, 119], which is the set of all configurations with distinct shapes, and
obtained after “filtering out” all the rigid motions from the configuration space.5

To practically identify Σ, we first switch to a Cartesian body frame attached to the frame-
work so that all 1

2 d(d +1) rigid motions are eliminated [38, 66]. We require n = N d − 1
2 d(d +1)

4An analogous situation arises while considering the intersection of a sphere and a cylinder. If the sphere radius
is equal to the cylinder diameter, the intersection curve has a double point, and is called Viviani’s curve [159].

5More technically, the shape space is the quotient space Σ =Ω/SE(d), where SE(d) is the special Euclidean
group in d dimensions [101].
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Figure 2.3. Shape space of the planar four-bar linkage visualized as two intersecting
curves on a torus, each curve representing a “branch” of the shape space. The poloidal
and toroidal angles along the branches correspond to the angles θ1 and θ2 of the linkage,
which has two modes of deformation with θ1 = θ2 (blue curve) and θ1 ̸= θ2 (red curve).

coordinates to specify the state of the framework in the body frame and let q ∈ Rn be
its configuration vector in this frame. Now consider m holonomic constraint functions
fi :Rn →R, i = 1,2, . . . ,m, each associated with a single bar, and defined by

fi (q) =
ℓ2

i (q)− ℓ̄2
i

2ℓ̄i
, (2.2)

where the factor of 1/(2ℓ̄i ) is for later convenience. As before, the m scalar constraint functions
can also be considered together as a single constraint map f : Rn → Rm defined by f (q) =
[ f1(q), f2(q), . . . , fm(q)]. Then, the shape space is the zero level set Σ = {q ∈ Rn : f (q) = 0}.
In the absence of external forces, each point in Σ is a ground-state configuration of the
framework with a distinct shape.

The compatibility matrix C(q̄) [106, 132] at a configuration q̄ ∈ Σ is the m ×n Jacobian
matrix ∇ f of the constraint map f .6 If C has full rank for all points in Σ, then Σ is an (n −m)-
dimensional submanifold of Rn [92, 93]. But frameworks, like other holonomically constrained
systems, can have shape spaces that are not smooth manifolds. Consider, for example, the
four-bar linkage depicted in Fig. 2.3. The four-bar linkage is a simple framework made out
of four bars with freely rotating joints [55, 60, 153]. Although the linkage has one DOF up
to Euclidean motions, it has two modes of deformation: one where the angle θ1 = θ2 and
another where θ1 ̸= θ2. To visualize these two modes of deformation it is most natural to plot
the angles θ1 and θ2 on a torus as in Fig. 2.3. From this figure we see that the deformation
modes appear as two curves (branches) meeting at two isolated singular points (θ1,θ2) = (0,0)
and (π,π). The two curves put together form the shape space Σ of the four-bar linkage.

When the shape space of a framework has a “branched” structure, like in the case of
the four-bar linkage, it is no longer a smooth manifold. In such a situation, the compatibil-
ity matrix C(q) drops rank at the singularity where the branches meet [104, 123], and the

6In Eq. (2.2) it might have been more natural to use the constraint function fi = 1
2 [ℓ2

i (q)− ℓ̄2
i ], without the ℓ̄−1

i
factor. This would have made ∇ f the rigidity matrix instead of the compatibility matrix. For our purposes, however,
it is more convenient to work with the compatibility matrix as its entries are dimensionless.
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constraints cease to be linearly independent. Such singularities are the most common singu-
larities [104, 105] found in a framework and here we consider the situation where they occur
only at isolated points of Σ.7 The branches of Σ, being (n −m)-dimensional submanifolds
of Rn , can be individually parameterized using a set of coordinates ξ ∈ Rn−m , analogous to
generalized coordinates, called shape coordinates [101] as they capture the shape changes of
the framework as it moves on Σ. We also assume that n is small enough that such parameteri-
zations can be found without much difficulty and that the branches are linearly independent
at the singularity [104]. Before moving on, we need to familiarize ourselves with a few other
concepts that originate in rigidity theory and structural mechanics [22, 171].

2.2.1 Zero modes and self stresses
Irrespective of whether or not C is full rank, we define a zero mode8 to be a perturbation
u ∈Rn that preserves the constraints to linear order, i.e., Cu = 0 or u ∈ kerC. If C is full rank,
then there is a well-defined tangent space Tq̄Σ at q̄ and u ∈ Tq̄Σ. In such a situation, the
number z of zero modes is

z = n −m , (2.3)

which is equal to the dimension of tangent space.
However, as we have remarked, the compatibility matrix C drops rank at shape-space

singularities. If the compatibility matrix is not full rank, then it implies that its rows are not
linearly independent and there are m-dimensional nonzero vectors σ ∈Rm such that

σTC(q̄) = 0. (2.4)

Any vector σ that belongs to the left null space of the compatibility matrix has the physical
interpretation of having components equal to the signed magnitude of spring tensions (up
to normalization factors) that enforce static equilibrium of the framework. For this reason,
σ is called a self stress. Forces involved in a state of self stress obey the strong form of
Newton’s third law and thus cannot possibly result in an unbalanced torque [51]. Thus, a
framework under self stress is in a state of mechanical equilibrium. Note, however, that such
an equilibrium may or may not be stable.

Applying the rank-nullity theorem to the transpose of Eq. (2.4) we find the number s of
(independent) self stresses to be

s = m − rankCT(q̄) = m − rankC(q̄) . (2.5)

If the compatibility matrix C is not full rank at a point q̄ , there is no well-defined tangent
space Tq̄Σ at that point. However, one can still count the number z of zero modes by applying
the rank-nullity theorem on C, which gives

z = n − rankC(q̄) . (2.6)

7In engineering literature they are usually called c-space singularities. For other, less common singularities that
can occur in a framework, see Refs. [104, 122, 123], and references therein.

8Also called a soft mode, flex, etc. Sometimes it is also customary to explicitly differentiate between linear zero
modes (those that preserve the constraints only to linear order) and nonlinear zero modes (those that preserve
constraints to higher orders).
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Eliminating rankC(q̄) from Eqs. (2.5) and (2.6) we arrive at the Maxwell–Calladine [16, 115]
relation

z − s = n −m, (2.7)

which shows that the difference in the number of zero modes and the number of self stresses
at a point q̄ ∈Σ depends only on the number of DOF n (i.e., the dimension of the ambient
space) and the number of constraints m. Since we have assumed that m ≤ n, we see that the
presence of a self stress creates new zero modes. To illustrate these ideas, we shall now look
at a simple example.9

Example (A tethered particle in R2). Consider a particle with position q = (q1, q2) tethered to two
parallel walls using two bars as shown in Fig. 2.4. We will analyze the setup in Fig. 2.4(b) first and
examine Fig. 2.4(a) as a special case. This framework clearly has zero DOF. And as the rigid motions
have all been eliminated by tethering the particle to the walls, there is no need to transform to a body
frame or distinguish between the shape space and the configuration space. In Fig. 2.4(b), the bars have
a length of 1 unit and the inter-wall separation is 2(1−ϵ) units. So following Eq. (2.2), we can write down
the constraint map as

f :R2 →R2, f (q1, q2) = 1
2

[
(q1 +1−ϵ)2 +q2

2 −1,(q1 −1+ϵ)2 +q2
2 −1

]
. (2.8)

When the parameter ϵ, which controls the inter-wall separation, satisfies 0 < ϵ< 1, the configuration

space Σ is composed of two ground states, given by q̄ = (0,±
√

2ϵ−ϵ2). The compatibility matrices at
the ground states are

C(q̄) =∇ f =
(

q̄1 +1−ϵ q̄2
q̄1 −1+ϵ q̄2

)
=

(
1−ϵ ±

√
2ϵ−ϵ2

−1+ϵ ±
√

2ϵ−ϵ2

)
. (2.9)

As we have assumed that 0 < ϵ< 1, the compatibility matrix has full rank at both ground states. Conse-
quently, the framework does not support a state of self stress or have any zero modes. Clearly, in this
case the configuration space is a zero-dimensional manifold. The framework failing to support a self
stress is hardly surprising—if we were to put tensions in the bars, there would be a net vertical force that
cannot be balanced. We can also analyze the situation geometrically. In Fig. 2.4(b), we have depicted the
level sets Σ1 and Σ2 (circles of unit radius) of the two constraints individually. As we see from this figure,
the level sets Σ1 and Σ2 have a transversal intersection at the ground state. In other words, the two
constraints are linearly independent at the ground state, resulting in a compatibility matrix of full rank.

If the parameter ϵ= 0, then there is only one ground state, i.e., q̄ = (0,0). In this case the compatibility
matrix becomes

C(q̄) =
(

1 0
−1 0

)
. (2.10)

Clearly, the above matrix does not have full rank and we see that there is a self stress σ ∈ kerCT given by
σ= (1,1). The physical interpretation of this self stress is that the framework will remain in equilibrium
if we put tensions of equal magnitude in the two bars. Also, the constraints in this case are not linearly
independent at the singularity—geometrically, we infer this by noticing that the level sets Σ1 and Σ2
in Fig. 2.4(a) have a nontransversal intersection and share a common tangent at the ground state. As
the number of self stresses s = 1, the Maxwell–Calladine theorem tells us that there is a zero mode.

9Similar examples have been considered in Refs. [16, 96, 172, 179].
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Figure 2.4. (a) Ground-state configuration of a particle with coordinate q tethered to
two parallel walls using two bars—a simple framework that can support a state of self
stress. Each bar has a length of 1 unit and the inter-wall separation is 2 units. The zero
level sets Σ1 and Σ2 of the two constraint functions have a nontransversal intersection as
they share a common tangent at the point of intersection. (b) When the wall separation
is less than 2 units, the level sets Σ1 and Σ2 have a transversal intersection and the
framework fails to support a state of self stress.

From kerC(q̄) we see that the zero mode u = (0,1) is the up/down displacement of the particle, which
preserves the constraints to linear order.10

2.3 Elastic energy of a framework
In practice, there is no such thing as a framework with perfect constraints, and it is always
possible to violate them by paying some sort of an energy cost. Multihelix bundles used
in DNA origami, for instance, have measured stiffnesses in the range of 0.1–1 pN/nm [76].
For realistic frameworks, the shape space Σ would then form a continuum of ground states
(assuming that energy costs arise solely due to the constraints being violated). Keeping this in
mind, we assume that the energy stored in the i th bar of the framework is a function φi (ℓi )
of its length ℓi . We additionally assume that this function has a minimum when ℓi = ℓ̄i , the
natural length of the bar, for all bars. The total energy of the framework is then

U (q) =
m∑

i=1
φi [ℓi (q)] . (2.11)

On the shape space Σ, the bars are at their natural lengths, i.e., for all points q̄ ∈ Σ, we
have ℓi (q̄) = ℓ̄i . The bars are also at their minimum potential energies φi (ℓ̄i ), which we
assume to be zero for all bars without any loss of generality. We first look at the lowest-order
approximation to the energy, namely, the harmonic approximation.

2.3.1 Harmonic approximation
The i th bar in the framework has a potential energy φi [ℓi (q)]. The constraint function
associated with this bar is fi (q) = [ℓ2

i (q)− ℓ̄2
i ]/(2ℓ̄i ). Consider a point q̄ on the shape space Σ

10Of course, the constraints are not preserved at higher orders, and it can be shown that the framework is rigid at
second order. Well-known results in rigidity theory then guarantee that the framework is rigid to all orders [22].
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where the framework is in equilibrium. Dropping the index i for now and noting that ℓ(q̄) = ℓ̄,
we first express the gradient and the Hessian of the length ℓ(q) at q = q̄ in terms of the
gradient and the Hessian of f (q) as

∂ jℓ= ∂ j f ,

∂ j∂kℓ= ∂ j∂k f − ℓ̄−2∂ j f ∂k f ,
(2.12)

where all the partial derivatives are with respect to the components of q and evaluated
at q = q̄ .

Since we have assumed the potential energy of all bars to have a minimum value (assumed
to be zero) on the shape space, where ℓ= ℓ̄, the derivative φ′(ℓ̄) vanishes. We wish to find
the lowest-order expansion of the total potential energy U (q) near a point q̄ ∈ Σ. First, let
us consider the case where q̄ is not a point of self stress, in which case all zero modes are
tangent to Σ and can be extended to smooth deformations of the framework that do not cost
energy to any order. In such a situation, after setting q → q̄ +q , the potential energy of a
single bar to O(∥q∥2) is the familiar Hookean potential

φ[ℓ(q̄ +q)] = 1
2φ

′′(ℓ̄)(∂ jℓq j )2 +O(∥q∥3). (2.13)

Above, the partial derivatives of ℓ(q) and the derivatives of φ(ℓ) have been evaluated at q̄ ∈Σ
and ℓ= ℓ̄, respectively. The repeated indices are summed over as usual. Defining the stiffness
of the i th bar to be κi =φ′′

i (ℓi ) and noting that ∂ jℓi q j = ∂ j fi q j =∇ fi ·q , the total energy of
the framework becomes (after reintroducing the free index i )

U =
m∑

i=1
φi [ℓi (q̄ +q)] ≈ 1

2

m∑
i=1

κi (∇ fi ·q)2 = 1
2 qTCTKCq = 1

2 qTDq . (2.14)

Here D =CTKC is the dynamical matrix evaluated at q̄ [106] (assuming joints of unit mass)
and K is the n ×n diagonal matrix of bar stiffnesses κi . Since the potential functions φi all
have a minimum at ℓi = ℓ̄i , the stiffnesses κi are positive nonzero numbers and the matrix K
is positive definite. However, the dynamical matrix D is, in general, only positive semidefinite
since kerC need not be empty. Indeed, it will not be empty for the example frameworks we
consider in the next chapter, as they all have internal degrees of freedom.

2.3.2 Higher-order approximations
Now let us analyze the case where there are additional zero modes due to the presence of a
self stress. Dropping the index i again, we first expand the energy of a bar to O(∥q∥4) and find

φ[ℓ(q̄ +q)] = 1
2φ

′′(ℓ̄)(∂ jℓq j )2 + 1
6φ

′′′(ℓ̄)(∂ jℓq j )3 + 1
2φ

′′(ℓ̄)(∂ jℓq j )∂k∂lℓqk ql

+ 1

24
φ′′′′(ℓ̄)(∂ jℓq j )4 + 1

4φ
′′′(ℓ̄)(∂ jℓq j )2∂k∂lℓqk ql

+ 1
8φ

′′(ℓ̄)(∂ j∂kℓq j qk )2 + 1
6φ

′′(ℓ̄)(∂ jℓq j )∂k∂l∂mℓqk ql qm +O(∥q∥5).

(2.15)

The subspace of zero modes is kerC and its orthogonal complement in Rn is (kerC)⊥ and we
write q = u + v . Here u ∈ kerC is a zero mode and v ∈ (kerC)⊥ is a fast vibrational mode of
the system. First let us analyze the contribution of the zero mode u to the energy. Since u is a
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zero mode, we have Cu = 0. Now, as ∂ j f is a row of C, this implies ∂ j f u j = 0. Using this in
Eq. (2.12) we get

∂ jℓu j = ∂ j f u j = 0,

∂ j∂kℓu j uk = ∂ j∂k f u j uk − ℓ̄−2(∂ j f u j )(∂k f uk )

= ∂ j∂k f u j uk .

(2.16)

Setting v = 0 in the series expansion [Eq. (2.15)] and using the above simplifications, it is clear
that the only nonvanishing contribution to the energy would come from the O(∥u∥4) term
1
8φ

′′(ℓ̄)(∂ j∂kℓu j uk )2 = 1
8φ

′′(ℓ̄)(∂ j∂k f u j uk )2.
To understand how a fast mode v contributes to the energy, we similarly set u = 0 in

the energy expansion. Since v belongs to the orthogonal complement of the subspace of
zero modes, by definition, ∂ jℓv j = ∂ j f v j ̸= 0. Hence, we see that the first nonvanishing
contribution comes from the O(∥v∥2) term 1

2φ
′′(ℓ̄)(∂ jℓv j )2 = 1

2φ
′′(ℓ̄)(∂ j f v j )2. This shows

that the energy scales as O(∥u∥4) ∼ O(∥v∥2), i.e., zero and fast modes respectively make
quartic- and harmonic-order contributions to the energy. Finally, we set q = u+v in Eq. (2.15),
and find the energy of the i th bar to the lowest order in u and v as

φi = 1
2φ

′′
i (ℓ̄i )(∂ j fi v j )2 + 1

2φ
′′
i (ℓ̄i )(∂ j fi v j )(∂k∂l fi uk ul )+ 1

8φ
′′
i (ℓ̄i )(∂k∂l fi uk ul )2

+O(∥u∥5)+O(∥u∥3∥v∥)+O(∥u∥∥v∥2),
(2.17)

where we have reintroduced the free index i . In the above equation, φ′′
i (ℓ̄i ) = κi , the stiffness

of the i th bar, ∂ j fi v j = ∇ fi · v , and ∂k∂l fi uk ul = uT(∇∇ fi )u, with ∇∇ fi being the Hessian
matrix of the i th constraint function fi . Then, the energy of the i th bar to the lowest order is

φi ≈ 1
2κi

[
∇ fi ·v + 1

2 uT(∇∇ fi )u
]2

. (2.18)

For convenience, we define a column vector w (u) ∈Rm such that its i th component [w (u)]i =
1
2 uT(∇∇ fi )u. With this definition, the total energy to the lowest order in u and v is

U =
m∑

i=1
φi ≈ 1

2 [Cv +w (u)]T K [Cv +w (u)]. (2.19)

This equation is a generalization of the energy of harmonic spring networks [172, 179] and
colloidal clusters [77] that have zero modes, for an arbitrary number of zero modes and
degrees of freedom, as well as a general interaction energy φi between the particles (i.e., the
joints).

Example (Tethered particle: energetics). Let us consider again the tethered particle in Fig. 2.4(a).
If the particle is now displaced from its ground state at (0,0) to a point (q1, q2), we can break up the
displacement into a fast mode v = (q1,0) along the horizontal axis and a zero mode u = (0, q2) along
the vertical axis. The Hessian matrices of the two constraints are ∇∇ f1 = I2 and ∇∇ f2 = I2, so the vector
w (u) is

w (u) =
[

1
2 u

(∇∇ f1
)

u, 1
2 u

(∇∇ f1
)

u
]
=

(
1
2 q2

2 , 1
2 q2

2

)
. (2.20)
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As Cv = (q1,−q1), and assuming that the bars have a constant stiffness κ, using Eq. (2.19), we find the
energy11

U ≈ 1
2κ∥Cv +w (u)∥2 = κ

(
q2

1 + 1
4 q4

2

)
. (2.21)

As we see from the energy expression, the zero mode (0, q2) contributes to the energy only at the quartic
order—physically speaking, one would say that the framework has become softer due to the presence of
the singularity.

We now briefly remark on an interesting comparison between Eq. (2.19) and the nonlinear
strain that is considered while analyzing large deflections of a thin elastic plate. In our
notation, this strain can be written as12

ϵi j = 1
2

[
∂i vi +∂ j vi + (∂i u)(∂ j u)

]
. (2.22)

The above strain has been written down assuming that the plate, which is initially flat and
described as a plane r (x, y) in R3, is undergoing a deformation r (x, y) → r (x, y)+ v1(x, y)x̂ +
v2(x, y)ŷ +u(x, y)ẑ . If we were to consider the plate as being composed of a set of discrete
points connected by stiff bars, then the zero modes are the up/down out-of-plane displace-
ments that the points can undergo without changing the constraints to linear order. Conse-
quently, the fast vibrational modes would be composed of the in-plane displacements. In
the discrete limit, the in-plane components of the displacement field, v1 and v2, would get
replaced by a single vector v ∈ (kerC)⊥. Meanwhile, the out-of-plane component u of the
displacement field would be replaced by a vector u ∈ kerC. With this setup, the deformation
energy can be obtained from Eq. (2.19). We then realize that the bracketed term in Eq. (2.19),
i.e., Cv + w (u) is a discrete version of the continuum strain in Eq. (2.22): the linear part
Cv is roughly analogous to (∂i v j +∂ j vi ), whereas the nonlinear part w (u)i ∼ uT(∇∇ fi )u is
analogous to (∂i u)(∂ j u). Thus, the energy in Eq. (2.19) can be thought of as the square of a
discrete, nonlinear strain.

11The curious reader may wonder if this energy is dimensionally correct—after all q1 and q2 have the same
dimensions. The issue here is that we took the bars to have unit lengths, so the numerical factors in w (u) should be
assumed to have units of inverse length.

12See, e.g., Section 2.14 of Ref. [90] or Section 6.2 of Ref. [125].



Chapter 3
Thermal fluctuations of frameworks

In this chapter we study the effects that thermal fluctuations have on bar-joint frameworks
at the submicron scale. In particular, we study the free-energy landscape of these frame-
works, and show that the landscape is dominated by the neighborhoods of points that
correspond to singularities in the framework’s shape space.

Energy landscapes have been extensively used in all branches of science and engineering
to provide an intuitive understanding of complex dynamical phenomena. They have been
crucial in understanding a host of problems in chemical kinetics, protein folding, optimization,
machine learning, etc. [166]. However, the energy U (r ) of a physical system is usually a scalar
function of a possibly high-dimensional configuration vector r describing the system. This
curse of dimensionality oftentimes makes it difficult to visualize energy landscapes directly.
For this reason, particularly in the case of physical systems coupled to a heat bath, it is much
more customary to consider the free-energy landscape obtained by projecting the free energy
of the system down to a small number of physically relevant coordinates. Below, we provide a
brief description of free-energy landscapes in a general setting.

3.1 Free-energy landscapes

Similar to the discussion in the previous chapter, consider a system of N classical particles
in d dimensions. Let the position of the i th particle be ri ∈Rd . We can then use a configu-
ration vector r ∈R ⊆RN d defined by r = (r1,r2, . . . ,rN ) to describe all configurations of the
system. Corresponding to r we define a momentum vector p = (p1, p2, . . . , pN ), where pi is
the momentum of the i th particle. The microscopic state of the system at a given moment is
then described by the position-momentum pair (r , p) in phase space. Additionally, let the
total energy of the system be given by the Hamiltonian

H(r , p) = Ekinetic(p)+U (r ) =
N∑

i=1

p2
i

2mi
+U (r ). (3.1)

Here we have assumed that the Hamiltonian H is separable, i.e., the energetic contributions
of the particle momenta and positions are independent.

Physical systems that have been equilibrated with a thermal bath of temperature T fre-
quently arise in statistical physics. Although the energy of such a system undergoes fluc-
tuations, the system itself is always at a fixed temperature. Then, the various microscopic

22
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configurations of the systems, i.e., (r , p) pairs, are distributed according to the Boltzmann–
Gibbs (or canonical) density

P (r , p) = Z−1 exp
[−βH(r , p)

]
(3.2)

where β= (kB T )−1 is the inverse temperature, with kB being the Boltzmann constant. Also, the
normalization factor Z is the partition function defined by Z = ∫

dr dp exp[−βH (r , p)]. When
the Hamiltonian H is separable, we can perform the momentum integrals independently, so
the effective, momentum-reduced probability density is

P (r ) = exp
[−βU (q)

]
. (3.3)

Above, we have purposefully omitted factors of normalization—something we will continue
to do as much as possible.

As we remarked earlier, most physical systems, even those with a handful of particles, suf-
fer from the curse of dimensionality. High-dimensional systems that are coupled to a heat bath
are better analyzed by considering the marginal probability density of a lower-dimensional
collective variable (CV), which is some physically relevant observable that (hopefully) tells us
something useful about the system. Let ξ ∈Rl with l ≥ 1 be such an observable that depends
only on particle positions and measurable by a sufficiently smooth map ξ̂ : Rn → Rl , with
n = N d . The marginal probability density P (ξ) of the CV ξ is defined as

P (ξ) =
∫

dr δ
[
ξ̂(r )−ξ] exp

[−βU (q)
]

. (3.4)

Here δ[·] is the l -dimensional Dirac delta function, which restricts the domain of integration
to the (n − l )-dimensional CV level set ξ̂−1(ξ) = {q ∈ Rn : ξ̂(q) = ξ} [61]. The usage of the
term “collective variable” is now clear: the marginal density P (ξ) no longer refers to a single
microstate—instead, it refers to a collection of an infinite number of microstates such that if
we were to measure the value of the CV using any one of the states, we would get ξ.

To show that Eq. (3.4) gives the correct marginal density, we first note that the average 〈φ〉
of an observable φ≡ φ(ξ) = φ[ξ̂(r )] that depends only on the CV ξ can be computed using
either the marginal density P (ξ) or the Boltzmann–Gibbs density P (r ), i.e.,

〈φ〉 =
∫

dξ′φ(ξ′)P (ξ′) =
∫

dr φ[ξ̂(r )]P (r ). (3.5)

Setting φ(ξ′) = δ(ξ′−ξ) yields∫
dξ′δ(ξ′−ξ)P (ξ′) =P (ξ) =

∫
dr δ[ξ̂(r )−ξ]P (r ), (3.6)

consistent with the definition in Eq. (3.4).
The thermodynamic free energy associated with the CV ξ is defined using the marginal

density P (ξ) as [94]
A (ξ) =−β−1 logP (ξ). (3.7)

With this definition, we see that the free energy A (ξ) has an “inverse” relationship with P (ξ),
i.e., a low value of A (ξ) indicates a higher probability of observing states with a CV value
of ξ, and vice versa. Also, because of the arbitrariness of normalization factors, it makes
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better sense to speak of free energy differences rather than absolute free energies, e.g., the
free-energy difference between two CV values ξ1 and ξ2 is ∆A =A (ξ2)−A (ξ1).

3.2 Free energy of frameworks
Recall that the total elastic energy of a framework is of the form U (r ) = ∑m

i=1φi (ℓi ), where
ℓi is the length of the i th bar with an energy φi (ℓi ), which is assumed to have a minimum
value of zero at ℓi = ℓ̄i , the natural length of the i th bar. With the above form of the energy,
all nontrivial ground states of a framework belong to its shape space Σ [86, 87, 119], which
is the set of all deformed configurations of the framework with the length of each bar equal
to its natural length, once rotations and translations are removed. We remarked earlier that
shape spaces of frameworks are parameterized by coordinates called shape coordinates [101]—
usually internal angles—that capture the framework’s shape changes (see the discussion in
Section 2.2). As zero-energy shape changes constitute the most interesting dynamical feature
of a framework, it follows that the shape coordinates are natural CVs for a low-dimensional
description of a thermally excited framework.

Let us assume that the value of the chosen CV/shape coordinate for any configuration
q ∈ Rn of the framework in its body frame can be measured using the CV map ξ̂(q). In the
case of the four-bar linkage, for example, if we choose θ1 as the CV, then ξ̂(q) is the map that
computes θ1 for any q , whether or not it lies on the branches of the linkage’s shape space (see
Fig. 2.3 on p. 15). For general frameworks, the marginal density P (ξ) of the CV, aside from
factors of normalization, is

P (ξ) =
∫
Rn

dq I (q)δ
[
ξ̂(q)−ξ]exp

[−βU (q)
]

. (3.8)

In the above equation, except for the Jacobian factor I (q) introduced by the change of co-
ordinates from the lab frame to the body frame, all the other terms have the same meaning
as in Eq. (3.4). Also, as the CV ξ is an (n −m)-dimensional shape coordinate, the CV map is
ξ̂ :Rn →Rn−m . Furthermore, the CV level set ξ̂−1(ξ) will be an m-dimensional manifold if ∇ξ̂
has full rank in ξ̂−1(ξ). Assuming this, the marginal density P (ξ) can be written as an exact
m-dimensional surface integral over ξ̂−1(ξ) using the coarea formula [29, 61, 63, 94],

P (ξ) =
∫
ξ̂−1(ξ)

dΘ(q)

|det ∇ξ̂(∇ξ̂)T|1/2
I (q)exp

[−βU (q)
]
. (3.9)

Here dΘ(q) is the surface measure on ξ̂−1(ξ) and ∇ξ̂ is the (n −m)×n Jacobian matrix of ξ̂
at q . Sometimes, Eq. (3.9) is taken to be the definition of P (ξ) instead of Eq. (3.8). This only
makes sense when ∇ξ̂ has full rank in ξ̂−1(ξ) so that the determinant det ∇ξ̂(∇ξ̂)T does not
vanish [94].1 Furthermore, although we have in mind an (n−m)-dimensional CV ξ that can be
used to parameterize the branches of the shape space Σ, we do not require a parameterization
at hand to use Eq. (3.9). For instance, in a framework the CV could be one of its internal
angles, whose value can be directly computed from the coordinates of the framework’s joints.

1Equation (3.9) is the arbitrary-dimensional analogue of the RHS in
∫
Rdx f (x)δ[g (x)] =∑

i f (xi )/|g ′(xi )|, where
f and g are scalar functions in R, and xi are the roots of g (x) = 0. This is assuming |g ′(xi )| ̸= 0, which is equivalent
to the assumption that ∇ξ̂ has full rank in ξ̂−1(ξ).
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(The map that turns the coordinates q into the internal angle is the CV map ξ̂(q) for the
framework.) Hence, in theory, using this equation only requires knowledge of the energy U (q),
the Jacobian factor I (q), and the CV map ξ̂. Most importantly, Eq. (3.9) makes no reference to
the shape space Σ, or its branches, or whether or not it has singularities. However, in general,
the CV level set ξ̂−1(ξ) is bound to be a curved high-dimensional manifold. Hence, directly
evaluating the integral in Eq. (3.9) becomes cumbersome, and we have to resort to asymptotic
methods to evaluate it.

It is clear from both Eqs. (3.8) and (3.9) that in the large-β limit, contributions to the
marginal density would mainly come from the neighborhoods of the ground states in the
CV level set ξ̂−1(ξ) since the energy U (q) vanishes at those points (see Fig. 3.1). Since all
ground states belong to the shape space Σ, they could be regular (i.e., nonsingular) points or
singularities of Σ. We call ξ a regular value of the CV if ξ̂−1(ξ) does not contain singularities of
Σ and vice-versa. After asymptotically evaluating the integral in Eq. (3.8) in the neighborhood
of each ground state (e.g., using Laplace’s method [13]), we can then sum the results to find the
asymptotic expression of the marginal density. In the following, to simplify the presentation,
we will only consider cases where the CV level set contains just one ground state, which is
either a regular point or a singularity of Σ. More general cases can then be handled by using
appropriate combinations of the results we derive.

3.2.1 Asymptotic marginal density: regular values
We first consider the case where ξ is a regular value of the CV, i.e., when the CV level set
ξ̂−1(ξ) contains only regular points of Σ. As we remarked previously, using Eq. (3.9) to find
the marginal density is difficult. Hence, we will use a Gaussian representation of the delta
function to write the marginal density as [61, 62]

P (ξ) = lim
α→∞

( α
2π

)(n−m)/2
∫
Rn

dq I (q)exp
[− 1

2α∥ξ̂(q)−ξ∥2 −βU (q)
]
, (3.10)

where ∥·∥ is the (n −m)-dimensional Euclidean norm. For q ∈ ξ̂−1(ξ), the norm ∥ξ̂(q)−ξ∥
vanishes. Similarly, for q ∈Σ, the energy U (q) vanishes. This means that in the limit α,β→∞,
contributions to the above integral would mainly come from the neighborhood of the ground
state q̄ =Σ∩ ξ̂−1(ξ). Hence, we can evaluate the above integral using Laplace’s method after
expanding the two terms in the exponent of Eq. (3.10) to the lowest order around q̄ . To
this end, we set q → q̄ +q , and expand the energy U (q) using the harmonic approximation:
U ≈ 1

2 qTDq [see Eq. (2.14)], where D is the n ×n dynamical matrix. Since q̄ is a regular point
of Σ, the compatibility matrix C has full rank, and D has n −m independent zero modes
that belong to kerC [106]. These zero modes are all tangent to Σ and represent a degree of
freedom [93]. Hence, to asymptotically evaluate Eq. (3.8) in the neighborhood of a regular
point, we can safely use the harmonic approximation since any divergence [39, 147, 149]
due to these zero modes is regularized by the delta function [or in the case of Eq. (3.10), its
Gaussian approximation], which suppresses all contributions to the integral that are tangent
to Σ [142]. This gives us

P (ξ) ∼ lim
α→∞

α−m/2

(2π)(n−m)/2
I (q̄)

∫
Rn

dq exp
{
− 1

2 qT
[

(∇ξ̂)T∇ξ̂+α−1βD
]

q
}

, (3.11)
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Nq̄ΣTq̄Σ

q̄

ξ

Σ

ξ̂−1(ξ)

u v

q

Σ

Figure 3.1. Cartoon illustrating the shape space Σ parameterized by the CV ξ and the
CV level set ξ̂−1(ξ). In general, the sets Σ and ξ̂−1(ξ) could intersect at multiple points,
each of which is an energy ground state. Tangent and normal spaces of Σ at such a point
q̄ ∈Σ∩ ξ̂−1(ξ) are Tq̄Σ and Nq̄Σ.

where the dynamical matrix D and the Jacobian matrix ∇ξ̂ are evaluated at q̄ . We have also
rescaled q →α−1/2q for convenience.

We shall now evaluate the Gaussian integral in Eq. (3.11). Let us assume that the local
parameterization of Σ near q̄ in terms of the CV is ψ :Rn−m →Rn , which means that q̄ =ψ(ξ).
Now, the zero modes at q̄ belong to the tangent space Tq̄Σ= kerC by definition [93]. This
implies that the normal modes of the dynamical matrix, which are orthogonal to the zero
modes, belong to the m-dimensional normal space Nq̄Σ= (kerC)⊥. Since Tq̄Σ⊕Nq̄Σ= Rn ,
we can always write q = u +v with u ∈ Tq̄Σ and v ∈ Nq̄Σ, for any q ∈Rn (see Fig. 3.1). As an
orthonormal basis for Nq̄Σ, choose the normal modes b1,b2, . . . ,bm ∈Rn and as the basis for
Tq̄Σ choose the columns of the n × (n −m) Jacobian matrix ∇ψ(ξ).2 Therefore, we can write

q = u +v = (∇ψ)x +By , (3.12)

where B = (
b1 b2 · · · bm

)
is the change-of-basis matrix for Nq̄Σ. The vectors x ∈ Rn−m

and y ∈ Rm represent the components of u and v in the chosen bases. Eq. (3.12) suggests
the coordinate change q → (x , y). The quadratic form in the integral of Eq. (3.11) after such a
coordinate change can be decomposed into blocks as

1
2

(
xT yT)((∇ψ)T(∇ξ̂)T∇ξ̂∇ψ (∇ψ)T(∇ξ̂)T∇ξ̂B

BT(∇ξ̂)T∇ξ̂∇ψ BT(∇ξ̂)T∇ξ̂B+α−1βD⊥

)(
x
y

)
, (3.13)

where D⊥ is the diagonal matrix of the m nonzero eigenvalues of D. Our assumption is that
ψ(ξ) is a valid parameterization of Σ that is compatible with the CV map ξ̂, i.e., q̄ = ψ(ξ)

2The normal modes need not be orthonormal if there is degeneracy in the normal frequencies. But in such a
situation, one can still pick a set of orthonormal vectors within the subspace spanned by degenerate normal modes.
With some extra steps, the derivation can also be made to work for an arbitrary basis of Nq̄Σ as well.
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and ξ̂(q̄) = ξ, which means that
(ξ̂◦ψ)(ξ) = ξ. (3.14)

Taking derivatives with respect to ξ on both sides of the above equation we see that

∇ξ̂(q̄)∇ψ(ξ) = In−m , (3.15)

where In−m is the (n −m)× (n −m) identity matrix. Using this, the n ×n block matrix in
Eq. (3.13) can be written as(

In−m ∇ξ̂B
BT(∇ξ̂)T BT(∇ξ̂)T∇ξ̂B+α−1βD⊥

)
. (3.16)

Since In−m is trivially invertible, the determinant of the above matrix is

det In−m det
[
BT(∇ξ̂)T∇ξ̂B+α−1βD⊥−BT(∇ξ̂)TI−1

n−m∇ξ̂B
]=α−mβm det D⊥. (3.17)

Under the coordinate change q → (x , y), the volume element dq in the integral in Eq. (3.11)

acquires the factor
√
|det JTJ|, where J is the Jacobian of the transformation. The matrix JTJ

can be readily cast into blocks as

JTJ=
(
(∇ψ)T∇ψ 0

0 BTB

)
=

(
(∇ψ)T∇ψ 0

0 Im

)
. (3.18)

Here (∇ψ)T∇ψ is the metric induced by the embedding ξ 7→ψ(ξ) and since the normal modes
are orthonormal vectors, BTB = Im . Also, the off-diagonal blocks vanish since they involve
inner products of the basis vectors of Tq̄Σ and Nq̄Σ, which are orthogonal complements of

each other. This gives
√
|det JTJ| =

√
|det(∇ψ)T∇ψ|, which together with Eq. (3.17) lets us

evaluate the Gaussian integral in Eq. (3.11) and write

P (ξ) ∼ I (ξ)

(
2π

β

)m/2 ∣∣∣∣det[∇ψ(ξ)]T∇ψ(ξ)

det D⊥(ξ)

∣∣∣∣1/2

. (3.19)

The form of the above equation suggests that the nonzero eigenvalues of D can be naturally
interpreted as being inversely proportional to the effective widths of the fluctuations along
the m dimensions perpendicular to Σ.

3.2.2 Asymptotic marginal density: singular values
Equation (3.19) breaks down as we approach a singularity along Σ since the lowest s nonzero
eigenvalues of D become very small and tend to zero, and we need an alternative method to
find the marginal densities. At a singular point of Σ with s self stresses, the number of zero
modes increases by s, which means that now there are only m − s normal modes. The zero
modes at a singularity are not all tangent to Σ, which means that the delta function in Eq. (3.8)
fails to suppress the divergences due to these zero modes when the harmonic approximation
is used. A cartoon of the situation is depicted in Fig. 3.2, which shows two branches of a
one-dimensional shape space Σ intersecting at a singularity q̄∗, where the CV has the value
ξ∗. Because of the additional zero mode, the subspace of zero modes, kerC, is now a plane,
which is tangent to both the branches at the singularity.
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q

v

u

kerC

ξ̂−1(ξ)∼ (∇ξ̂)−1(ξ−ξ∗)

q̄∗
t

Ξξ

Figure 3.2. Cartoon illustrating the geometry of the branches and the level set (∇ξ̂)−1(ξ−
ξ∗) of the linearized CV map near the singularity, which is at q̄∗. The two ground-state
configurations in the CV level set are indicated by the intersection points of the branches
with (∇ξ̂)−1(ξ−ξ∗). As ξ→ ξ∗, these ground states get infinitesimally close to each other
and the framework becomes soft. The vector u ∈ kerC and the vector v ∈ (kerC)⊥. Also
indicated is a tangent vector t to a branch at the singularity. Here there is only one
state of self stress and the delta function restricts the integral in Eq. (3.23) to the line Ξξ
formed by the intersection of (∇ξ̂)−1(ξ−ξ∗) and kerC.

How should one proceed in such a situation? At first glance, one might think that all that is
required is to replace the harmonic energy in the previous derivation with the quartic energy
expansion, Eq. (2.19). This cannot be correct as Eq. (2.19) is only valid when the expansion
is around the singularity, and our goal here is to find P (ξ) not just for the singular CV value
ξ∗, but for all ξ→ ξ∗. When ξ is close to ξ∗, the ground-state configurations in ξ̂−1(ξ) are all
regular points of Σ that do not have any singular zero modes. However, at these configurations,
the framework also becomes very soft in certain directions due to the presence of the nearby
singularity, causing the harmonic approximation to break down. A possible strategy could
then be to expand the energy to both harmonic and quartic order along these special soft
modes, i.e., those that will ultimately become a zero mode at the singularity as we move along
Σ. Apart from the complexity of such an expansion, this raises another issue: how should one
perform Laplace asymptotics around the ground states in ξ̂−1(ξ)? When ξ is close to ξ∗, the
ground states in ξ̂−1(ξ) get infinitesimally close to each other, as do the branches (see Fig. 3.2).
Hence, on doing Laplace asymptotics around each of these ground states and on extending
the integration domain to infinity, we would be adding contributions to the marginal density
from the same region more than once. In this sense, the contributions from the branches are
not separable in the vicinity of the singularity.

From the above discussion, it should be evident that the approach we used in deriving
the harmonic marginal density, Eq. (3.19), will not work for finding an asymptotic expression
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for P (ξ) for ξ→ ξ∗. The only possibility then is to rely on Eq. (3.9), which expresses P (ξ) as
an exact integral over the CV level set ξ̂−1(ξ). Note again that Eq. (3.9) makes no reference to
the shape space Σ as such, enabling us to sidestep the issues described above. This however,
comes at the expense of having to do a higher-dimensional integral over ξ̂−1(ξ). The next
strategy is to make physically valid assumptions that can be used to dimensionally reduce
this integral.

The first such assumption we make is that the CV map can be approximated by its Taylor
expansion ξ̂ = ξ∗+ (∇ξ̂)q +O(∥q∥2) around the singularity q̄∗ for points close to q̄∗, with
∇ξ̂ being the Jacobian matrix of ξ̂ at q̄∗. This linearizes the CV map and turns its level sets
(∇ξ̂)−1(ξ−ξ∗) = {u ∈ Rn : ξ∗+ (∇ξ̂)u = ξ} near the singularity into hyperplanes (see Fig. 3.2).
Since this hyperplane is considerably easier to parameterize in comparison to the actual CV
level set ξ̂−1(ξ), this makes the evaluation of P (ξ) as a surface integral using Eq. (3.9) less
difficult. The second assumption is that the fast modes v ∈ (kerC)⊥ are such that they do not
change the value of the CV to linear order at the singularity, i.e., (∇ξ̂)v = 0. This enables us to
write q = u+v , with u ∈ kerC and v ∈ (kerC)⊥, and use the lowest-order approximation of the
energy near the singularity [Eq. (2.19)] to get3

P (ξ) =
∫

dq I (q)δ
[
ξ̂(q)−ξ]exp

[−βU (q)
]

∼ I (ξ∗)
∫

kerC
duδ

[
(∇ξ̂)u − (ξ−ξ∗)

]∫
(kerC)⊥

dv exp
{
− 1

2βκ[Cv +w (u)]T[Cv +w (u)]
}

,

where we have used (∇ξ̂)(u +v ) = (∇ξ̂)u. As we can see from the above equation, the second
assumption has allowed us to separate the contributions to P (ξ) from the fast vibrational
modes in (kerC)⊥ and the zero modes in kerC. As before, we choose the m − s normal
modes as the basis for (kerC)⊥ and write v =By , with B being the change-of-basis matrix and
y ∈Rm−s representing the components of v in the chosen basis. This turns the integral over
(kerC)⊥ into an (m − s)-dimensional Gaussian integral over y , which after a straightforward
integration yields

P (ξ) ∼ I (ξ∗)
∫

kerC
duδ

[
(∇ξ̂)u − (ξ−ξ∗)

]∫
Rm−s

dy exp
{
− 1

2βκ[CBy +w (u)]T[CBy +w (u)]
}

= I (ξ∗)∣∣det D⊥∣∣1/2

(
2π

β

)(m−s)/2 ∫
kerC

duδ
[
(∇ξ̂)u − (ξ−ξ∗)

]
exp

[
− 1

2βκw (u)TΠw (u)
]

,

(3.20)
where D⊥ is the diagonal matrix of the m − s nonzero eigenvalues of D at the singularity and

Π= Im −CB(BTCTCB)−1BTCT (3.21)

is a projection operator4 that projects w (u) to the cokernel of CB (i.e., to kerBTCT). Note
that this operator would trivially have been the identity matrix if it were not for the cross-
term w (u)TKCv in the energy expansion, Eq. (2.19), that couples the fast modes and the

3Changing q → (u, v ) introduces a unit Jacobian factor when kerC and (kerC)⊥ have orthonormal bases.
4A similar projection operator appears in the theory of polymerized membranes, once the in-plane components

of the elastic free energy (i.e., the fast modes) are integrated out; see, e.g., Eqs. (6)–(8) of Ref. [124].
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zero modes. Since the cokernel of CB is identical to the cokernel of C, it is spanned by an
orthonormal basis of self stresses σ, and one can write the action of Π on w (u) as

Πw (u) =
∑
σ
σ[σ ·w (u)]. (3.22)

Using this in Eq. (3.20) and after a straightforward application of the coarea formula [Eq. (3.9)]
we find to the lowest order, for ξ→ ξ∗,

P (ξ) ∼ I (ξ∗)∣∣det D⊥∣∣1/2

(
2π

β

)(m−s)/2 ∫
kerC

duδ
[
(∇ξ̂)u − (ξ−ξ∗)

]
exp

{
− 1

2βκ
∑
σ

[σ ·w (u)]2
}

= I (ξ∗)∣∣det D⊥ det ∇ξ̂(∇ξ̂)T
∣∣1/2

(
2π

β

)(m−s)/2 ∫
Ξξ

dΘ(u) exp

{
− 1

2βκ
∑
σ

[σ ·w (u)]2
}

.

(3.23)

Above, the integration domain Ξξ = (∇ξ̂)−1(ξ−ξ∗)∩kerC, is a hyperplane of (n −m + s)− (n −
m) = s dimensions and dΘ(u) is the surface measure on Ξξ. After choosing a convenient
parameterization for Ξξ in terms of the components of u in some basis of kerC, Eq. (3.23)
becomes an s-dimensional integral involving the exponential of a quartic polynomial, which
should converge if Σσ[σ ·w (u)]2 does not identically vanish in some region of Ξξ that extends
to infinity (see below for an extended discussion on this). This completes the derivation of
Eq. (3.23). In deriving Eq. (3.23), unlike in the derivation of Eq. (3.19), we have not looked
at contributions to P (ξ) from the ground states on each branch of Σ individually. Hence,
Eq. (3.23) represents the collective contribution to the marginal density from all the branches
that intersect to form the singularity at q̄∗.

Convergence of the integral in Eq. (3.23)

Before discussing the conditions that are required for the integral in Eq. (3.23) to converge,
we digress slightly and discuss second-order rigidity, a frequently invoked notion in rigidity
theory [23, 24]. In the notation that we have been using, a bar-joint framework is considered
to be second-order rigid if there are no vector pairs (u, v ) with u ∈ kerC and v ∈ (kerC)⊥ such
that5

Cv +w (u) = 0. (3.24)

For a singular configuration of the framework that supports nonzero self stresses σ, second-
order rigidity is equivalent to saying that there is no zero mode u ∈ kerC such that6

σ ·w (u) = 0, (3.25)

for all σ ∈ kerCT. A well-known result is that a bar-joint framework is rigid to all orders if it is
second-order rigid [24].

Clearly, a framework is not rigid (to any order) by definition and all tangents to the
branches of the shape space Σ at a singularity q̄∗ satisfy Eq. (3.25). Even though one can
speak of tangent vectors to the branches of Σ at q̄∗, the shape space Σ itself ceases to be a

5Note that this equation is nothing but the Taylor expansion of the constraint map f to the lowest order in u
and v .

6See, e.g., Corollary 5.2.2 of Ref. [24] or Corollaries 4.15–4.17 of Ref. [171].
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smooth manifold at q̄∗. Hence, there is no well-defined tangent space at q̄∗ and it is common
practice to consider instead the solution space of Eq. (3.25),

T =
{

t ∈ kerC :σ ·w (t ) = 0 for all σ ∈ kerCT
}

, (3.26)

which is the set of zero modes that preserve the constraints to second-order [18]. For this
reason, T is often called the second-order tangent cone.7 Even though the tangents to the
branches of Σ belong to T , in general, there could be vectors in T that are not tangents. In
such situations, the tangents cannot be resolved by considering the second-order tangent
cone alone and higher-order analysis is necessary [104, 122]. To simplify things, from here
on we assume that the tangents can be resolved at second order, i.e., every element of T is a
tangent to the branches of the shape space Σ at the singularity. For instance, in the cartoon in
Fig. 3.2, T would be the union of the two tangents at the singularity.

Now, the integral that defines P (ξ) also includes a delta function δ[ξ̂(q)−ξ]. After lin-
earizing the CV map ξ̂ around the singularity and integrating out the fast modes, the domain
of integration in Eq. (3.23) becomes the hyperplane Ξξ = kerC∩ (∇ξ̂)−1(ξ− ξ∗). At a sin-
gularity with s self stresses σ1,σ2, . . . ,σs , consider the map g : kerC → Rn−m+s defined by
g (u) = [(∇ξ̂)u − (ξ− ξ∗),σ1 · w (u),σ2 · w (u), . . . ,σs · w (u)]. In a basis of kerC, the equation
g (u) = 0 defines an exactly determined system of equations in n −m + s unknowns, whose
solutions (if they exist) are tangents that belong to Ξξ. If this equation has isolated roots,
then the term

∑
σ[σ · w (u)]2 in the exponential of Eq. (3.23) is zero only for a discrete set

of tangent vectors in Ξξ and is positive everywhere else, making the integral convergent.
(In Fig. 3.2, this discrete set is composed of the tangents to the two branches, which when
extended intersect the line Ξξ, which is the domain of integration.) A necessary condition for
the equation g (u) = 0 to have isolated roots in Ξξ is that (∇ξ̂)t ̸= 0 for all t ∈T . Given how
g (u) is a system of n −m linear and s quadratic equations, a stronger general condition that
ensures this eludes us at present. On the other hand, if there is a tangent t such that (∇ξ̂)t = 0,
the integral diverges. Such cases are pathological and indicate a poor CV choice. After all, if t
is tangent to Σ, then it is a slow mode that corresponds to a shape change in the framework,
and one would definitely want the value of the CV to change along it.

To conclude, the convergence of Eq. (3.23) relies on the term
∑
σ[σ ·w (u)]2 in the expo-

nential vanishing only for a finite number of isolated points in the integration domain Ξξ.
Two necessary conditions required for this are: (i) tangents to the branches of the shape space
at the singularity can be resolved at second order and form the solution space T of Eq. (3.25),
and (ii) the CV map is such that (∇ξ̂)t ̸= 0 for all t ∈T .

Scaling of the marginal density
To see how the marginal density P (ξ∗) at a singular value ξ∗ scales with β and κ, we first
choose a basis for kerC so that u = Ax , where x ∈ Rn−m+s represents the components of u
in the chosen basis and A is the associated change-of-basis matrix. Now, the s-dimensional
hyperplane Ξξ formed by the intersection of the linearized CV level set and kerC is defined

7See, e.g., Section 4.2 of Ref. [173]; also see the related discussions in Refs. [104, 122, 123]. Tangent cones
themselves were originally introduced by Whitney [169] to study tangents to analytic varieties.
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by ∇ξ̂Ax = 0, which is a set of n −m homogeneous linear equations in n −m + s variables.
Without loss of generality, let us assume that we can solve these equations to obtain the last
n −m components of x in terms of its first s components x̃ = (x1, x2, . . . , xs ). This enables
us to parameterize the hyperplane Ξξ using x̃ . As each component of the vector w (u) is a
quadratic form in x , after the elimination step, the term

∑
σ[σ ·w (u)]2 in the exponential of

Eq. (3.23) becomes a homogeneous quartic polynomial Ũ (x̃). A rescaling of the components
x̃ → (βκ)−1/4x̃ , changes the surface measure from dΘ(x̃) → (βκ)−s/4dΩ(x̃) and turns Ũ (x̃) →
(βκ)−1Ũ (x̃), yielding

P (ξ∗) ∼ I (ξ∗)∣∣κs/2 det D⊥ det ∇ξ̂(∇ξ̂)T
∣∣1/2

(
2π

β

)m/2−s/4 ∫
Ξξ

dΘ(x̃) exp
[− 1

2Ũ (x̃)
]

. (3.27)

Clearly, the above integral is purely geometric in nature and all β dependence has been
extracted. Finally, noting that det D⊥ ∼ κm−s we see that the marginal density P (ξ∗) ∼
(βκ)−m/2+s/4. It should be emphasized that we can only do this analysis for ξ = ξ∗. For
other values of ξ close to ξ∗, the hyperplane Ξξ is defined by the inhomogeneous equation
∇ξ̂Ax = ξ−ξ∗, which makes Ũ (x̃) a similarly inhomogeneous quartic polynomial, making a
rescaling argument impossible.

The marginal density for regular values of the CV, which scales like P (ξ) ∼ (βκ)−m/2

[Eq. (3.19)], is always subdominant to the marginal density at a singular value ξ∗, which scales
like P (ξ∗) ∼ (βκ)−m/2+s/4 for s > 0. Hence, we see that the softening of the framework at a
singularity causes an energetic free-energy barrier to develop between regular and singular
values of the CV, with a temperature/stiffness dependence ∼ lnβκ. In comparison, the free-
energy barriers between singular values of the CV are independent of β and κ, and depend
only on geometric parameters if the corresponding configurations have the same number
of self stresses s. Although this might lead us to conclude that such barriers are entropic
in origin, note that there would be energetic barriers along most realizable transition paths
separating these configurations.

The stark difference in the asymptotic scaling of P (ξ) at a singular value ξ= ξ∗ and for
values farther from it shows that the true scaling and behavior of P (ξ) for intermediate values
of ξ is nontrivial. A natural question is then: for what values of ξ would the harmonic and
quartic approximations capture the true behavior of P (ξ)? Equation (3.19), derived using the
harmonic approximation and a direct application of Laplace’s method, is only accurate so long
as the lowest nonzero eigenvalue ωmin(ξ) of the dynamical matrix D is such that βωmin(ξ) is
very large. This is also what causes it to break down as we approach a singularity, near which
ωmin(ξ) monotonically8 decreases to zero as ξ→ ξ∗. This also implies that as β becomes larger,
the harmonic approximation starts capturing the true behavior of the marginal density for a
larger range of ξ values. For very large β, the range of validity of the quartic approximation is
also bound to increase as the errors in the approximation become small. This means that,
for large β, we expect to see some amount of overlap in the marginal density estimates using
Eqs. (3.19) and (3.23). (For instance, see the example free-energy curves in Figs. 3.4 and 3.8(b),

8For one-dimensional shape spaces, using Rayleigh–Schrödinger perturbation theory [30] and considering the
dynamical matrix at the singularity as the “unperturbed Hamiltonian”, we can show that ωmin ∼ (ξ−ξ∗)2 for ξ→ ξ∗.
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which we shall discuss in more detail later.) We expect the exact nature of the overlap to be
problem-specific with a strong dependence on β and we leave a more thorough analysis for
future work.

We now use our formalism to find the free-energy profiles of two example frameworks with
one-dimensional shape spaces with isolated singularities and compare them with results from
Monte Carlo simulations. We will also use our formalism to analyze the five-bar linkage, a
framework with a two-dimensional shape space. Motivated by typical DNA origami structures
that have lengths in the range of a few hundred nanometers with stiffness in the range 0.1–
1 pN/nm [76], we choose a nondimensional inverse temperature of β= 104 and use a potential
of the form φi (ℓi ) = (ℓ2

i − ℓ̄2
i )2/(8ℓ̄2

i ) so that φ′′
i (ℓ̄i ) = κ= 1. Further details on the simulations

are given in Appendix 3.A.

3.3 Example: planar four-bar linkage
The four-bar linkage we consider (Fig. 3.3) is made out of two sets of bars of lengths a and
λa, where λ > 0 is a dimensionless aspect ratio. For λ ̸= 1, the linkage has shape-space
singularities at θ1 = 0 and θ1 =±π where the bars become collinear and support a state of
self stress.9 The shape space can be fully parameterized using the angle θ1, which we use as
our CV.

3.3.1 Body frame
Rigid motions can be integrated out by transforming to a local Cartesian coordinate system
(body frame) attached to the four-bar linkage with joint 1 at the origin and bar 1–2 lying along
the horizontal axis as shown in Fig. 3.3. Let (ri 1,ri 2), i = 1,2,3,4 be the coordinates of the four
joints in the lab frame. The configuration vector q ∈ R5 of the linkage in the body frame is
q = (q1, q2, . . . , q5). Also, two translational coordinates x1, x2 specify the position of joint 1, and
an orientational coordinate η, which is the angle between the horizontal axes of the lab and
body frames, gives the overall rotation of the linkage. The explicit coordinate transformation
r → (x1, x2,η, q) is given by(

r11

r12

)
=

(
x1

x2

)
,

(
r21

r22

)
=

(
x1

x2

)
+R(η)

(
q1

0

)
,(

r31

r32

)
=

(
x1

x2

)
+R(η)

(
q2

q3

)
,

(
r41

r42

)
=

(
x1

x2

)
+R(η)

(
q4

q5

)
.

(3.28)

Here R(η) is the rotation matrix in R2. Dropping the constant factor that one gets after
integrating over x1, x2,and η, the overall Jacobian factor involved in the transformation given
by Eq. (3.28) is

I (q) = |q1|. (3.29)

9For simplicity, we do not discuss the square four-bar linkage with λ= 1 here as it has additional singularities at
(θ1,θ2) = (0,±π) [176].
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a

θ1

θ2

λa

1 (0,0)

2 (q1,0)

4 (q4,q5)

3 (q2,q3)

η

λa

a

Figure 3.3. Body frame on the planar four-bar linkage with joint 1 at the origin and
bar 1–2 lying along the horizontal axis. The angle between the horizontal axes of the
body and the lab frame is η.

3.3.2 Branch parameterization
The four-bar linkage admits two modes of deformations, giving its shape space a branched
appearance. On the parallel branch the angles θ1 and θ2 are equal, whereas on the twisted
branch they have a nonlinear relationship with opposite signs. To find the exact relationship
between θ1 and θ2 on the twisted branch, we first write down the constraint equation for
bar 3–4 (see Fig. 3.3) of the four-bar linkage:

[λa +a(cosθ2 −cosθ1)]2 + (a sinθ2 −a sinθ1)2 =λ2a2. (3.30)

Assuming that the aspect ratio λ ̸= 1, this equation can be simplified and factorized in two
different ways to get

[cosθ2 −cosθ1]

[
cosθ2 −

(1+λ2)cosθ1 −2λ

1−2λcosθ1 +λ2

]
= 0, (3.31a)

[sinθ2 − sinθ1]

[
sinθ2 −

(1−λ2)sinθ1

1−2λcosθ1 +λ2

]
= 0. (3.31b)

The solutions to the above equations tell us the relationship between the “input” angle θ1 and
the “output” angle θ2 on the two branches, e.g., on the parallel branch

cosθ2 = cosθ1, sinθ2 = sinθ1 ; (3.32)

and on the twisted branch

cosθ2 =
(1+λ2)cosθ1 −2λ

1−2λcosθ1 +λ2 , sinθ2 =
(1−λ2)sinθ1

1−2λcosθ1 +λ2 , (3.33)

which is what we intended to find. We can express a point q̄ in the shape space Σ ⊂ R5 of
the four-bar linkage in terms of the angles θ1 and θ2 as q̄ = [λa, a(λ+cosθ2), a sinθ2, a cosθ1,
a sinθ1]. Using Eqs. (3.32) and (3.33) we find two parameterizations for Σ, namely ψ+ :R→R5

(parallel branch) and ψ− :R→R5 (twisted branch), defined by

ψ+(θ1) = [λa, a(λ+cosθ1), a sinθ1, a cosθ1, a sinθ1] , (3.34a)
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ψ−(θ1) =
[
λa, a

(1−λ2)(cosθ1 −1)

1−2λcosθ1 +λ2 , a
(1−λ2)sinθ1

1−2λcosθ1 +λ2 , a cosθ1, a sinθ1

]
. (3.34b)

The above equations define two curves in R5 parameterized by the angle θ1. The induced
metric on these two curves can be readily computed as

(∇ψ+)T∇ψ+ = ∥∂ψ+/∂θ1∥2 = 2a2, (3.35a)

(∇ψ−)T∇ψ− = ∥∂ψ−/∂θ1∥2 = 2a2[1−2λ(1−λcosθ1 +λ2)cosθ1 +λ4]

(1−2λcosθ1 +λ2)2 . (3.35b)

3.3.3 Marginal probability densities
Regular values
Now that we have explicit parameterizations of the two branches of the four-bar linkage in
terms of the CV θ1, we can find the marginal density P (θ1) at regular values of θ1, far from
the singular values, i.e., for 0 ≪|θ1|≪π. Note that for each value of θ1, there are two ground
states—one on the parallel branch and one on the twisted branch. This means that we need
to separately find the contributions of these ground states using Eq. (3.19) and then add them
together to obtain P (θ1).

Starting with constraint function for bar 1–2 and going around the linkage in counterclock-
wise order, we find the constraint map f :R5 →R4 in the body frame to be

f (q) =
[

q2
1 −λ2a2

2λa
,

(q2 −q1)2 +q2
3 −a2

2a
,

(q4 −q2)2 + (q5 −q3)2 −λ2a2

2λa
,

q2
4 +q2

5 −a2

2a

]
, (3.36)

and the compatibility matrix C to be

C=∇ f = a−1


λ−1q1 0 0 0 0

(q1 −q2) q2 −q1 q3 0 0
0 λ−1(q2 −q4) λ−1(q3 −q5) λ−1(q4 −q2) λ−1(q5 −q3)
0 0 0 q4 q5

 . (3.37)

At regular points C has full rank, which implies that the dynamical matrix D=CTKC and the
matrix KCCT have the same nonzero eigenvalues. This gives det D⊥ = det KCCT = κ4 det CCT.
Inserting the parameterizations from Eqs. (3.34a) and (3.34b) into the compatibility matrix
we compute det D⊥ along the two branches as

det D⊥
+ = 2κ4 sin2θ1, (3.38a)

det D⊥
− = 2κ4 sin2θ1[1−2λ(1−λcosθ1 +λ2)cosθ1 +λ4]

(1−2λcosθ1 +λ2)2 . (3.38b)

The asymptotic marginal density is then

P (θ1) ∼ I (θ1)

(
2π

β

)2
[∣∣∣∣det(∇ψ+)T∇ψ+

det D⊥
+

∣∣∣∣1/2

+
∣∣∣∣det(∇ψ−)T∇ψ−

det D⊥−

∣∣∣∣1/2]

= 2λa2
(

2π

βκ

)2

|sinθ1|−1,

(3.39)
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where we have used I (θ1) = |q1| =λa [Eq. (3.29)] and the expressions for the induced metrics
[Eqs. (3.35a) and (3.35b)] computed earlier.

Singular values
The four-bar linkage has shape-space singularities at θ1 = 0 and θ1 = ±π corresponding to
configurations where the bars are collinear. Let us first look at the singularity at θ1 = 0, where
the configuration vector q̄∗ = [λa, a(λ+1),0, a,0]. The compatibility and dynamical matrices
at this point are

C=


1 0 0 0 0
−1 1 0 0 0
0 1 0 −1 0
0 0 0 1 0

 and D=CTKC= κ


2 −1 0 0 0
−1 2 0 −1 0
0 0 0 0 0
0 −1 0 2 0
0 0 0 0 0

 . (3.40)

The dynamical matrix has nonzero eigenvalues (2+
p

2)κ, 2κ, and (2−
p

2)κ, which gives
det D⊥ = 4κ3. Also, the Hessian matrices of the four constraint functions fi at the singular-
ity are

∇∇ f1 = (λa)−1


1 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

 , ∇∇ f2 = a−1


1 −1 0 0 0
−1 1 0 0 0
0 0 1 0 0
0 0 0 0 0
0 0 0 0 0

 ,

∇∇ f3 = (λa)−1


0 0 0 0 0
0 1 0 −1 0
0 0 1 0 −1
0 −1 0 1 0
0 0 −1 0 1

 , ∇∇ f4 = a−1


0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 1 0
0 0 0 0 1

 .

(3.41)

As we remarked in Section 3.2.2, when using Eq. (3.23) to find the marginal density P (θ1),
we will not make use of the parameterizations we derived earlier [Eqs. (3.34a) and (3.34b)].
Instead, we need to first linearize the CV map at the singularity. Since the CV we have chosen
for the four-bar linkage is the angle θ1, the CV map that computes θ1 from the configuration
vector q is θ̂1(q) = tan−1(q5/q4).10 This map has the Jacobian ∇θ̂1 =

(
0 0 0 0 a−1) at the

singularity. Direct inspection reveals that (∇θ̂1)v = 0 for all fast modes v ∈ (kerC)⊥, justifying
the usage of Eq. (3.23) to find P (θ1) when θ1 → 0. This would not have been the case if, for
instance, we had chosen the coordinate q4 of joint 4 of the four-bar linkage (see Fig. 3.3), as
our CV. In such a case ∇q4 =

(
0 0 0 1 0

)
and the fast modes, all of which are along the

collinear bars with a nonzero fourth component, do not satisfy (∇q4)v = 0. Incidentally, in
this case, the tangent vectors t at the singularity are such that (∇q4)t = 0, which also makes

10To be more rigorous, we should be using the two-argument variant of the inverse tangent, sometimes denoted
as atan2(q5, q4) in numerical software, so that θ1 is in (−π,π] instead of (−π/2,π/2). This is not an issue for the
linearization since θ1 is small.
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q4 a poor choice as the CV since it does not capture the slow modes along t . Continuing
with θ1 as our CV, to evaluate the integral in Eq. (3.23), we choose the vector u ∈ kerC to be
u = (0,0, q3,0, q5), so that the vector w (u) is

w (u) =
(

1
2 uT∇∇ f1u, 1

2 uT∇∇ f2u, 1
2 uT∇∇ f3u, 1

2 uT∇∇ f4u
)

= [
0, q2

3 /(2a), (q3 −q5)2/(2λa), q2
5 /(2a)

]
.

(3.42)

There is only one self stress σ ∈ kerCT at the singularity, and it is σ = (−1/2,−1/2,1/2,1/2).
Using this in Eq. (3.23) along with (∇θ̂1)u = a−1q5 and the fact that det D⊥ = 4κ3, we get11

P (θ1) ∼ λa

2

(
2π

βκ

)3/2
(∫ ∞

−∞
dq3 dq5δ(a−1q5 −θ1)

×exp

{
− βκ

32λ2a2

[
q3 −q5

]2 [
(λ−1)q3 + (λ+1)q5

]2
})

= λa2

2

(
2π

βκ

)3/2 ∫ ∞

−∞
dq3 exp

{
− βκ

32λ2a2

[
q3 −aθ1

]2 [
(λ−1)q3 + (λ+1)aθ1

]2
}

.

(3.43)

At this point, it is useful to revisit the convergence criteria for Eq. (3.23), i.e., the requirement
that the term

∑
σ[σ ·w (u)]2 in the exponential of Eq. (3.23) must only have isolated zeros. In

the above equation, this term is [q3−aθ1]2[(λ−1)q3+(λ+1)aθ1]2/(16λ2a2), which has isolated
zeros q3 = aθ1 and q3 = (1+λ)aθ1/(1−λ), consistent with the convergence requirement.

To evaluate the integral in Eq. (3.43), we symmetrize the expression in the exponential by
changing variables q3 → q3 − (λ−1)−1aθ1, which yields

P (θ1) ∼ λa2

2

(
2π

βκ

)3/2 ∫ ∞

−∞
dq3 exp

{
−βκ(λ−1)2

32λ2a2

[
q2

3 −
λ2a2θ2

1

(λ−1)2

]2}

=λa2 (2π)3/2

(βκ)7/4

√
λa

|λ−1| exp

[
−βκλ

2a2θ4
1

32(λ−1)2

]∫ ∞

0
dx x−1/2 exp

(
− 1

2 x2 +
√
βκλaθ2

1

4|λ−1| x

)

=λa2 (2π)3/2

(βκ)7/4

√
πλa

|λ−1| exp

[
−βκλ

2a2θ4
1

64(λ−1)2

]
D−1/2

(
−

√
βκλaθ2

1

4|λ−1|

)
,

(3.44)
where D−1/2(·) is the parabolic cylinder function [129, Eq. 12.5.1].

For the singularity at θ1 = ±π, we have q̄∗ = [λa, (λ−1)a,0,−a,0] and we proceed with
a similar calculation. The dynamical matrix and the Hessians of the constraint functions at
this point are identical to those at θ1 = 0. Hence, we choose the vector u as before, yielding
the same w (u) as in Eq. (3.42). However, the self stress at θ1 = ±π is different and it is
σ= (−1/2,−1/2,−1/2,1/2). Using these results, we can evaluate the integral in Eq. (3.23) as
before to get

11From the argument of the Dirac delta function, we see that the “hyperplane” Ξξ in Eq. (3.23) is just the line
along q5 = aθ1 in the q3-q5 plane.
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P (θ1) ∼ λa2

2

(
2π

βκ

)3/2 ∫ ∞

−∞
dq3 exp

{
−βκ(λ+1)2

32λ2a2

[
q2

3 −
λ2a2(π−|θ1|)2

(λ+1)2

]2}

=λa2 (2π)3/2

(βκ)7/4

√
πλa

λ+1
exp

[
−βκλ

2a2(π−|θ1|)4

64(λ+1)2

]
D−1/2

[
−

√
βκλa(π−|θ1|)2

4(λ+1)

]
.

(3.45)

Note that the marginal densities at the singular values of θ1, i.e., P (0) and P (±π), scale
as (βκ)−7/4. Since m = 4 and the number of self stresses s = 1 at the singularities, this is
consistent with the general scaling P (ξ∗) ∼ (βκ)−(m/2−s/4) for singular values ξ∗ of the CV
[Eq. (3.27)].

3.3.4 Free energy

Using the marginal densities we have found for various regimes of θ1 [Eqs. (3.39), (3.44), and
(3.45)] we see that the free-energy difference of the four-bar linkage ∆A (θ1) =A (θ1)−A (0) =
−β−1 logP (θ1)+β−1 logP (0) takes the form

∆A (θ1) ∼



β−1

{
X 2θ4

1 − ln

[
D−1/2(−2Xθ2

1)

D−1/2(0)

]}
, θ1 → 0

β−1 ln
[

X 1/2D−1/2(0)|sinθ1|
]

, 0 ≪|θ1|≪π

β−1

(
X 2Y 2(π−|θ1|)4 − ln

{
Y 1/2 D−1/2

[−2X Y (π−|θ1|)2
]

D−1/2(0)

})
, |θ1|→π

(3.46)
where X and Y are positive dimensionless terms independent of θ1 and defined by

X =
√
βκλa

8|λ−1| , Y =
∣∣∣∣λ−1

λ+1

∣∣∣∣ . (3.47)

From Eq. (3.46), we also find the free-energy difference between the singular values θ1 = 0
and θ1 =±π to be

A (±π)−A (0) ∼−β−1 logY 1/2 = 1
2β

−1 ln

∣∣∣∣λ+1

λ−1

∣∣∣∣ , (3.48)

which is a purely geometric quantity. This is exactly what we expect based on how the
marginal density scales at a singular value [Eq. (3.27)], which shows that the free-energy
difference must be a purely geometric quantity if the singular states support the same number
of self stresses s. A comparison between the numerical results and asymptotic expressions in
Eq. (3.46) shows excellent agreement for all values of θ1 (Fig. 3.4).

Clearly, the free-energy profile has minima for values of θ1 close to 0 or ±π, corresponding
to shape-space singularities. But a more assiduous reader may have noticed that the free-
energy curves actually have double-well minima around θ1 = 0 and θ1 =±π. Also, there is an
asymmetry in these curves—the free energies of the four-bar linkage for θ1 close to 0 is lower
than θ1 close to ±π. In the next two subsections, we will try to understand these two features.
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Figure 3.4. Free-energy difference ∆A (θ1) of a four-bar linkage with parameters a = 1
and λ = 2 in units of β−1 at β = 104. The inset shows the absolute errors between
the numerical and asymptotic results using the harmonic and quartic approximations
[Eq. (3.46)].

Double-well structures
To intuitively see why the free-energy landscape of the four-bar linkage has a double-well
structure centered around the singular values, consider the projection of its total energy in
the space of the angles θ1 and θ2. The projected energy can be found by setting the lengths
of all bars equal to their natural lengths except for bar 3–4, which we assume to have an
energy φ(ℓ) = κ(ℓ2 − ℓ̄2)2/(8ℓ̄2). (The exact form of the energy is irrelevant as long as it has a
minimum at ℓ= ℓ̄.) Writing ℓ in terms of the angles θ1,θ2 we get

φ(θ1,θ2) = κa2

8λ2

[
(λ+cosθ2 −cosθ1)2 + (sinθ2 − sinθ1)2 −λ2]2

. (3.49)

Figure 3.5 shows the level sets of φ(θ1,θ2) near (θ1,θ2) = (0,0). For |θ1| > 0, there are two
ground states in the CV level set θ̂−1

1 (θ1), which is a straight line parallel to the θ2 axis in the
θ1–θ2 space. Because of the extra softness of the linkage near the singularity, this means that
for small nonzero values of θ1, there are more thermodynamically favorable states in θ̂−1

1 (θ1)

compared to θ̂−1
1 (0), which is the CV level set at the singular value θ1 = 0. This is evidenced

by the fact that for any given value E > 0, there are more points in the energy sublevel set
{(θ1,θ2) : φ(θ1,θ2) ≤ E } along small nonzero values of θ1 than θ1 = 0 (see Fig. 3.5). The net
increase in the number of thermodynamically favorable states near small nonzero values of
θ1 lowers the free energy at those values, giving the landscape a double-well appearance.

We also remark that since an asymptotic expression for the free energy is available for
the four-bar linkage, we can explicitly show the double-well nature of ∆A (θ1) and find the
locations of its minima. For example, expanding Eq. (3.44) in θ1 around θ1 = 0, we see that

∆A (θ1) ∼ [
1+8π2Γ−4 ( 1

4

)]
X 2θ4

1 −4πΓ−2 ( 1
4

)
Xθ2

1 , (3.50)
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Figure 3.5. The level sets of the energy in Eq. (3.49) around (θ1,θ2) = (0,0) for a = κ= 1
and λ= 2. The width of the energy sublevel sets is larger along small nonzero values of
θ1 compared to θ1 = 0 (e.g., δ′ > δ).

which is the equation for a double well, with Γ(·) being the gamma function. Expanding
∆A (θ1) to O(|θ1|6) we see that the two double-well minima are approximately at12

θmin
1 ≈±

√√√√√Γ2
( 1

4

){
8π2 +Γ4

( 1
4

)−√[
8π2 +Γ4

( 1
4

)]2 − (16π2)2

}
64π3X

. (3.51)

Since X ∼
√
β, this also shows that as β increases, θmin

1 shifts closer to 0.

Asymmetries in the free-energy landscape

We will now try to understand the origin of the asymmetry in the four-bar linkage’s free-energy
profile, i.e., the reason why the free-energy values close to θ1 =±π are higher than the values
at θ1 = 0. Consider Fig. 3.6 where we show a four-bar linkage in four different configurations,
with the configurations on the left having an internal angle θ1 equal to the supplement of the
value of θ1 for the configurations on the right. Geometrically, one might have expected the
configurations on the left to be mirror images of the ones on the right. However, as Fig. 3.6
shows, that is only true when the linkage is being deformed along the parallel branch and
when it is on the twisted branch, the two configurations are not mirror images. This is what
leads to an asymmetric free-energy landscape for the four-bar linkage. More quantitative
evidence for this asymmetry can be seen by expanding the angle relations along the twisted

12We expand ∆A (θ1) to O(|θ1|6) instead of O(|θ1|4) since there are higher-order corrections to Eq. (3.50) that
make an O(|θ1|4) estimation less accurate.
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Figure 3.6. For values of the angle θ1 → 0 or π, the configurations of the four-bar link-
age display a certain asymmetry depending on the branch they are in. In case of the
parallel branch, the two configurations are mirror images of each other (top figures).
On the twisted branch, however, the two configurations are asymmetric and cannot be
rotated/reflected into one another (bottom figures). The angle θ1 for the two configura-
tions on the left is equal to the supplement of the same angle for the configurations on
the right.

branch, Eq. (3.33), in θ1 around θ1 = 0 and θ1 =±π, whereby we find

θ2 =
(

1+λ
1−λ

)
θ1 +O(θ2

1) (expansion around θ1 = 0),

±π−θ2 =
(

1−λ
1+λ

)
(±π−θ1)+O(θ2

1) (expansion around θ1 =±π).
(3.52)

The asymmetry in the free-energy profiles can also be seen if we use the angle θ2 as our
CV instead of the angle θ1. Figure 3.7 shows the numerical free-energy profile as a function of
the angle θ2, along with asymptotic results. Again, there is impressive agreement between the
numerical and asymptotic results. However, now the free energy for θ2 values close to θ2 = 0
are higher than the values close to θ2 =±π. The asymptotic expressions for the free energy
used in Fig. 3.7 have been obtained using the general procedure outlined in this section. But
we do not write down the results explicitly as they can be read off from Eq. (3.46) after setting
the nondimensional parameters X →

√
βκλa/(8|λ+1|) and Y →|(λ+1)/(λ−1)| [cf. Eq. (3.47)].

3.4 Example: triangulated origami
For further testing our methods, we consider an origami made by triangulating a unit sq-
uare [18] and embedded in three dimensions [Fig. 3.8(a), lower-left corner]. To make the
origami more realistic, in simulations, we avoid all configurations that result in face intersec-
tions. The one-dimensional shape space of this origami can be visualized as four intersecting
branches in the space of the fold angles, i.e., the supplement of the dihedral angle at a fold.
The intersection point is the singular flat state of the origami, where all the fold angles are
zero.
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Figure 3.7. Free-energy difference ∆A (θ2) of a four-bar linkage with parameters a = 1
and λ= 2 as a function of the angle θ2 [cf. Fig. 3.4]. The free energy is in units of β−1

at β= 104. The inset shows the absolute errors between the numerical and asymptotic
results.

3.4.1 Body frame
To remove the rigid motions, we transform to a body frame attached to the origami with
joint 1 at the origin, bar 1–2 lying along the x axis, and bar 2–6 constrained to move on
the x y plane [see Fig. 3.9]. The origami is made out of N = 6 joints and m = 11 bars and
its configuration vector q ∈ R12 in the body frame is q = (q1, q2, . . . , q12). All orientations of
the origami in the lab frame can be fully described by the two spherical polar angles that
uniquely give the orientation of bar 1–2 and an azimuthal angle that gives the overall rotation
of the origami about bar 1–2 [66]. After integrating over the coordinates of joint 1 (i.e., the
translational coordinates) and the three angles, and dropping constant factors, the overall
Jacobian factor involved in the transformation from the lab to the body frame is I (q) = |q2

1 q12|.

3.4.2 Branch parameterization
Since the shape space of the origami (and other larger frameworks) is not amenable to
analytical parameterization, we have to parameterize it numerically. We shall parameterize
the branches of the shape space in terms of the fold angle ρ1, which we will also use as our
CV. We first express the tangent to the shape space at the flat state, t0 ∈ kerC, in terms of its
unknown components in the basis of the (N −3) out-of-plane displacement vectors of the
joints.13 An origami made by triangulating a square and having N joints is expected to have

13Note that three of the N joints are always constrained to move on a coordinate plane of the local Cartesian body
frame. This means that only (N −3) joints have out-of-plane displacements, and it is these displacement vectors that
span kerC.
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Figure 3.8. (a) A triangulated origami modeled as a bar-joint framework and (b) its shape
space visualized in the space of fold angles ρ1,ρ2, and ρ3. (c) Free-energy difference
∆A (ρ1) in units of β−1 at β = 104. The inset shows the absolute errors between the
numerical and asymptotic results using the harmonic and quartic approximations (blue
and red curves, respectively).

at least (N −4) states of self stress σ ∈ kerCT when it is flat [18]. To find the components of t0,
we then solve the (N −4) coupled quadratic equations [18, 162] [see Eq. (3.26)]

σ ·w (t0) = 0, for σ ∈ kerCT (3.53)

along with the normalization condition ∥t0∥ = 1. Here the i th component of the vector
w (t0) ∈Rm is 1

2 t T
0 ∇∇ fi t0.

Numerical evidence [18] suggests that one would get 2N−4 unique tangent vectors—each
corresponding to a particular branch—by solving the above quadratic equations. (Also see
the related discussion regarding the solution space of these equations in Section 3.2.2.) Once
a tangent vector to a branch at the flat state is selected, the rest of the branch can be pa-
rameterized by numerically solving the differential equation dq/dh = t , where h is the arc
length along a branch and t is the unit tangent vector to the branch at q . If the kth point
on the branch is qk ∈Rn , the next point qk+1 is then found by solving f (qk+1) = 0, e.g., using
the Gauss–Newton method. As the initial guess we take qk+1 = qk +∆h tk , where ∆h is the
step length along a branch. The tangent vector tk for k ̸= 0 can be found by numerically
computing kerC at qk . Since the tangent vectors obtained this way do not preserve direction
in general, we should also multiply each tk that is found with the sign of its dot product with
the previous tangent vector tk−1.

On successive repetition of the above steps starting at the flat state (q0, t0), we get q as a
function of the arc length h. To reparameterize the branch using the CV, which is the fold angle
ρ1 of fold 5–6, we first (linearly) interpolate between the arc-length parameterized points to
obtain a set of points that are uniformly spaced in ρ1. We then refine the interpolated points by
solving f (q) = 0 with the interpolated points as the initial guess. The interpolation/refinement
steps can be repeated as many times as required to achieve the desired accuracy goal. Once
the parameterization is complete, the induced metric along a branch can be computed by
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Figure 3.9. (a) A triangulated origami as a bar-joint framework illustrating the coordi-
nates of the joints in the body frame. When the origami is flat, the external vertices lie on
the corners of a unit square and the internal vertices 5 and 6 have coordinates (1/4,1/2,0)
and (3/4,1/2,0). (b) Finding the CV (i.e., fold angle ρ1) using simple geometry.

approximating the derivatives using difference quotients. Note that this parameterization is
only used in conjunction with Eq. (3.19), the asymptotic expression for the marginal density
under the harmonic approximation.

3.4.3 Marginal probability densities
Regular values

Similar to the calculation for the four-bar linkage, we first write down the constraint map
f : R12 → R11 in the body frame and find the compatibility matrix C = ∇ f . Once all four
branches of the shape space have been numerically parameterized in terms of the CV ρ1, the
marginal probability density P (ρ1) can be computed using Eq. (3.19). Here we remark that
instead of computing det D⊥ by finding the nonzero eigenvalues of D, it is more convenient
to calculate it using the fact that det D⊥ = det KCCT at regular points. This gives P (ρ1) for all
ρ1 far from the singular value (i.e., for |ρ1|≫ 0).

Singular value

Our goal here is to use Eq. (3.23) to find the marginal density P (ρ1) as ρ1 → 0. Since the
calculation is similar in spirit to the case of the four-bar linkage, we only present the key steps
here. As before, we numerically compute det D⊥ from the nonzero eigenvalues of D at the
singularity. The next step is to linearize the CV map so that the integral in Eq. (3.23) can be
evaluated.

One can always numerically compute the fold angle ρ1 as the angle between the normals
to the faces that share fold 5–6. However, for linearizing the CV map, we need to find an
expression that is more tractable analytically. A moment’s thought [and Fig. 3.9(b)] shows that
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the CV map can be written14 as ρ̂1(q) =− tan−1[d1(q)/d2(q)]. Here d1(q) is the perpendicular
distance from joint 3 to the plane containing face 1–5–6, and d2(q) is the perpendicular dis-
tance from the projection of joint 3 on this plane to the line along fold 5–6. A straightforward
calculation gives

d1(q) = q10(q2q12 −q3q11)+q4(q9q11 −q8q12)∣∣q2
10q2

11 +q2
10q2

12 + (q9q11 −q8q12)2
∣∣1/2

. (3.54)

At the singular flat state q̄∗, we have d1(q̄∗) = 0 and d2(q̄∗) = 0.5, using which we find the
Jacobian of the CV map to be

∇ρ̂1(q̄∗) =−d2(q̄∗)∇d1(q̄∗)−d1(q̄∗)∇d2(q̄∗)

d 2
1 (q̄∗)+d 2

2 (q̄∗)
=−∇d1(q̄∗)

d2(q̄∗)

= (
0 0 0 −2 0 0 0 0 0 2 0 0

)
.

(3.55)
Here we see that one can linearize the CV map without needing an explicit expression for
d2(q). Also, it is easy to verify that (∇ρ̂1)v = 0 for all fast modes v ∈ (kerC)⊥, enabling us to
use Eq. (3.23) to find the marginal density as ρ1 → 0.

As the basis for kerC we choose the out-of-plane displacements of the joints in the body
frame and write the vector u ∈ kerC in terms of the z coordinates q4, q7, and q10 of the joints.
This yields ∇ρ̂1 ·u = 2(q10 −q4). It also follows that the hyperplane Ξξ is the plane defined
by 2(q10 −q4) = ρ1 in the q4-q7-q10 space and we can parameterize the points on Ξξ using
either (q4, q7) or (q7, q10). Once we write down the vector w (u) and find the self stresses σ,
we have all the ingredients to use Eq. (3.23). However, the integral that one is left with is not
amenable to analytical integration, and so we have to resort to numerical quadrature. We
do this by using a simple Monte Carlo integration scheme with 109 sample points for each
value of ρ1 so that the maximum error is below 10−3. One also gets near-identical results with
Mathematica’s numerical integrator using a global adaptive method.15

3.4.4 Free energy
The free-energy difference ∆A (ρ1) =A (ρ1)−A (0) for all values of ρ1 can be easily computed
from the corresponding probability densities using Eq. (3.7). As we see from Fig. 3.8(b),
the numerical and the asymptotic results for the free-energy difference ∆A (ρ1) show good
agreement in both regimes of ρ1. Self-avoidance of the faces forces us to consider only a part
of each branch of the shape space for our analysis. Since the extent of these parts (in ρ1)
varies for the four branches [Fig. 3.8(a)], it results in discontinuous jumps in the free-energy
curves. Similar to the four-bar linkage, the free energy of the origami also has a double-well
appearance around the singular value ρ1 = 0. This is again because of the branched nature of
its shape space and the increased softness near the singularity.

14To assign a sign to the fold angle, we first choose a unique normal to face 1–5–6 such that it coincides with
the positive z axis when the origami is flat. Signs are then chosen so that a mountain fold (as perceived by looking
downwards along this normal) has a positive fold angle, e.g., the angle in Fig. 3.9(b) is negative since the fold is a
valley fold.

15https:/reference.wolfram.com/language/ref/NIntegrate.html

https:/reference.wolfram.com/language/ref/NIntegrate.html
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3.5 Example: planar five-bar linkage

The example frameworks we have considered so far have one-dimensional shape spaces.
In this section, we illustrate the application of our formalism to a framework with a two-
dimensional shape space, namely the planar five-bar linkage [26, 118] illustrated in Fig. 3.10(a).
The five-bar linkage we consider is made out of four bars of equal length a and a fifth bar
of length 2a. The shape space of the five-bar linkage [Fig. 3.10(b)] when visualized in the
space of the angles ζ1,ζ2, and ζ3 appears as a two-dimensional surface with four isolated
singularities,16 all of which correspond to configurations where the bars become collinear and
support a state of self stress. Since force balance in self-stressed states of a planar polygonal
linkage requires its bars to be collinear [41], it is not surprising that these singularities are
isolated, and in their neighborhoods, the shape space is very nearly a double cone [80, 118].
Similar isolated singularities are also seen in the shape spaces of origami that have self-
stressed flat states [9].

For the sake of brevity and to avoid cluttering this SM with qualitatively similar results,
we only discuss the nature of the free-energy landscape around the singularity at (ζ1,ζ2,ζ3) =
(0,0,0). Since the shape space of the five-bar linkage is two-dimensional, we choose a similarly
two-dimensional CV, ζ= (ζ1,ζ2). Next, we employ Eq. (3.23) to find the asymptotic free-energy
difference ∆A (ζ), choosing the singular value ζ∗ = (0,0) as the point of zero free energy. Note
that for doing this, we do not require an explicit parameterization of the linkage’s shape space
in terms of ζ. Such a parameterization is only required if we want to use Eq. (3.19) to find the
free energy far from ζ∗ = (0,0) using the harmonic approximation. Since the other details are
very similar to the previous calculations for the four-bar linkage and the triangulated origami,
we just quote the final result:

∆A (ζ) ∼β−1
{

Z 2ζ2
1ζ

2
2 − ln

[
D−1/2(−2Zζ1ζ2)

D−1/2(0)

]}
, (3.56)

where Z is a positive dimensionless term defined by Z =
√
βκa/(2

p
5) [cf. Eq. (3.44)]. A

comparison between the theoretical and numerical results [Figs. 3.10(c) and 3.10(d)] shows
very good agreement between the two. Similar to the four-bar linkage and the triangulated
origami, the effective free energy minimum of the five-bar linkage is not at the singular
value ζ∗ = (0,0). Expanding ∆A (ζ) to O(ζ3

1ζ
3
2) around ζ∗ we see that the bottom of the free-

energy valley near the singular value [white dashed curves in Figs. 3.10(c) and 3.10(d)] is
approximately defined by the equation

ζ1ζ2 =
Γ2

( 1
4

){
8π2 +Γ4

( 1
4

)−√[
8π2 +Γ4

( 1
4

)]2 − (16π2)2

}
64π3Z

, (3.57)

which is that of a rectangular hyperbola [cf. Eq. (3.51)].

16At (ζ1,ζ2,ζ3) = (0,0,0), (0,±π,±π), (±π,0,±π), and (±π,±π,0).
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Figure 3.10. (a) The five-bar linkage and (b) its shape space visualized in terms of the
angles ζ1,ζ2, and ζ3. These angles are measured counterclockwise from an axis parallel
to bar 1–5. Free-energy profile (in units of β−1) at β= 104 around the singular value ζ∗ =
(0,0) from (c) theory [Eq. (3.56)] and (d) simulations, with the dashed curves depicting
the approximate bottom of the hyperbolic valley [Eq. (3.57)].
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3.6 Permanently singular frameworks
Our discussion so far has been concerned with frameworks with isolated singularities. In
such frameworks, the constraint map f drops rank only at the singularities and has full rank
everywhere else. Now consider the framework shown in Fig. 3.11(a). The bars connecting
joints 1, 2, and 3 of this framework are in a permanent state of self stress, irrespective of
the value of the angle θ. By direct inspection we see that the one-dimensional shape space
Σ of this framework can be parameterized in terms of the internal angle θ using ψ(θ) =
(a, 1

2 a,0, a cosθ, a sinθ). This equation defines a smooth circle in R5, which does not have
any “visible” singularities. However, on inserting this parameterization into the compatibility
matrix C = ∇ f and the dynamical matrix D = CTKC we find (assuming that all bars have
stiffness κ)

C=


1 0 0 0 0
1 −1 0 0 0
0 1 0 0 0
0 0 0 cosθ sinθ

 , D= κ


2 −1 0 0 0
−1 2 0 0 0
0 0 0 0 0
0 0 0 cos2θ sinθcosθ
0 0 0 sinθcosθ sin2θ

 . (3.58)

Clearly, C is rank deficient irrespective of the value of θ and D has two zero modes: t = dψ/dθ ∈
Tq̄Σ corresponding to tangential motion on Σ and a singular zero mode u = (0,0,1,0,0) as-
sociated with the self stress [see Fig. 3.11(a)]. Hence, even though the shape space here is
a smooth manifold, the presence of the singular zero mode causes the harmonic approxi-
mation to break down everywhere on Σ. This should be contrasted with the case of isolated
singularities, where such singular modes appear only at the singularities of Σ. The results
that we have derived so far (namely, Eqs. 3.19 and 3.23) will not let us analyze permanently
singular frameworks [123, 173] such as the one in Fig. 3.11(a). However, such frameworks
have been considered in the context of colloidal clusters [77]. It is thus instructive to rederive
these results and compare them with our results for frameworks with isolated singularities.

Consider again a framework whose shape space Σ is defined as the zero level set of
a constraint map f : Rn → Rm with the compatibility matrix C = ∇ f . When there are s
permanent states of self stress, out of the n −m + s zero modes that belong to kerC, there
are n −m zero modes that belong to the tangent space Tq̄Σ, and the remaining s zero modes
are the singular zero modes. We can thus write kerC(q̄) = Tq̄Σ⊕S for all q̄ ∈ Σ. Here S

is the subspace of the singular zero modes at q̄ , defined as the orthogonal complement of
Tq̄Σ in kerC.17 Note that such a decomposition of kerC into two vector subspaces is not
possible when Σ has isolated singularities (where multiple branches cross) for two reasons: (i)
singular zero modes exist only at the singularities of Σ and (ii) at these singularities, there is
no well-defined tangent space Tq̄Σ.

Since the subspace S of singular zero modes can be identified for all points in Σ, we can
expand the energy to quartic order along u ∈S using Eq. (2.19). (This would not have been

17Since the zero modes are degenerate, the singular zero modes obtained by computing kerC (or kerD) need not
be orthogonal to Tq̄Σ. Hence, in writing kerC= Tq̄Σ⊕S , we are defining a singular mode to be one that belongs
to kerC, but is orthogonal to Tq̄Σ. Clearly, such zero modes cannot be extended to a smooth deformation of the
framework.
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Figure 3.11. (a) A planar framework with four joints and four bars in a body frame
attached to the framework. A bar of length a connects joints 1 and 2, and two other bars
of length 1

2 a connect joint 3 with joints 1 and 2, which results in a state of self stress
between joints 1, 2, and 3 [16] for all values of θ. Here t is the zero mode corresponding
to tangential motion on the shape space Σ, u is a singular zero mode associated with the
self stress, and v is one of the three vibrational modes. (b) Free-energy difference ∆A (θ)
[Eq. (3.60)] in units of β−1 for a hypothetical θ-dependent stiffness κ(θ) = κ0(1+cos2 θ),
chosen to verifying scaling. For constant stiffness, ∆A (θ) is zero and the free-energy
landscape is flat (unlike in the case of isolated singularities).

possible for isolated singularities since Eq. (2.19) is valid only when the expansion is around a
singularity.) To derive the asymptotic marginal density P (θ), we can then proceed similar to
the derivation of Eq. (3.19). As before, we pick coordinates associated with the framework’s
internal degrees of freedom as our CV ξ and assume that Σ can be parameterized using ξ.
We expand both the terms in the exponent of Eq. (3.10) around each ground state q̄ ∈ ξ̂−1(ξ)
after setting q → q̄ + t +u +v , where t ∈ Tq̄Σ is a zero mode that can be extended to a smooth
deformation of the framework, u ∈S is a singular zero mode, and v ∈ (kerC)⊥ is a fast mode.
We also choose the columns of ∇ψ(ξ) as the basis for Tq̄Σ, with ψ : Rn−m → Rn being the
parameterization of Σ near q̄ . Integrating over the components of t yields

P (ξ) ∼ I (ξ)

(
2π

β

)(m−s)/2 ∣∣∣det[∇ψ(ξ)]T∇ψ(ξ)
∣∣∣1/2

∫
S

du
∫

(kerC)⊥
dv exp

[− 1
2βκ∥Cv +w (u)∥2]

= I (ξ)

(
2π

β

)(m−s)/2

(βκ)−s/4
∣∣∣∣det[∇ψ(ξ)]T∇ψ(ξ)

det D⊥(ξ)

∣∣∣∣1/2 ∫
Rs

dx exp

{
− 1

2

∑
σ

[σ ·w (x)]2
}

.

(3.59)
In the last step, we have integrated over the fast modes in (kerC)⊥ and used the results in
Eqs. (3.20)–(3.22), with detD⊥ being the product of the m − s nonzero eigenvalues of the
dynamical matrix D at ψ(ξ). Also, after picking an orthonormal basis for S and writing
u = Ax , we can rescale the components x → (βκ)−1/4x to extract all β and κ dependence
as the term

∑
σ[σ · w (x)]2 is a homogeneous quartic polynomial in the components of x .

Equation (3.59) is a rederivation of the integrand in Eq. (14) of Ref. [77] and although it looks
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very similar to Eq. (3.23), it is fundamentally different. The similarities arise due to the fact
that in deriving both Eqs. (3.59) and (3.23), we used the same quartic-order expansion of the
energy. Nonetheless, it is worthwhile to compare the two equations. We can identify four
major differences.

Integration domain. The integration domain in Eq. (3.59) is S , the subspace of singular
zero modes, which exists for all configurations of a permanently singular framework. In
comparison, when the framework has isolated singularities, singular zero modes arise only at
these singularities. Furthermore, the domain of integration in Eq. (3.23) is a CV-dependent
hyperplane Ξξ = (∇ξ̂)−1(ξ−ξ∗)∩kerC, which is not the subspace of singular zero modes, and
such a vector subspace cannot be identified for a framework with isolated singularities.

Relation to the shape space. Using Eq. (3.59) requires a parameterization ψ(ξ) of the
shape-space Σ and the factor det(∇ψ)T∇ψ is the determinant of the induced metric on Σ.
This is similar to Eq. (3.19), which is the harmonic marginal density. In contrast, Eq. (3.23)
does not make an explicit reference to Σ and does not involve any parameterization of its
branches. Equation (3.23) acquires the factor |det ∇ξ̂(∇ξ̂)T|−1 from Eq. (3.9), which a corollary
of the coarea formula. Also, Eq. (3.59) is valid for all values of ξ, whereas Eq. (3.23) is only
valid when ξ is close to a singular value ξ∗ of the CV.

Convergence. If a permanently singular framework becomes second-order rigid (see
Section 3.2.2) once the zero modes are restricted to the subspace S , then σ ·w (x) > 0 for all σ
and the integral in Eq. (3.59) converges [77]. In particular, it will not converge for frameworks
that are rigid, but not second-order rigid in S (e.g., see the example in Appendix A.3 of
Ref. [24]). This should be contrasted with the case of Eq. (3.23) where there would always
be vectors t in the integration domain Ξξ that satisfy σ · w (t ) = 0 (each corresponding to
a tangent to the branch at the singularity). Hence, convergence of Eq. (3.23) relies on the
requirement that the number of such vectors is finite. Two necessary conditions required
for this are (i) the tangents t are resolvable at second order and (ii) the CV map is such that
(∇ξ̂)t ̸= 0 for all t (see Section 3.2.2).

Scaling. The scaling of Eq. (3.59) with respect to β is consistent with Eq. (9) of Ref. [77].
Furthermore, since the scaling is independent of the value of the CV ξ, one would generi-
cally expect the free-energy barriers in a permanently singular framework to be dominated
by entropic effects and the landscape would have the same appearance for all values of β
(provided it is large). Contrast this with Eq. (3.23), where the term in the exponent is an
inhomogeneous quartic polynomial in the components of u for ξ ̸= ξ∗ (see Section 3.2.2).
This makes the scaling nontrivial and gives rise to temperature-dependent barriers in the
free-energy landscape.

Returning to the example framework in Fig. 3.11(a), using Eq. (3.59), we find the marginal
density P (θ) and the free-energy difference ∆A (θ) =−β−1 lnP (θ)+β−1 lnP (0) to be

P (θ) = Γ( 1
4

)∣∣∣∣2π6a10

3(βκ)7

∣∣∣∣1/4

, ∆A (θ) = 7
4β

−1 ln

[
κ(θ)

κ(0)

]
. (3.60)

Above, we have allowed for a hypothetical θ-dependent stiffness κ(θ) so that the scaling factor
7/4 can be verified. The numerical results in Fig. 3.11(b) show excellent agreement with the
analytical predictions. If the stiffness κ is a constant, then ∆A (θ) vanishes for all values of θ
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and the landscape becomes flat. This should be contrasted with the examples for frameworks
with isolated singularities, where temperature-dependent free-energy barriers exist even for
constant stiffness.

3.7 Conclusion
In this chapter we have described a formalism to find the free-energy landscapes of common
bar-joint frameworks with isolated singularities in their shape spaces. Our results indicate
that configurations in the neighborhood of the singularities have relatively lower free energy
compared to configurations farther from the singularities. More specifically, the free-energy
landscapes of the four-bar linkage and the triangulated origami [Figs. 3.4 and 3.8(b)] demon-
strate that the measured values of the CV tend to be closer to their values near the singularities.
Yet, as free-energy landscapes (and even their extrema) do not always have a CV-agnostic
interpretation [37, 44, 63], to draw conclusions we should also consider the physical meaning
of the chosen CV (see Appendix 3.B for further discussion). The CVs we picked for both
the example frameworks were internal angles whose values dictate the overall shape of the
framework. Specifically, according to our results, we expect the bars of the four-bar linkage to
tend to be collinear, as measured by the angle θ1 being close to 0 or π. Similarly, the origami
will tend towards being flat, as measured by the fold angle ρ1. This tendency increases at
lower temperatures as the free-energy barriers become larger.

Our findings could help in programming the conformational dynamics of nanoframe-
works [36] and highlight the interplay between the geometry of a framework’s shape space
and its thermodynamic properties. Since changes in configuration space topology is known
to drive equilibrium phase transitions in certain physical systems [81], it would then be
interesting to consider how shape-space singularities affect the physical properties of frame-
works in the thermodynamic limit. Indeed, the affinity for the origami to be in nearly flat
configurations is reminiscent of the well-known flat phase of a polymerized membrane [1, 12],
which is the natural thermodynamic limit of the triangulated origami. Additionally, it would
be interesting to explore the connection between recent mean-field theories [65] written
to describe the anomalous elastic response of cellular tissues and the results presented in
this work. The onset of rigidity in these tissues can be mapped to a critical configuration in
a single cell’s configuration space, rather similar to the singularities we have seen so far.18

Other open questions include the behavior of these frameworks in the presence of active
(nonthermal) noise [46, 47], which is known to preferentially actuate zero modes [172], and
methods to bias their dynamics towards desired states [78], e.g., by introducing CV-dependent
bias potentials [82].

3.A Numerical simulations
For all the frameworks we consider in this chapter, we perform our numerical simulations19

in the lab frame at an inverse temperature β= 104 using a central-force potential φi [ℓi (r )] =
18Compare, for instance, Fig. 4 of Ref. [65] and Fig. 1.1(c) on page 3.
19The code we use for Monte Carlo simulations and numerical parameterization of the shape spaces is publicly

available at https:/github.com/manu-mannattil/thermmech.

https:/github.com/manu-mannattil/thermmech
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[ℓ2
i (r )− ℓ̄2

i ]2/(8ℓ̄2
i ), which has an absolute minimum at ℓi = ℓ̄i , for ℓi ≥ 0. With this poten-

tial, the stiffness κi = φ′′
i (ℓ̄i ) = 1 for all bars. Alternatively, any other potential φi (ℓi ) that

depends only on the bar lengths and having a minimum at ℓi = ℓ̄i can be used. We find the
marginal probability densities of the CV [Eq. (3.8)] using histograms obtained from sampling
the Boltzmann–Gibbs distribution using the classical Metropolis Monte Carlo algorithm (with
an acceptance rate of about 50% and ∼ 109 samples). The free-energy profile is then found
using Eq. (3.7). For the triangulated origami, there is an additional need to reject all Monte
Carlo moves that lead to face crossings:

(i) For faces that share an edge [e.g., faces 1–2–6 and 2–3–6 in Fig. 3.9(a)], a face crossing
can be detected by looking for sign changes in the fold angle of the shared fold when it
is close to ±π.

(ii) For faces that do not share an edge, we use a triangle-triangle intersection test [164] to
check if they intersect. Since there are eight such face pairs, to reduce computational
costs, we only check this when the origami is sufficiently folded.

3.B Miscellaneous remarks
In this appendix, we collect some remarks regarding general free-energy landscapes and their
interpretation.

3.B.1 Free energy under CV diffeomorphisms
The first issue we want to address is the lack of invariance of the free energy under a diffeo-
morphism (a differentiable transformation with a differentiable inverse) of the CV. Consider
an l-dimensional CV ξ ∈ Rl , measurable with a CV map ξ̂ : Rn → Rl . Let h : Rl → Rl be a
diffeomorphism such that h(ξ) = ζ. The CV map for ζ is ζ̂= h ◦ ξ̂. On putting this in the coarea
formula, Eq. (3.9), we find the new marginal density P (ζ) to be

P (ζ) =
∫
ζ−1(ζ)

dΘ (q)

|det ∇ζ̂(∇ζ̂)T|1/2
exp

[−βU (q)
]

. (3.61)

The CV level set ξ̂−1(ξ) is identical to ζ̂−1(ζ). To see this, note that for every point q ∈ ξ̂−1(ξ),
we have ζ̂(q) = h(ξ̂(q)) = h(ξ) = ζ, showing that q ∈ ζ̂−1(ζ) as well. Next, we use ζ̂= h ◦ ξ̂, to
find ∇ζ̂=∇h∇ξ̂, and so det ∇ζ̂(∇ζ̂)T = det ∇ξ̂(∇ξ̂)T det(∇h)T∇h. Using this in P (ζ), we find

P (ζ) =P (ξ) |det (∇h)T∇h|−1/2. (3.62)

So the free energy in the new variable ζ is

A (ζ) =A (ξ)+ 1
2β

−1 log |det (∇h)T∇h|. (3.63)

As the CV level sets ξ̂−1(ξ) and ζ̂−1(ζ) are identical, physically speaking, when working
with both ζ and ξ, we are restricting our attention to the same set of microstates. Hence,
the free energies A (ζ) and A (ξ) not being equal is a bit perplexing. In reality, it is a simple
consequence of probability density functions acquiring a Jacobian factor under a coordinate
transformation. Because of the additional logarithmic term in Eq. (3.63) (often called a gauge
term [61]) the functional forms of A (ξ) and A (ζ) can be completely different. Consequently,
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A (ξ) may have an entirely different set of extrema compared to A (ζ) and for this reason,
interpreting free-energy landscapes requires careful consideration of the CV used to describe
them.

3.B.2 Choice of CV and free-energy extrema

This is best illustrated with an example. Consider a rotor of unit natural length in two
dimensions centered around the origin with a rotationally symmetric potential energy20

U (x, y) = 1
2κ(x2 + y2 −1)2, with κ being a “spring constant” to set the units [see Fig. 3.12(b)].

This potential energy function achieves its minimum on the unit circle Ω defined by x2+y2 = 1,
which we treat as the “configuration space” Ω of the rotor. If we choose the x coordinate of
the rotor as our CV, the CV map is x̂ : (x, y) 7→ x. The marginal density P (x) of the CV is then

P (x) =
∫ ∞

−∞
dy exp

[− 1
2βκ(x2 + y2 −1)2]

= (βκ)−1/4 exp
[− 1

2βκ(x2 −1)2] ∫ ∞

0
dt t−1/2 exp

[
− 1

2 t 2 −
√
βκ(x2 −1)t

]
=p

π(βκ)−1/4 exp
[− 1

4βκ(x2 −1)2]D−1/2

[√
βκ(x2 −1)

]
,

(3.64)

where D−1/2[ · ] is the parabolic cylinder function21 [129, Eq. 12.5.1]. Using the above expres-
sion for P (x), and choosing x = 0 as the point of zero free energy, we find the free-energy
difference to be

A (x)−A (0) =−β−1 logP (x)+β−1 logP (0)

= 1
4κ(x4 −2x2)−β−1 log

{
D−1/2

[√
βκ(x2 −1)

]
D−1/2

(−√
βκ

) }
.

(3.65)

This is an exact expression for the free-energy difference, represented by the black curve
in Fig. 3.12(a). It is not readily obvious why a rotor with a rotationally symmetric potential
would have a free-energy landscape that is not flat, particularly when it is clear that the rotor
samples all orientations uniformly. To make things even more confusing, from Fig. 3.12(a),
one might even think that the rotor spends more time near x =±1 compared to other points.
But this is misleading. The only thing we can say from the rotor’s free-energy landscape is
that measured values of its x coordinate have a propensity to be close to x =±1. Indeed, a
much better CV for the thermalized rotor would be the polar angle θ̂ = tan−1(y/x). With this
CV, we would find that P (θ) is a constant, resulting in a flat free-energy landscape.

A similar issue arises when one evaluates the integral in Eq. (3.64) asymptotically for large
β using the harmonic approximation, Eq. (3.19). To do that, we need to parameterize Ω in

20We could have also chosen the more conventional energy function U (x, y) = κ(
√

x2 + y2 −1)2, but that makes
the integrals that follow difficult to evaluate exactly.

21We can also write P (x) in terms of the modified Bessel function of the second kind K1/4( · ) after making use of
the relation D−1/2(z) =p

z/(2π)K1/4(z2/4) [129, Eq. 12.7.10]. This is the result that computer algebra systems often
produce.
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Figure 3.12. (a) Free energy ∆A (x) of a stiff rotor at inverse temperature β= 100, from
the exact expression [Eq. (3.65); black curve] and asymptotic expression [Eq. (3.70);
dashed, blue curve]. Note how the asymptotic expression has a logarithmic divergence
at x =±1. Also note that the free-energy minimum is not at x =±1 as one might guess
(or how the asymptotic expression suggests). (b) Configuration space Ω of the rotor and
the CV level set x̂−1(x) have a nontransversal intersection at x =±1.

terms of the coordinate x and compute the nonzero eigenvalues of the dynamical matrix
along Ω. Two (standard) parameterizations in x that cover a unit circle are

ψ±(x) =
(
x,±

√
1−x2

)
. (3.66)

The determinant of the corresponding induced metrics is

|det(∇ψ±)T∇ψ±| =
(
1−x2)−1

. (3.67)

Meanwhile, the dynamical matrix is

D=∇∇U (x,±
√

1−x2) = 4κ

(
x2 ±x

p
1−x2

±x
p

1−x2 1−x2

)
, (3.68)

which has only one nonzero eigenvalue, 4κ. Making use of Eq. (3.19), in the large-β limit, we
get the asymptotic marginal density22

P (x) ∼
√

2π

βκ(1−x2)
. (3.69)

Aside from normalization factors, P (x) above is the probability density of x coordinates of
points sampled uniformly (e.g., with respect to the polar angle) on a unit circle. This leads to
a free-energy difference of the form

A (x)−A (0) ∼β−1 log
√

1−x2 . (3.70)

This free energy has a logarithmic divergence as x → ±1. This can be traced back to the
coordinate singularity [103] at x =±1 when we parameterize a circle using x. Geometrically,

22Here we have added contributions from both ψ+ and ψ−.



3.B. Miscellaneous remarks 55

as we show in the cartoon in Fig. 3.12(b), this corresponds to a nontransversal intersection
between the CV level sets x̂−1(±1) and the configuration space Ω.

In summary, the above discussions on CV diffeomorphisms and the example of the ther-
malized rotor shows that free-energy landscapes have to be carefully interpreted, taking into
consideration the physical meaning of the chosen CV.



Chapter 4
Semiclassical physics

This chapter presents a quick rundown of the semiclassical approximation as applied to
multicomponent waves. Using a variational approach, we will derive the ray equations and
describe the modifications necessary to extract the bound-state spectrum of a multicom-
ponent wave operator through quantization. The general theory prescribed in this chapter
will form the basis for our study of elastic waves in the next chapter.

Understanding wave propagation is vital to many disciplines across all branches of science
and engineering. A widely employed asymptotic method to solve wave problems is the
semiclassical approximation, which is sometimes referred to as the WKB approximation, the
eikonal approximation, geometrical-optics limit, etc. Although the WKB approximation is
discussed in almost all quantum mechanics books, several subtle issues, especially when
multicomponent waves are involved, need to be addressed. Our primary goal in this chapter,
therefore, is to review some existing results on the semiclassical approximation as applied to
multicomponent wave fields. In particular, we will derive expressions for two extra phases
that appear in the Bohr–Sommerfeld quantization rule for such wave fields. To keep the
exposition simple, we will restrict ourselves to wave equations in one variable. For more
detailed descriptions, we refer to the book by Tracy et al. [163] and references therein.

4.1 Introduction

We begin by considering a general wave equation of the form

∂2
tΨ(x, t )+ ĤΨ(x, t ) = 0, (4.1)

where Ψ(x, t) is an N -component wave field described by a one-dimensional coordinate x
and time t . As as example, in elastodynamics, Ψ is usually composed of displacements from
the neutral, undeformed state of some elastic structure, e.g., a rod or a shell. We also take Ĥ to
be a Hermitian operator in the form of an N ×N matrix, composed solely of spatial derivatives
(i.e., powers of ∂x ) with time-independent coefficients. Assuming that the waves are time
harmonic with frequency ω, i.e., Ψ(x, t ) =ψ(x)e±iωt , where ψ(x) is the time-independent part
of the wave field, Eq. (4.1) can be recast as

D̂ψ= 0, with D̂= Ĥ−ω2IN , (4.2)

where IN is the N ×N identity matrix.

56
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If the coefficients of the spatial derivatives that appear in D̂ are constants, then the eigen-
modes ψ are plain waves. In what follows we assume that these coefficients are slowly varying,
with the variation controlled by a single positive parameter ϵ≪ 1, called the eikonal parameter.
It is useful to treat ϵ as an ordering parameter so that we can look for solutions at various
orders of ϵ. To this end, we rescale x → ϵ−1x so that a derivative ∂x becomes ϵ∂x . With analogy
to quantum mechanics, this allows us to recast the derivatives in D̂ in terms of the wave
number/momentum operator k̂ =−iϵ∂x , with ϵ playing the role of Planck’s constant. Since
we shall be considering D̂ in the coordinate representation, the position operator x̂ = x.

4.1.1 Wave action
Central to the variational approach we will use in this chapter is the realization that a wave
equation like Eq. (4.2) can be derived from a wave action of the form [83]

U
[
ψ∗,ψ

]= 1
2 〈ψ| D̂ |ψ〉 = 1

2

∫
dx dx ′ 〈ψ|x〉〈x| D̂ |x ′〉〈x ′|ψ〉

= 1
2

∫
dxdx ′ψ∗

µ(x) D̂µν(x, x ′)ψν(x ′).
(4.3)

Above we have inserted the resolution of identity
∫

dx |x〉〈x| = 1 in appropriate places to
express U in terms of ψ and its conjugate ψ∗. Also, in the last step, we have made the matrix
product between the matrix operator D̂ and the wave vector ψ explicit, with 〈x|D̂µν|x ′〉 =
D̂µν(x, x ′) being the matrix element of D̂µν in the position basis. Varying U [ψ∗,ψ] with
respect to ψ∗ gives the integral form of the eigenvalue problem, Eq. (4.2). For later use, we
also note that U can also be written as

U
[
ψ∗,ψ

]= 1
2

∫
dx ′ 〈ψµ|x ′〉〈x ′| D̂µν |ψν〉 = 1

2

∫
dx ′ 〈x ′| D̂µν |ψν〉〈ψµ|x ′〉

= 1
2

∫
dx ′ 〈x ′| D̂µνŴνµ |x ′〉 = 1

2 tr
(
D̂µνŴνµ

)
,

(4.4)

where the matrix operator Ŵνµ = |ψν〉〈ψµ| is the density operator.
In order to solve Eq. (4.2) at various orders of ϵ, it is convenient to make use of Weyl

calculus, which allows one to map differential operators that are functions of x̂ and k̂ to
ordinary functions, called Weyl symbols, defined on an x-k phase space, and vice versa [17,
20]. A brief review of Weyl symbols is given in Appendix 4.A. Converting each entry of the
matrix operator D̂ into a Weyl symbol, we get the N ×N dispersion matrix D, which we express
in various orders of ϵ as D=D(0) +ϵD(1) +O(ϵ2).

The Wigner tensor Wνµ is defined as the symbol of the density operator Ŵ = |ψ〉〈ψ| with
the matrix element Ŵνµ(x ′, x) =ψν(x ′)ψ∗

µ(x), and is given by

Wνµ(x,k) =
∫

dr e−i kr /ϵψν

(
x + 1

2 r
)
ψ∗
µ

(
x − 1

2 r
)

. (4.5)

By inverting the above expression, and setting x + 1
2 r → x ′ and x − 1

2 r → x, we can write the
kernel of the density operator in terms of its Weyl symbol as

ψν(x ′)ψ∗
µ(x) = 1

2πϵ

∫
dk e i k(x′−x)/ϵWνµ

[ 1
2 (x ′+x),k

]
. (4.6)
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In a similar fashion, we find

D̂µν(x, x ′) = 1

2πϵ

∫
dl e i l (x−x′)/ϵDµν

[ 1
2 (x +x ′), l

]
. (4.7)

Putting Eq. (4.7) and (4.6) in Eq. (4.3), we arrive at

U = 1

2(2πϵ)2

∫
dx dx ′ dk dl e i (l−k)(x−x′)/ϵDµν

[ 1
2 (x +x ′), l

]
Wνµ

[ 1
2 (x ′+x),k

]
. (4.8)

Performing the change of variables x → 1
2 (x + x ′) and x ′ → x − x ′, which carries a Jacobian

factor of unity, we arrive at

U = 1

2(2πϵ)2

∫
dx dx ′ dk dl e i (l−k)x′/ϵDµν(x, l )Wνµ(x,k)

= 1

4πϵ

∫
dx dk Dµν(x,k)Wνµ(x,k).

(4.9)

So far there have been no approximations and the wave action in Eq. (4.9) is exact to
all orders in the eikonal parameter. That said, the curious reader may wonder if there is an
inconsistency here, in light of Eq. (4.4), where we have expressed U as the trace of the (scalar)
operator Ô = D̂µνŴνµ. In terms of its symbol, the trace of an operator Ô is

trÔ = 1

2πϵ

∫
dx dk O(x,k), (4.10)

so U must be

U = trÔ = 1

4πϵ

∫
dx dk Dµν(x,k)e

iϵ
2 L̂Wνµ(x,k), (4.11)

where we have used the Moyal formula (see Appendix 4.A for details) to write the symbol O in
terms of the symbols of Dµν and Wνµ. The issue here is a bit subtle—the resolution is that
each correction term in the Moyal series can be expressed as divergence of a vector field in
the (x,k) phase space [163, Problem 3.16]. Hence, using the divergence theorem, the integrals
over the correction terms vanish for all well-behaved wave fields. Thus, only the first term in
the Moyal series remains, and we get Eq. (4.9) again.

Returning to our main problem, i.e., to employ the semiclassical approximation to solve
Eq. (4.2), we will proceed as follows: (i) insert the eikonal ansatz into the wave action; (ii)
expand the action to the lowest order in the eikonal parameter and form the reduced action
UR; (iii) extract the semiclassical equations of motions by varying the reduced action.

Reduced wave action
As we have assumed that the coefficients of the differential operators in D̂ are slowly varying,
it makes sense to look for an almost plain-wave-like solution of the form ψ(x) = A(x)e i S(x)/ϵ,
where the amplitude A(x) is an N -component spinor with complex components, and S(x)/ϵ
is a rapidly varying phase, playing the role of an action. This is the eikonal ansatz and ϵ is
the eikonal parameter, which controls the slowness of the variation. To employ the eikonal
ansatz, we set ψµ = Aµe i S(x)/ϵ in Eq. (4.9) to obtain

Wνµ(x,k) =
∫

dr e−i kr /ϵAν

(
x + 1

2 r
)

A∗
µ

(
x − 1

2 r
)

exp

{
i

ϵ

[
S

(
x + 1

2 r
)−S

(
x − 1

2 r
)]}

. (4.12)
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Next, we set r → ϵr and expand the amplitude Aν(x + 1
2ϵr ) = Aν(x)+ 1

2 (∂x Aν)ϵr +O(ϵ2) and
the phase S(x + 1

2ϵr ) = S(x)+ 1
2 [∂x S(x)]ϵr +O(ϵ2) to obtain

Wνµ(x,k) = ϵ
∫

dr Aν(x)A∗
µ(x)exp{i r [∂x S(x)−k]}+O(ϵ2)

= 2πϵAν(x)A∗
µ(x)δ [k −∂x S(x)]+O(ϵ2).

(4.13)

We have assumed that the dispersion matrix is ordered in the eikonal parameter ϵ so that we
can write D=D(0) +ϵD(1) +O(ϵ2). Hence, after putting the “reduced” Wigner tensor, Eq. (4.13),
in Eq. (4.9), we find the action to the lowest order as

U = 1
2

∫
dx D(0)

µν [x,k = ∂x S(x)] Aν(x)A∗
µ(x)+O(ϵ2). (4.14)

Next, we perform a spectral decomposition of the lowest-order dispersion matrix D(0)
µν(x,k)

and write it in terms of its eigenvectors τa and eigenvalues λa as1

D(0)
µν(x,k) =

∑
a
λa(x,k)τa,µ(x,k)τ∗a,ν(x,k). (4.15)

An eigenvector τa describes a specific wave type or “polarization” represented by the wave
equation, Eq. (4.2). And by polarization, we mean a linear subspace of the total wave field
that is usually of a distinct physical nature, e.g., flexural waves on a rod. We put Eq. (4.15) into
Eq. (4.14), and define Ba = τ∗a,νAν = 〈τa |A〉, which is the projection of the amplitude Aν along
the direction of the polarization vector τa . This results in a reduced action of the form

UR [Ba ,S] = 1
2

∑
a

∫
dxλa(x,k)|Ba(x,k)|2, with k = ∂x S(x). (4.16)

4.1.2 Phase-space representation of waves
Variation of the reduced action, Eq. (4.16), with respect to the amplitude Ba yields

λa[x,k(x)]Ba[x,k(x)] = 0 for all a. (4.17)

Assume that the amplitudes Ba is nonzero only for one polarization, say, a = I . This means
that the corresponding eigenvalue must vanish, which yields

λI [x,k(x)] =λI [x,∂x S(x)] = 0. (4.18)

The above equation, which is known as the eikonal equation, is nothing but the Hamilton–
Jacobi equation with S(x) playing the role of the classical action. This leads us to the phase-
space representation of waves as rays that satisfy the Hamilton’s equations

dx

dσ
= ∂kλI (x,k) = {x,λI } and

dk

dσ
=−∂xλI (x,k) = {k,λI } , (4.19)

where σ is some parameter that parameterizes the rays [x(σ),k(σ)] in the phase space, and
{·, ·} is the x-k Poisson bracket. Since the waves we consider propagate in a one-dimensional
space, these rays are identical to the level curve defined by λI (x,k) = 0.

1In Eq. (4.15), the subscripts µ and ν indicate the components of τa . We have also made the summation over
the polarization index a explicit—a convention that we will use throughout this dissertation.
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In higher dimensions, solving the Hamilton-Jacobi equation can be nontrivial. However,
in one dimension, it is always theoretically possible to solve for k(x) from λI (x,k) = 0. Varia-
tion of the action, Eq. (4.16), with respect to the phase S(x) yields the amplitude transport
equation2

d

dx

[
|BI (x)|2∂kλ

(0)
I (x,k)

]
= 0 (4.20)

so |BI (x)|2∂kλ
(0)
I (x,k) =C (constant). As the polarization vector τI and the wave amplitude A

are general complex vectors, BI = 〈τI |A〉 would generally be a complex number. However, by
rephasing τI appropriately, we can always take BI to be real, and we find

BI (x) = C√
∂kλI (x,k)

. (4.21)

Clearly, the amplitude projection BI becomes singular at points on the phase space where
ẋ = ∂kλI (x,k) = 0, i.e., when the local tangent along a ray points along the k axis. Such points
are called caustics, and they arise because of ill-defined projections from the ray, which lives
in the x-k phase space, to the x coordinate space. The issue can be sidestepped using the
Keller–Maslov method [85, 113] where one Fourier transforms the wave field and uses the
eikonal ansatz in the momentum space. Although we shall later rely on some results of this
procedure, we will not discuss its technical details here. Interested readers are encouraged to
look at the book by Tracy et al. [163, Chapter 6] (and references therein) for more information.

In writing down the eikonal equation, Eq. (4.18), we have assumed that the amplitude
projection Ba ̸= 0 only for a = I . Now, as D(0) is a Hermitian matrix, its eigenvectors τa are
mutually orthogonal, and we can write the wave amplitude as Aµ =

∑
a Baτa,µ = BIτI ,µ. This

would clearly be wrong if more than one eigenvalue of the dispersion matrix D(0) simultane-
ously vanish, because Aµ could then be proportional to any vector in the space spanned by
the degenerate polarization vectors. For this reason, conventional semiclassical solutions also
break down near points in the phase space where D(0) is degenerate, leading to an exchange
of energy and mode conversion between waves of different polarizations [163]. As the wave
equations we study in this dissertation do not suffer from mode-conversion issues (at least
in the parameter ranges we are interested in), we forgo a more detailed discussion of these
problems here.

Assuming that we are far away from caustics and ignoring mode-conversion effects, one
might write the final eikonal solution as

ψµ(x) ∼ BI (x)τI ,µ(x)e i S(x)/ϵ. (4.22)

But there is a subtle problem. The polarization vector τI is only defined up to an overall phase.
Thus, instead of the above equation, it is more appropriate to write the eikonal solution as

ψµ(x) ∼ BI (x)τI ,µe iγ(x)e i S(x)/ϵ, (4.23)

2Here we have ignored the term ∂k B2
I (x,k)λI , which trivially vanishes as λI (x,k) = 0 along a ray. Also, since k is

a function of x on a ray, we can simply write the projected amplitude as B(x) instead of B(x,k). Note also that after
evaluating the partial derivative of λI with respect to k, we need to set k → k(x) for the full derivative with respect to
x to make sense.
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where γ(x) = γ[x,k = ∂x S(x)] stands for an adiabatic phase that we have not determined so
far. As τI is obtained from D(0), whose entries are slowly varying functions of x, it makes sense
to consider the phase γ(x) to be slowly varying as well. For this reason, γ cannot be absorbed
into the eikonal phase S(x)/ϵ, which is rapidly varying.

The phase γ becomes important when quantizing orbits—a step that boils down to the
single valuedness of ψµ as we move around a closed orbit, i.e., the sum of γ and S/ϵ must be
a half-integral multiple of 2π (see Section 4.4). Unfortunately, our lowest-order analysis is
insufficient to determine this phase. We cannot also find an evolution equation for this phase
from the reduced action, Eq. (4.16), as it is independent of γ. It can also be easily checked that
the phase γ cannot be introduced in the action by rephasing τ by the phase factor e iγ(x,k), as
the action remains invariant. The message is clear: to find γ, we need to include higher-order
corrections in the wave action. To this end, rather than repeat the original, but cumbersome
derivations scattered across Refs. [7, 8, 83, 174], it is more sagacious to switch gears and
follow a different approach due to Littlejohn and coworkers [99, 100] for (approximately)
diagonalizing multicomponent differential operators.

4.2 Intermission: diagonalizing multicomponent operators
We start again, with a Hermitian linear differential operator D̂ in the form of an N ×N matrix
satisfying a wave equation

D̂Ψ= 0, (4.24)

where Ψ is an N -component wave field. We want to find a unitary operator Û such that

Û†D̂Û= Λ̂ (4.25)

is a diagonal operator. Clearly, this equivalent to demanding that D̂Û = ÛΛ̂. If we can find
such an operator and solve the decoupled set of equations given by Λ̂Φ = 0 somehow, the
solutions to the original equation can then be recovered from Φ using Ψ = ÛΦ. However,
Eq. (4.25) is an equation involving operator products and standard linear algebra methods do
not (directly) help in finding the unitary operator Û. Instead, we start by finding the symbol
form of the following two equations:

D̂Û= ÛΛ̂

Û†Û= ÎN .
(4.26)

Here we assume that the operators D̂, Û, and Λ̂ have some problem-relevant ordering param-
eter ϵ so that we can expand3 the operators (and their symbols) in terms of ϵ as follows:

D̂= D̂(0) +ϵD̂(1) +ϵ2D̂(2) +·· ·
Û= Û(0) +ϵÛ(1) +ϵ2Û(2) +·· ·
Λ̂= Λ̂(0) +ϵΛ̂(1) +ϵ2Λ̂(2) +·· ·

and

D=D(0) +ϵD(1) +ϵ2D(2) +·· ·
U=U(0) +ϵU(1) +ϵ2U(2) +·· ·
Λ=Λ(0) +ϵΛ(1) +ϵ2Λ(2) +·· ·

(4.27)

3In their papers, Littlejohn and coworkers [99, 168] assume that D̂ is not ordered in ϵ, i.e., D̂= D̂0. This might
seem confusing at first since the parameter ϵ must appear somewhere in the problem. The thing is that very often,
ϵ appears as a factor to a spatial derivative operator, e.g., ϵ∂x , which once expressed in terms of the momentum
operator, does not have additional dependence on ϵ. Of course, D̂ could have further nontrivial dependence on ϵ,
which is a more general situation, and the one we want to consider here.
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Because the Weyl transform preserves Hermiticity, D is a Hermitian matrix to all orders. Our
requirement is that Λ remains diagonal at all orders of ϵ. To proceed, we use the Moyal
star product to find the symbol form of Eq. (4.26) at different orders of ϵ. At O(ϵ0) we find
D(0)U(0) =U(0)Λ(0) and U(0)†U(0) = In , with the first equation being equivalent to

U(0)†D(0)U(0) =Λ(0). (4.28)

Since we demand Λ(0) to be diagonal, this is the usual linear algebra problem of diagonal-
izing the matrix D(0). We thus deduce that the columns of the matrix U(0) are composed
of eigenvectors τa with eigenvalues λ(0)

a satisfying D(0)τa = λ(0)
a τa , with a = 1,2, . . . , N . More

explicitly,
U(0) = (

τ1 τ2 · · · τn
)

. (4.29)

The matrix Λ(0) = diag[λ(0)
1 ,λ(0)

2 , . . . ,λ(0)
N ] is composed of the eigenvalues λ(0)

a .
At O(ϵ1), demanding DU=UΛ gives us

D(1)U(0) +D(0)U(1) + (i /2)
{
D(0),U(0)}=U(1)Λ(0) +U(0)Λ(1) + (i /2)

{
U(0),Λ(0)} . (4.30)

Multiplying from the left by U(0)† and making use of U(0)†D(0) = Λ(0)U(0)†, we get the O(ϵ)
correction4

Λ(1) =
(
U(0)†D(1)U(0) + (i /2)U(0)† {

D(0),U(0)}− (i /2)U(0)† {
U(0),Λ(0)})+[

Λ(0),U(0)†U(1)
]

. (4.31)

In the last term above, [·, ·] denotes the matrix commutator. We can find U(0) and Λ(0) by diag-
onalizing D(0). The matrix D(1) (if it is nonzero) can be found by expanding the symbol matrix
D. But that will still not let us find Λ(1) since we also need U(1) to evaluate the commutator
term [Λ(0),U(0)†U(1)]. To proceed, we recall that we want Λ to be diagonal at all orders, which
means that Λ(1) must be a diagonal matrix as well. The abth entry of the commutator term
evalutes to [

Λ(0),U(0)†U(1)
]

ab
=

[
λ(0)

a −λ(0)
b

](
U(0)†U(1)

)
ab

, (4.32)

where we have made use of the diagonality of Λ(0), which implies Λ(0)
ab =λ(0)

a δab . And we see
that the diagonal entries (with a = b) of the commutator vanish. So the commutator term
does not contribute towards the diagonal entries of Λ(1) and we can find the O(ϵ1) correction
λ(1)

a to the eigenvalues by carefully evaluating diagonal entries of the remaining terms in the
RHS of Eq. (4.31). Before we do that, we need to discuss the role of the commutator term
further. In fact, without this crucial term, the expansion will break down.

4.2.1 Role of the commutator term
None of our arguments so far guarantees that Λ(1) is diagonal. In fact, the off-diagonal entries
of the four matrices in the RHS of Eq. (4.31) is generally not equal to zero. The only way for
Λ(1) to be diagonal then is if these off-diagonal entries somehow cancel each other. We do not
have the freedom to choose the off-diagonal entries in the first three terms since they only
involve the matrices U(0) and Λ(0), both of which are constrained by Eq. (4.28). However, the
commutator term involves the matrix U(1), which is something we have not found yet. At the

4For further higher-order corrections to Λ, see Eq. (19) of Ref. [168].
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same time, U(1) is not a completely arbitrary matrix, because on demanding unitarity of U at
O(ϵ) we get the following equation that puts constraints on U(1):

U(0)†U(1) +U(1)†U(0) + (i /2)
{
U(0)†,U(0)

}
= 0. (4.33)

As we show below, this equation is not good enough to determine U(1) completely, which
is good for us since that gives us some freedom in choosing the off-diagonal elements of
the commutator term in the way we want. To simplify the commutator term we first define
X =U(0)†U(1) so that the previous equation becomes

X+X† =−(i /2)
{
U(0)†,U(0)

}
. (4.34)

We see that Hermitian part of X, given by A = (X+X†)/2, is fixed by the above equation.
Hence A = (−i /4){U(0)†,U(0)}, which is clearly a Hermitian matrix. This still leaves us with
the possibility of picking the anti-Hermitian part of X, which we denote by iB. Here B is a
Hermitian matrix defined5 by B=−i (X−X†)/2. After replacing X =U(0)†U(1) in the commutator
term with A+ iB and using Eqs. (4.31) and (4.32), we find the off-diagonal entries of B to be

Bab = i
Qab

λ(0)
a −λ(0)

b

, with a ̸= b, (4.35)

where
Q=U(0)†D(1)U(0) + (i /2)U(0)† {

D(0),U(0)}− (i /2)U(0)† {
U(0),Λ(0)}

− (i /4)Λ
{
U(0)†,U(0)

}
+ (i /4)

{
U(0)†,U(0)

}
Λ.

(4.36)

Although we have found an expression that gives the off-diagonal elements of B, nothing in
our arguments so far guaratees the Hermiticity of B and we have to explicitly check this.6

From Eq. (4.35), we see that the matrix Q should be Hermitian if B is to be Hermitian. For two
general matrices F and G we have {F,G}† =−{G†,F†}. Along with the assumption that D(1) is
Hermitian, we then find,

Q† =U(0)†D(1)U(0) + (i /2)
{
U(0)†,D(0)

}
U(0) − (i /2)

{
Λ(0),U(0)†

}
U(0)

− (i /4)
{
U(0)†,U(0)

}
Λ+ (i /4)Λ

{
U(0)†,U(0)

}
,

(4.37)

which can be further simplified7 to show that Q† =Q, from which the Hermiticity of B follows.

5Writing the anti-Hermitian part of X this way might look nonstandard and it is more natural to write it as
(X−X†)/2. This is to ensure that the diagonal entries of matrix B are real numbers, for the sake of a future argument.

6Littlejohn and coworkers [99, 168] seem to not have stressed this subtle point in their papers and they do not
prove the Hermiticity of B explicitly. At first glance, we might think that B would Hermitian by construction because
we took A and iB to be the Hermitian and anti-Hermitian parts of X. This is not true however, as we obtained A from
requiring unitarity of U at O(ϵ) and we are now attempting to find the off-diagonal entries of B from Eq. (4.31), which
is an independent equation that guarantees the diagonalizability of D at O(ϵ).

7The simplification proceeds (by explicitly computing matrix entries) by first showing that {U(0)†, D(0)}U(0) =
{U(0)†, U(0)}Λ − U(0)†{U(0),Λ} − {1U(0)†,3 U(0)}2D(0) and {Λ(0), U(0)†}U(0) = Λ(0){U(0)†, U(0)} − U(0)†{D(0), U(0)} −
{1U(0)†,3 U(0)}2D(0). Here the superscripts 1, 2, and 3 appearing before the matrices denote the order in which
they are to be multiplied; see Ref. [100] for further details on this convention. Upon using these results in the RHS of
Eq. (4.37), we see that Q = Q†.
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Clearly, from Eq. (4.35) we see that our scheme would break down if the lowest-order
symbol matrix D(0) has an O(ϵ0) degeneracy, i.e., if D(0) is degenerate with λ(0)

a =λ(0)
b for some

a ̸= b. For similar reasons, we cannot also determine the diagonal entries Baa from Eq. (4.35).
However, as we show below, we can always take them to be zero, since they do not affect the
unitarity of U to O(ϵ). The symbol matrix U to O(ϵ) is

U=U(0) +ϵU(1) +O(ϵ2) =U(0) [In +ϵ(A+ iB′+ iB′′)]+O(ϵ2), (4.38)

where we have made use of U(1) =U(0)(A+ iB) and have written B as the sum of its diagonal
part B′ and off-diagonal part B′′.8 Now, note that we have complete freedom in choosing
phase factors for the columns of U(0), namely the eigenvectors of D(0). Rephasing the ath
column by e−iϵB′

aa turns

U(0) →
(
e−iϵB′

11τ1 e−iϵB′
22τ2 · · · e−iϵB′

nnτn

)
=U(0)(In − iϵB′)+O(ϵ2) (4.39)

At the same time, the matrices A →A+O(ϵ) and B′′ →B′′+O(ϵ). Thus, the RHS of Eq. (4.38)
becomes[

U(0)(In − iϵB′)+O(ϵ2)
][

In +ϵ(A+ iB′+ iB′′+O(ϵ)
)]=U(0) [In +ϵ(A+ iB′′)]+O(ϵ2). (4.40)

In other words, we can absorb any nonzero diagonal entries of B by a suitable rephasing of
the columns of U(0). Thus, without loss of generality we take the diagonal part B′ to be zero.

4.2.2 First-order correction

The matrix Λ(1), whose entries can be found from the parenthetical terms in the RHS of
Eq. (4.31), is now diagonal to O(ϵ). The diagonal entries of Λ(1) give the first-order correction
λ(1)

a to the eigenvalue λa for a specific polarization, i.e., λ(1)
a =Λ(1)

aa . We proceed by further
simplifying the various parenthetical terms in Eq. (4.31) by noting that

Λ(0) = diag
[
λ(0)

1 ,λ(0)
2 , . . . ,λ(0)

N

]
, U(0)

µa = τa,µ, and U(0)†
aµ = τ∗a,µ. (4.41)

Above, τa,µ refers to the µth component of the polarization vector τa and (·)∗ denotes complex
conjugation. Here, we have also used mixed Latin/Greek indices to separate the polarization
index from the component indices (both run from 1 to N , however). Using Eq. (4.41), the
diagonal components of the first term in the parenthetical expression in Eq. (4.31) can be
written as (

U(0)†D(1)U(0)
)

aa
= τ∗a,µD(1)

µντa,ν. (4.42)

8Since B is Hermitian, its diagonal part B′ is a real matrix.



4.3. Evolution of the polarization phase 65

Next, we simplify the diagonal entries of the second parenthetical term of Eq. (4.31) as

(i /2)
(
U(0)† {

D(0),U(0)})
aa

= (i /2)U(0)†
aµ

(
∂xD(0)

µν∂k U(0)
νa −∂k D(0)

µν∂xU(0)
νa

)
= (i /2)

[
∂x

(
Λ(0)

aµU(0)†
µν

)
−∂xU(0)†

aµ D(0)
µν

]
∂k U(0)

νa

− (i /2)
[
∂k

(
Λ(0)

aµU(0)†
µν

)
−∂k U(0)†

aµ D(0)
µν

]
∂xU(0)

νa

= (i /2)λ(0)
a

{
τ∗a,µ,τa,µ

}
− (i /2)τ∗a,µ

{
τa,µ,λ(0)

a

}
− (i /2)D(0)

µν

{
τ∗a,µ,τa,ν

}
.

(4.43)

In the second step above, we have also made use of U(0)†D(0) =Λ(0)U(0)†. Finally, we can write
the diagonal entries of the third parenthetical term in Eq. (4.31) as

−(i /2)
(
U(0)† {

U(0),Λ(0)})
aa

=−(i /2)τ∗a,µ

{
τa,µ,λ(0)

a

}
. (4.44)

Putting the simplified expressions from Eqs. (4.42)–(4.44) in Eq. (4.31), we find the first-order
correction in the eigenvalue λ to be9

λ(1)
a = τ∗a,µD(1)

µντa,ν− iτ∗a,µ

{
τa,µ,λ(0)

a

}− (i /2)
(
D(0)
µν−λ(0)

a δµν

){
τ∗a,µ,τa,ν

}
(4.45)

Note that in the above equation there is no sum over the polarization index a, whereas the
repeated Greek indices µ and ν indicate summation. Apart from Eq. (4.45), Littlejohn and
coworkers [99, 100, 168] go on to derive a number of other results in their papers. For our
purposes, however, Eq. (4.45), which provides the O(ϵ) correction to the eigenvalue λ(0)

a is
good enough to derive an evolution equation for the adiabatic phase.

4.3 Evolution of the polarization phase
To make the transition between the variational theory presented in Section 4.1 and the results
in the previous section easier, we first note that we can write the wave operator D̂ as

D̂= ÛΛ̂Û†. (4.46)

Putting this in Eq. (4.4), we see that the wave action can also be written as

U = 1
2 tr

(
D̂Ŵ

)= 1
2 tr

(
ÛΛ̂Û† |ψ〉〈ψ|

)
= 1

2 tr
(
Λ̂Û† |ψ〉〈ψ| Û

)
= 1

2

∑
a

tr
(
λ̂a |ψ̃a〉〈ψ̃a |

)
(4.47)

where we have used standard results pertaining to the trace of matrix products and have
defined |ψ̃a〉 = Ûaµ |ψµ〉. Proceeding by similar arguments as in Section 4.1, we express the

wave action in terms of the Weyl symbol of the operator λ̂a , given by λa , and the Wigner
function Wa corresponding to the density matrix |ψa〉〈ψa | to find [cf. Eq. (4.9)]

U = 1

4πϵ

∑
a

∫
dx dkλa(x,k)Wa(x,k). (4.48)

9This equation is identical to Eq. (3.21) of Ref. [100], except for the first term involving D(1), as these authors
assume that the operator D̂ is not ordered in ϵ.
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The Wigner function Wa to the lowest is

Wa =U(0)†
aν WνµU(0)

µa +ϵ(□)+O(ϵ2) (4.49)

where ϵ(□) represents all O(ϵ) correction terms, e.g., those that appear during the application
of the Moyal formula to compute Wa , terms involving U(1), etc. One might think that it is
important to find these terms, which is of the same order as the phase correction term we
are after. However, as we shall see, these terms drop out once we work out the equations of
motion, and for this reason, we leave them unevaluated. Next, we insert the eikonal ansatz
for the wave fields, ψµ = Aµe i S(x)/ϵ, and using the steps we followed in p. 58, find the reduced
Wigner function to be

Wa,R = 2πϵ
[
τ∗a,νAν(x)

][
A∗
µ(x)τa,µ

]
δ
[
k −∂x S(x)

]+O(ϵ2)

= 2πϵ|Ba(x,k)|2δ[
k −∂x S(x)

]+ϵ(□)+O(ϵ2).
(4.50)

Above, the correction ϵ(□) now includes previous correction terms as well as those arising
from higher-order expansions of the eikonal phase S(x) and amplitude Aµ. To O(ϵ2), the

eigenvalue λa =λ(0)
a +ϵλ(1)

a +O(ϵ), so the wave action becomes

U
[
Ba ,S

]=U (0) [Ba ,S]+ϵU (1) [Ba ,S]+O(ϵ2)

= 1
2

∑
a

∫
dxλ(0)

a (x)|Ba(x)|2 +ϵλ(0)
a (x)× (□)+ 1

2ϵ
∑
a

∫
dxλ(1)

a (x)|Ba(x)|2 +O(ϵ2).

(4.51)
The lowest-order action above U (0)[Ba ,S] is equivalent to the reduced action, Eq. (4.16), we
saw previously. Varying U (0)[Ba ,S] with respect to Ba and S(x), we find, as before, the eikonal
and amplitude transport equations

λ(0)
I

[
x,k = ∂x S(x)

]= 0,

d

dx

[
|BI (x)|2∂kλ

(0)
I (x,k)

]
= 0,

(4.52)

where we have assumed again that only one eigenvalue, with polarization index a = I , van-
ishes.

Varying the first-order action U (1)[Ba ,S] in Eq. (4.51) with respect to Ba , we find

λ(0)
I δ(□)+λ(1)

I [x,k = ∂x S(x)] = 0, (4.53)

where δ(□) represents the variation of the correction terms (□) that we chose to not determine.
However, from the eikonal equation we know that λ(0)

I = 0, so once we insert Eq. (4.45) into
the above equation, we get

τ∗I ,µD(1)
µντI ,ν− (i /2)D(0)

µν

{
τ∗I ,µ,τI ,ν

}
− iτI ,µ

{
τI ,µ,λ(0)

a

}= 0. (4.54)

Upon explicitly introducing the adiabatic phase γ by setting τI → τI e iγ, and after some
straightforward algebra, we find that the phase γ can be written as

γ= γG +γNG, (4.55)
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where the phases γG and γNG evolve according to

γ̇G = iτ∗µ
{
τµ,λ(0)} and γ̇NG = (i /2)D(0)

µν

{
τ∗µ,τν

}
−τ∗µD(1)

µντν. (4.56)

Above, we have suppressed the polarization index I for simplicity. The first of the extra phases
γG has the form of a geometric phase upon treating the x-k phase space as a parameter space.
To see this, note that γ̇G = iτ∗µ{τµ,λ(0)} = iτ† · τ̇. So, around a closed orbit C in phase space,
the accumulated phase becomes

γG =
∮

C
γ̇G dσ= i

∮
C
τ† ·dτ= i

∮
C
〈τ|∇ϑτ〉 ·dϑ, (4.57)

where ϑ= (x,k) denotes the “parameters” that are being varied along the orbit. The phase γG,
which is the integral of a differential 1-form, depends only on the path C and not how it is
parameterized (like all geometric phases). The second phase γNG has no such interpretation
and is not a geometric phase.

4.4 Bound waves in phase space
We expect the rays of bound waves to be bounded in phase space as well, with these rays
being topologically equivalent to a circle [85, 116]. Such rays oscillate between two classical
turning points where k = 0 and ẋ = 0 as shown in the cartoon in Fig. 4.1(a). From our previous
discussion, we see that turning points are examples of caustics, i.e., points on the ray where
ẋ = 0. Of course, on a bound orbit, apart from the classical turning points, there could be
other caustics as well [see Fig. 4.1(b)].

The eikonal solution for the wave field is of the form ψ(x) ∼ B(x)τ(x)e iγ(x)e i S(x)/ϵ, where
γ is the adiabatic phase that evolves according to Eq. (4.56). The eikonal phase S(x) can be
recovered by integrating k(x) along a ray. As ψ(x) must be single valued, its overall phase can
only change by an integral multipe of 2π as we move around a bound orbit. This leads to a
modified Bohr–Sommerfeld-type quantization condition of the form

ϵ−1
∮

dx k(x;ω) = 2
(
n + α

4

)
π−γ, (4.58)

from which bound-state frequencies ω can be extracted. Above, the quantum number n ∈N0

and α is the Keller–Maslov index [85, 113], which accounts for phase jumps at the turning
points. Closed orbits in a two-dimensional phase space that can be smoothly deformed to a
small circle always have α= 2 [134].

4.A Weyl symbols
In physics, by quantization we mean an association of an operator, e.g., Â, defined on some
Hilbert space to an ordinary c-numbered function A on the x-k position-momentum phase
space. In this context, the ordinary function is called the symbol of the operator [17, §2.3.1].
A particularly useful type of an operator symbol is the Weyl symbol, which is defined by the
Weyl transform

A(x,k) =
∫

ds e−i ks/ϵ 〈x + 1
2 s

∣∣ Â
∣∣x − 1

2 s
〉

. (4.59)
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Figure 4.1. (a) In phase space, bound states are represented by rays in the form of closed
orbits, which is analogous to that of a bound particle oscillating between two classical
turning points (±x⋆ in the cartoon). Other trajectories represent unbound states. (b) A
bound state represented by a “peanut”-shaped orbit has six caustics.

where 〈x| Â |x ′〉 = A(x, x ′) is the matrix element of the operator Â. Weyl symbols are preferable
over other symbols (e.g., the “common” xk symbol [116]) because Weyl symbols of Hermitian
operators are real functions of x and k. To see this, consider a Hermitian operator Â with
Â† = Â, and take the complex conjugate of Eq. (4.59) to find

A∗(x,k) =
∫

ds e+i ks/ϵ 〈x + 1
2 s

∣∣ Â
∣∣x − 1

2 s
〉∗ =

∫
ds e+i ks/ϵ 〈x − 1

2 s
∣∣ Â

∣∣x + 1
2 s

〉= A(x,k), (4.60)

which shows that the symbol A(x,k) is real.

Moyal formula
In many situations, it is often necessary to find the symbol of the product of two operators,
i.e., given two operators Â and Ĉ what is the symbol of the operator Ĉ = ÂĈ ? As Â and B̂
are general noncommuting operators, there is no reason to assume that C = AB , and indeed
C ̸= AB , in general. To derive a formula for the symbol product, we first express the matrix
elements of Â and B̂ in terms of their symbols. Putting the resulting expressions in Eq. (4.59),
and after a series of Taylor expansions and straightforward algebra, we find the Moyal star
product, which can be used to compute the symbol of the product of two operators in terms
of their respective symbols [17]:

C (x,k) = A(x,k)⋆B(x,k) = A(x,k)e
iϵ
2 L̂B(x,k)

= A(x,k)

[
1+ iϵ

2

(←
∂x

→
∂k − ←

∂k
→
∂x

)
+O(ϵ2)

]
B(x,k)

= A(x,k)B(x,k)+ iϵ

2
{A(x,k),B(x,k)}+O(ϵ2).

(4.61)

Above, we have defined the Janus operator L̂= ←
∂x

→
∂k − ←

∂k
→
∂x . Here the derivatives

←
∂x and

←
∂k

act only on the terms to their left and the derivatives
→
∂x and

→
∂k act only on the terms to their

right. In principle, it is possible to use the Weyl transform, Eq. (4.59), and the Moyal formula,
Eq. (4.61), to compute the symbol of any given operator. For the purposes of this dissertation,
however, the following simple rules suffice to convert operators to symbols:

f (x) → f (x), g (k̂) → g (k), and f (x)g (k̂) → f (x)g (k)+ iϵ

2
f ′(x)g ′(k)+O(ϵ2). (4.62)

Above, f and g are functions of x and k̂, with the primes denoting derivatives.



Chapter 5
Wave localization in thin elastic structures⋆

In this final chapter we consider the localization of elastic waves in thin elastic structures
with spatially varying curvature profiles, using a curved rod and a singly curved shell as
concrete examples. Making use of the semiclassical/WKB approximation developed in the
previous chapter, we show that elastic waves form localized, bound states around points
where the absolute curvature of the structure has a minimum.

5.1 Introduction

Studying the propagation of elastic waves on thin structures is of crucial importance to a
variety of problems in science and engineering, with applications ranging from acoustic cloaks
to negative refraction [25, 42, 178]. Of particular relevance to many of these applications
are localized waves, which are time-harmonic solutions to a wave equation that remain
confined to a certain region of space without the presence of a confining potential or force.
Indeed, such waves are observed in many physical systems and they are often caused by
heterogeneities in the medium or the boundary. For instance, the Helmholtz equation admits
bound states in arbitrary dimensions when solved on a tubular domain, provided that the
tube is not everywhere straight [52]. Likewise, in waveguides in the form of an elastic plate,
described again by coupled Helmholtz equations, waves localize around points of maximal
curvature [57]. Bound waves of similar nature have also been predicted in waveguides in the
form of rods [56], elastic strips with varying elastic moduli [43] and thickness [139], quantum
waveguides [35], etc.

Localized waves can also arise in elastodynamic systems described by higher-order wave
equations. In this context, Scott and Woodhouse [150] studied the localized vibrations of a
musical saw—an ordinary hand saw bent into the shape of the letter S and playable like a
musical instrument [97, 160]. More recently, Shankar et al. [151] revisited the musical saw
using both experiments and theory. Forgoing an explicit analytical computation of the mode
frequencies, they argued that the bound modes that appear at the inflection point of the saw
are topologically protected. Localization of elastic waves on variably curved shells, such as
the musical saw, is not entirely surprising as it is known that curvature acts as an effective
refractive index for such waves [40, 128].

⋆This chapter is an extended version of M. Mannattil and C. D. Santangelo, arXiv:2306.07213 [cond-mat.soft].
The problem discussed in this work emerged during discussions with my coauthor. I was responsible for all the
analytical and numerical calculations and wrote the paper taking into consideration my coauthor’s comments.
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Motivated by the above studies, in this chapter, we investigate further aspects of curvature-
controlled localization of waves in thin elastic structures, choosing a singly curved shell and
a curved rod as our examples. If the structure is uncurved, there are three basic types of
waves that can propagate. Extensional waves propagate by stretching and compressing the
structure, and involve only the tangential displacements (u and v in Fig. 5.1). Flexural waves,
by contrast, propagate by bending the structure and involve only the normal displacement
(ζ in Fig. 5.1). In flat plates, shear waves, which do not compress or expand the plate, and
involve only the tangential displacements propagate as well [90].

The situation gets complicated when the structure is curved. First, curvature tends to
couple the tangential and normal displacements, and therefore, we can only speak of waves
that are predominantly flexural or extensional or shear like. Second, there are no universally
accepted elastodynamic equations for curved structures, and in case of the rod and the shell,
several choices exist [34, 88, 121, 135]. The simplest ones, however, are almost always a set
of linear partial differential equations that couple the normal and tangential displacements,
the independent variables being time and the coordinates that describe the undeformed
configuration of structure (x and y in Fig. 5.1). The physical assumptions usually made
(expressed here in terms of the wave number k and the structure’s curvature m) while writing
down such a set of equations are [88, 128, 135]:

(i) The wavelength (∼ k−1) is much larger that the thickness of the structure. If we work
in length units such that the thickness is of order unity, we must then have k ≪ 1. For
bulk waves with wavelengths much smaller than the thickness (i.e., when k ≫ 1), the
structure should be treated as an infinite elastic medium [90].

(ii) The radius of curvature is much larger than the thickness, so |m|≪ 1 (in length units
such that thickness is of order unity). This is a geometrical requirement as it is im-
possible to construct a structure whose local radius of curvature is smaller than its
thickness.

(iii) The wavelength is smaller or of the same order of magnitude as the radius of curvature
(= m−1), so k > m is a safe choice (in all length units).

Because the curvature couples the different displacement components, irrespective of
the equations we use, to fully characterize wave propagation on curved structures, we have
to consider multicomponent (i.e., vector) waves. Computing the exact spectrum of a multi-
component differential operator is often difficult, unless one resorts to numerical techniques.
Indeed, for this reason, in their theoretical analyses of the musical saw, both Scott and Wood-
house [150], and Shankar et al. [151] chose to simplify matters by analyzing flexural vibrations
alone.

As we discussed in Chapter 4, the semiclassical/WKB approximation is a widely used
technique to obtain asymptotic solutions to wave problems, including those describing the
elastodynamics of thin structures [120, 126, 137, 154]. We also saw that in wave equations
supporting bound-state solutions, the semiclassical approximation allows one to extract the
corresponding frequencies through quantization. As we discussed previously, subtleties can
arise in multicomponent equations owing to the presence of an extra phase in the quantiza-
tion rule [83, 99, 100, 174]. Recently, this phase has been shown [165] to be responsible for
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Figure 5.1. Waves can propagate on thin elastic structures such as (a) rods and (b) shells.
The undeformed structure is parameterized by the coordinates x and y . Curvature
couples tangential displacements (u and v) that stretch/shear the structure with normal
displacements (ζ) that bend it.

a spectral flow in the rotating shallow-water equations that describe oceanic waves on the
Earth’s surface, leading to the topological protection of equatorial waves [27].

In this chapter, we use the semiclassical approximation to study the bound-state spectrum
of elastic waves in a curved rod and a singly curved shell with a varying curvature profile. To
avoid losing the main results of this chapter in a thicket of details, we summarize them here:

(i) For both the rod and the shell, independent of the boundary conditions, waves exhibit
robust localization around points where the absolute curvature has a minimum. Wave
localization induced by the presence of an inflection point in an S-shaped musical
saw [150, 151] is a special case of this more general observation. These findings also
complement the prediction by Mohammed et al. [120] regarding the localization of
flexural waves in a curved shell around points of maximal curvature.

(ii) In a curved rod, only extensional waves form bound states and flexural waves always
form “unbound” states that are spread across the rod.

(iii) In a shell, waves of all three types can form states that are bound along the curved
direction [x in Fig. 5.1(b)]. In the frequency spectrum, flexural bound states appear
first and have the lowest frequencies. They are then followed by shear and extensional
bound states, in that order.

(iv) For both structures, flexural waves start propagating well below the frequency of the
first bound state associated with an extensional wave. Hence, in very long rods and
shells, these bound states coexist with a near-continuum of flexural waves, forming
quasi-bound states in a continuum [69].

(v) Finally, both structures are described by equations for which the extra phase in the
modified quantization rule vanishes—something that we expect to be generically true
for equations of thin-walled structures (Appendix 5.A). This simplifies our analysis
considerably and results in remarkable agreement between the quantization results and
numerical experiments.

Our findings show that waves can be robustly trapped in thin elastic structures by a simple
alteration of their geometry. This could help, for instance, in crafting better thin-plate acoustic
cloaks [42], and aid the control of noise and vibration in thin structures [59, 107]. Curvature-
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induced localization of waves could also be used to improve the acoustic black-hole effect in
thin-walled structures [91, 131], which at the moment relies primarily on wave localization
caused by a power-law tapered thickness profile [89]. Finally, a singly curved shell serves
as a simple, yet effective single-mode waveguide that can steer flexural waves of specific
frequencies in the uncurved direction.

5.2 Waves on a curved rod
As we remarked earlier, several rod theories [19, 167], with varying levels of sophistication,
have been written down to describe wave propagation on rods—straight or curved. For
our purposes, a simple linear model [88] of a curved rod would do. This model ignores
higher-order effects like torsion, cross-sectional rotation, etc., and can be viewed as the
lower-dimensional analog of the Donnell–Yu shell model [33, 177] that we shall later use to
understand wave propagation on curved shells.

5.2.1 Equations of motion and semiclassical approximation
Let the undeformed state of the rod be in the form of a plane curve σ : X → R2, which we
take to be parameterized by its arclength x ∈X ⊂R. As a wave propagates along the rod, it
undergoes a deformation σ→σ+δσ, where the displacement field δσ(x, t) = u(x, t)t (x)+
ζ(x, t)n(x). Here t = dσ/dx is the unit tangent of the undeformed rod and n is its unit
normal, obtained by rotating t counter-clockwise by π/2 [see Fig. 5.1(a)]. Using ζ and u as the
components of the wave field, and assuming the absence of external forces, the rod equations
we are after are derived from the following energy functional [88]:

U [ζ,u] =
∫

dt dx 1
2

{
ρ

(
u̇2 + ζ̇2)−E [∂x u −m(x)ζ]2 −B

(
∂2

xζ
)2

}
. (5.1)

Above, we have assumed that the rod is uniform with linear mass density ρ, with extensional
stiffness E and bending stiffness B . Also, the signed curvature of the rod is m(x) = n ·dt /dx,
which we assume to vary with the arclength x. With these identifications, we can delineate the
bending and stretching contributions to the energy.1 Upon varying the energy functional U ,
we get the dynamic rod equations

ρ∂2
t ζ=−B∂4

xζ−Em(x) [m(x)ζ−∂x u] , (5.2a)

ρ∂2
t u =−E

{
∂x [m(x)ζ]−∂2

x u
}

. (5.2b)

When the curvature m = 0, Eq. (5.2a) reduces to the dynamic Euler–Bernoulli equation repre-
senting purely transverse flexural waves that propagate by bending the rod. In the same limit,
Eq. (5.2b) characterizes extensional waves that propagate longitudinally by stretching the rod.
When the curvature is nonzero, which is the case we want to analyze, the components ζ and
u remain coupled.

1The stretching contribution to the energy is approximated by taking the usual one-dimensional strain ∂x u and
adding to it the circumferential strain, which for a (convex) differential element of the rod with angular width δθ and
radius r =−m−1 is roughly [(r +ζ)δθ− rδθ]/(rδθ) =−mζ [33]. The bending energy, on the other hand, is the usual
Euler–Bernoulli bending energy, without any additional curvature-dependent corrections. See Section 5.4 for a rod
model that includes additional corrections to the bending energy.
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In terms of the rod’s Young’s modulus Y , cross-sectional area A, and its second moment
of area I , the extensional and bending stiffnesses are E = Y A and B = Y I , respectively. If the
rod’s cross-sectional “thickness” is h, then A ∼ h2 and I ∼ h4. This gives a natural length unit
ℓ=

p
B/E ∼ h and a time unit

√
Bρ/E that can be used to conveniently nondimensionalize

the rod equations. Noting that under a change of length units the curvature transforms as
m(x) → ℓ−1m(x), we arrive at the nondimensional form of the rod equations, which in matrix
form reads [cf. Eq. (4.1)]

∂2
t

(
ζ

u

)
+ Ĥ

(
ζ

u

)
= 0, where Ĥ=

(
∂4

x +m2(x) −m(x)∂x

m(x)∂x +m′(x) −∂2
x

)
. (5.3)

Although this is a rather simple set of coupled equations involving the curvature m(x) as the
only parameter, a nonuniform m(x) makes obtaining a general solution difficult.

To employ the semiclassical approximation for solving Eq. (5.3), we assume that the curva-
ture is a slowly varying function of the form m(ϵx). Here 0 < ϵ≪ 1 is a small dimensionless
parameter that controls the slowness of the variation. Because the length unit ℓ we chose for
nondimensionalizing the arclength x is proportional to the thickness, physically speaking,
here we are assuming that the length scale over which the curvature varies significantly is
much larger that the thickness of the rod. Next, we do a final change of variables x → ϵ−1x
in Eq. (5.3) so that m(ϵx) → m(x) and all spatial derivatives get multiplied by ϵ. For the
eigenvalue problem with D̂= Ĥ−ω2I2, this gives us

D̂=
(
ϵ4∂4

x +m2(x)−ω2 −m(x)ϵ∂x

m(x)ϵ∂x +ϵm′(x) −ϵ2∂2
x −ω2

)
=

(
k̂4 +m2(x)−ω2 −i m(x)k̂
i m(x)k̂ +ϵm′(x) k̂2 −ω2

)
. (5.4)

In the final step above, we have set ϵ∂x → i k̂, with k̂ being the momentum operator. Using
the rules in Eq. (4.62) we can easily write down the Weyl symbol D for the operator in Eq. (5.4)
as D=D(0) +ϵD(1), where

D(0) =
(
k4 +m2(x)−ω2 −i m(x)k

i m(x)k k2 −ω2

)
and D(1) =

(
0 1

2 m′(x)
1
2 m′(x) 0

)
. (5.5)

The two eigenvalues of the dispersion matrix D(0), representing waves of two different
polarizations, are

λ± = 1
2

{
k2 +k4 +m2(x)±

√[
k2 −k4 −m2(x)

]2 +4k2m2(x)

}
−ω2. (5.6)

For a given ω, we have λ+(x,k;ω) ≥ λ−(x,k;ω) for all values of x and k. Mode conversion
between the two polarizations ensues near points where λ+(x,k;ω) = λ−(x,k;ω), and the
semiclassical approximation breaks down. But from Eq. (5.6), we see that λ+ =λ− only when
the discriminant in Eq. (5.6) vanishes, which happens only when m(x) is zero, and k =±1 or
k = 0. As we discussed in Section 5.1, the rod equations are only applicable for short waves
whose wavelength is much longer than the thickness, which translates to the requirement
0 ≪|k|≪ 1. Hence, mode-conversion points with k =±1 or k = 0, lie well beyond the range
of applicability of these equations. For this reason, we ignore mode-conversion issues and
assume that λ+ ̸=λ− throughout our analysis. Before moving on, it is useful to first analyze
the propagation of waves on a rod of constant curvature.
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5.2.2 Rods of constant curvature
First we analyze the case where the curvature is zero, i.e., when the rod is straight. In the
limit of vanishing curvature m, we should recover the dispersion relations ω(k) for plane
waves propagating on a straight rod from λ±. On setting m = 0 and noting that |k| ≪ 1, we
see that λ+ = 0 gives us the linear dispersion relation ω= k, representing extensional waves
propagating on a straight rod. Meanwhile, when m = 0, we find that λ− = 0 gives us the
quadratic dispersion relation ω= k2 of flexural waves on a straight rod.

For nonzero, but constant curvature, the rod forms part of a ring. If the curvature is suffi-
ciently weak, we expect the eigenvalue λ+ to continue to represent predominantly extensional
waves and λ− to represent predominantly flexural waves. To verify this, we expand λ± in
powers of m2 and drop powers of k in comparison to unity to find

λ+ = k2 +m2 −ω2 +O(m4) and λ− = k4 −k2m2 −ω2 +O(m4) (k ≫ m). (5.7)

Clearly, the above expansions can only be valid when the O(m2) correction terms are less than
the lowest-order terms, which is true only when k ≫ m. In this limit we have λ+ ∼ k2 −ω2

and λ− ∼ k4 −ω2, confirming our expectation.
We next look at the case where both k and m are small,2 but with k ≪ m. To this end, we

expand λ± in powers of km−1 to find

λ+ = k2 +m2 −ω2 +O(k4) and λ− = k6

m2

[
1+O

(
k2

m2

)]
−ω2 (k ≪ m). (5.8)

Dispersion relations obtained from setting λ± = 0 above show significant deviation from those
of a straight rod and we expect the waves of both polarizations to result in bending and
stretching of the rod. For the same reason, we expect both these waves to have both longitu-
dinal and transverse characteristics. Despite this, for the sake of simplicity and identification,
we shall continue to call waves represented by λ+ as extensional waves and those represented
by λ− as flexural waves.

The bending of the rod is associated with normal component ζ and stretching with tan-
gential component u. To better understand how the two components contribute to the wave
field in the presence of curvature, we define the amplitude ratio

R = |ζ|
|ζ|+ |u| . (5.9)

With the above definition, for purely transverse and longitudinal waves R = 1 and R = 0,
respectively. In the eikonal ansatz, at the lowest order, the wave field ψ= (ζ,u) is proportional
to the eigenvectors τ± of D(0), so ζ∼ τ±,1 and u ∼ τ±,2. Making use of Eqs. (5.7) and (5.8), to
the lowest order in k and m, the eigenvectors τ± are

τ+ ∼ (m, i k) and τ− ∼ (i k, m) , (5.10)

so the asymptotic amplitude ratios for the two wave polarizations become R+ ∼ |m|/(|m|+
|k|) and R− ∼ |k|/(|m| + |k|). For m = 0, we know that extensional waves become entirely

2We consider this limit to analyze the behavior of the waves close to a classical turning point where k = 0. The
wave decays beyond a turning point and it never gets a chance to complete a full-wavelength oscillation with k ≪ m,
so the short wavelength assumption is not violated.
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longitudinal, and as expected the corresponding amplitude ratio R+ = 0. In same limit,
flexural waves become entirely transverse as indicated by R− = 1. However, for small values
of k with k ≪ m we see that R+ → 1 and R− → 0. In other words, in the limit k ≪ m, waves
of the two polarizations would switch their nature from being predominantly longitudinal to
being predominantly transverse, and vice versa.

5.2.3 Rods with varying curvature
For illustrative purposes, we consider rods of two curvature profiles m1(x) and m2(x), de-
fined by

m1(x) = b tanh(ϵx) and m2(x) = b − (b −a)sech(ϵx), (5.11)

which we will informally call tanh- and sech-type curvature profiles, respectively. Above, b and
a are positive constants such that a < b and the parameter ϵ controls the slowness of variation
of the curvatures. A rod with a tanh-type curvature profile m1(x) possesses an inflection point
at x = 0 where the curvature vanishes, and the curvature asymptotes to ±b as x →±∞ [see
Figs. 5.3(a) and 5.3(b)]. On the other hand, a rod with a sech-type curvature profile m2(x)
remains concave for all x, with the curvature acquiring its minimum value of a at x = 0 and
asymptoting to b as x →±∞ [see Figs. 5.3(c) and 5.3(d)]. For the purpose of illustrating our
results, we take b = 0.1 and a = 0.01, so the smallest ratio between the radius of curvature and
thickness is O(10). Although such a ratio is comparatively smaller than typical experimental
values, it would give us a clearer picture of the effects of a varying curvature profile. We also
set ϵ= 0.01, but as we rescale x → ϵ−1x, the parameter ϵ does not always explicitly appear in
our discussions. Note also that the numerical values of the local wave number k is unaffected
by this rescaling.

For a varying curvature profile, we find the rays for both polarizations by integrating the
corresponding Hamilton’s equations given by

ẋ = ∂λ±
∂k

= k

2k2 +1± (2k2 +1)
[
k2 +k4 +m2(x)

]−6k4√[
k2 −k4 −m2(x)

]2 +4k2m2(x)

 ;

k̇ =−∂λ±
∂x

=− 1
2

[
m2(x)

]′1± k2 +k4 +m2(x)√[
k2 −k4 −m2(x)

]2 +4k2m2(x)

 .

(5.12)

5.2.4 Extensional waves
We first discuss how a varying curvature profile affects extensional waves in a rod. In Sec-
tion 5.3 we present an alternative approach, where we analyze the extensional limit of the
rod equations and show that extensional waves form bound states. The purpose here, how-
ever, is to understand this using a semiclassical perspective, which will serve as a basis for
understanding the variably curved shell.

As we discussed previously, extensional waves are to be associated with the ray Hamilto-
nian λ+. Without loss of generality, let x = 0 be a point where m2(x) has a local extremum so
that its derivative [m2(x)]′

∣∣
x=0 = 0 and the origin (0,0) becomes a fixed point of the Hamilton’s
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Figure 5.2. (a) Tanh-type curvature profile m1(x) with an inflection point at x = 0 and
(b) the corresponding shape of the rod in Cartesian space with coordinates X and Z . (c)
Sech-type curvature profile m2(x) with no inflection point and (d) the corresponding
shape of the rod. For both curvature types, as the arclength x →±∞, the rod becomes
part of a circle. In all figures a = 0.01, b = 0.1, and ϵ= 0.01.

equation in Eq. (5.12) for λ+. Since Eq. (5.12) is a Hamiltonian system, the origin becomes
a nonlinear center or a saddle depending on whether the Hamiltonian λ+(x,k), viewed as a
function of x and k, has an extremum or a saddle there [72, 158]. For the present problem,
we find two situations3 depending on the behavior of m2(x) at x = 0.

(i) m2 has a nonzero maximum at x = 0. Then, for any point x sufficiently close to
0, we have m2(x) < m2(0) = λ+(0,0). We also see that λ+(x,0)−λ+(0,0) < 0, whereas
λ+(0,k)−λ+(0,0) > 0. In other words, if we move along the x axis from the origin (0,0),
the value of λ+(x,k) decreases, whereas moving along the k axis increases its value,
showing that the origin becomes a saddle point.

(ii) m2 has a minimum at x = 0. At any point (x,k) sufficiently close to (0,0), we have
m2(x) > m2(0). Then, using basic inequality arguments, λ+(x,k)−λ+(0,0) > 0, showing
that λ+ has a minimum at the origin, which means that it becomes a nonlinear center.

As the extrema of m2(x) are identical to the extrema of the absolute curvature |m(x)|, we can
summarize as follows: points where the absolute curvature has a minimum become nonlinear
centers of the ray equations associated with λ+, and points where the absolute curvature has
a maximum become saddles. Therefore, we expect extensional waves to get trapped only
around points where the absolute curvature has a minimum.

3We can also infer this from the sign of the Hessian determinant of λ+ at (0,0) given by det∇∇λ+|x=0,k=0 =
2(m2)′′|x=0, provided that (m2)′′ ̸= 0 so that the origin is a nondegenerate fixed point with det∇∇λ+ ̸= 0.
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The black curves in Figs. 5.3(a) and 5.3(b) show the extensional rays for the two curvature
profiles. Each ray is a level curve defined by λ+(x,k;ω) = 0 for a specific ω. Since λ+ is
invariant with respect to reflection about the x and k axes, the ray trajectories also share the
same reflection symmetry. For both curvature types, there are three fixed points: the origin
(0,0) and (±∞,0). The fixed points at (±∞,0) are saddles since m2(x) achieves its maximum
there. Two heteroclinic orbits, shown as black dashed curves, connect the fixed points at
(±∞,0). As per our analysis, the origin is always a center as m2(x) achieves a minimum
there for both curvature types. Close to the origin, the rays appear in form of closed orbits
indicating bound states.

Before we present some example results, it is useful to analyze the parity of the bound
states. If ψ(x) = [ζ(x),u(x)] is a bound state, then it is easy to check that for an odd curvature
profile m(x) with m(−x) = m(x), the eigenmode ψ(−x) = [ζ(−x),u(−x)] is also a bound state
satisfying the rod equations, Eq. (5.3), with the boundary conditions ψ(±∞) = 0. Assuming
nondegeneracy in the eigenmodes, we must then have [ζ(x),u(x)] =±[ζ(−x),u(−x)], which
means that for an odd m(x), the components ζ(x) and u(x) must have the same parity, i.e.,
they are either both odd or both even.4 For an even m(x), however, we find that bound-state
solutions must satisfy [ζ(x),u(x)] =±[ζ(−x),−u(−x)], showing that the components ζ(x) and
u(x) always have different parity. In Figs. 5.3(c) and 5.3(d) we show two example bound states
obtained by solving the rod equations numerically (see Appendix 5.B for details) and depicting
both components of the wave field ψ. Consistent with our analysis, the example bound state
of the tanh-type curvature profile has even ζ(x) and u(x). Likewise, for the example bound
state of the sech-type curvature profile, ζ(x) is odd and u(x) is even.

Clearly, the displacement fields of the bound states of both curvature profiles show a
significant presence of both normal and tangential components. To understand this better,
consider again the phase portraits in Fig. 5.3(a) and 5.3(b), which have been color coded
using the amplitude ratio R defined in Eq. (5.9), and computed5 from the components of the
polarization vector τ+. The closed orbits corresponding to the example bound states have
been marked with white arrows in these phase portraits. Starting at the k axis, if we move
along a closed orbit towards one of its turning points, we see that R changes from 0 to 1,
indicating that the wave acquires a strong normal component, which is what we see from the
example bound states.

The existence of the bound states can also be intuitively understood from the dispersion
relations for extensional waves. From Eq. (5.6), we see that at k = 0, the dispersion curve
given by λ+ = 0 has a nonzero gap and a cut-on frequency6 of ω2

cut-on = m2. For waves with

4More quantum mechanically, this can be shown by considering the commutation of D̂ with the operators
P̂± = diag(π̂,±π̂), where π̂ is the usual parity operator [21]. Clearly, P̂±Ψ(x) = [ζ(−x),±u(−x)], so the eigenstates of
P̂+ always have ζ(x) and u(x) of the same parity, whereas the eigenstates of P̂− always have ζ(x) and u(x) of different
parity. For odd and even m(x), we can show that D̂ commutes with P̂+ and P̂−, respectively. As commuting operators
share the same eigenstates (assuming nondegeneracy), this proves the claim made above.

5Note that we are using the exact expression for τ+ and not the approximate expression in Eq. (5.10) to find R.
Using the approximate expression would also result in nearly similar results.

6Incidentally, this cut-on frequency is the ring frequency of extensional waves, i.e., when the wavelength is equal
to the circumference of a ring of radius m−1 [167].
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Figure 5.3. Ray trajectories for extensional waves on a rod with (a) tanh-type curvature
profile m1(x) and (b) sech-type curvature profile m2(x), with the phase portraits color
coded using the amplitude ratio R defined in Eq. (5.9). The white arrows in (a) and (b)
indicate rays of the same frequency as the two bound states in (c) and (d). The grey
vertical lines in (c) and (d) indicate the locations of the classical turning points.

ω<ωcut-on, the wave number k is always complex, preventing the wave from being able to
propagate and the wave decays. Now, as an extensional wave enters a region of high curvature
from a region of low curvature, the local cut-on frequency increases. This means that, at some
point, the frequency of the wave would fall below the local cut-on frequency, and the wave
gets reflected creating a bound state. As the cut-on frequency depends only on the magnitude
of the curvature, and not its sign, bound states do not require the presence of an inflection
point—an observation that was also made by Scott and Woodhouse [150] while analyzing the
musical saw.

Quantization and bound states

In order to evaluate the action in the quantization condition, Eq. (4.58), in principle, we
should express k in terms of x from λ+(x,k;ω) = 0. This proves to be difficult as k would
then have to be obtained as the root of a sixth-order polynomial. Instead, as described in
Appendix 5.B, we compute the action by numerically integrating k(x) between the classical
turning points ±x⋆. Setting k = 0 in λ+(x,k;ω) = 0, we see that these points are implicitly
given by the equation m2(x⋆) =ω2. To quantize the bound orbits, we also need the Keller–
Maslov index, which is α= 2 as the orbits are topologically equivalent to a circle. Now, note
that the off-diagonal operators of the matrix D̂ in the rod equations, Eq. (5.3), are composed
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Figure 5.4. Bound-state frequencies obtained from numerics compared to that obtained
through quantization for a rod with (a) tanh-type curvature profile and (b) sech-type
curvature profile. In both plots, the gray guide line in the background represents ω
(numerics) = ω (quantized).

only of odd derivatives. In Appendix 5.A, we show that the additional phase γ in Eq. (4.58),
vanishes for any operator of this form, enabling us to find the quantized frequencies without
additional difficulty. A comparison between the numerically obtained bound-state frequencies
and those obtained through quantization (Fig. 5.4) shows excellent agreement between the
two. Furthermore, these frequencies are independent of the boundary conditions chosen to
solve the rod equations, showing the robustness of the bound states.

Instead of computing the action by quadrature, we could have extracted k(x) from the

approximate expression for λ+ [see Eqs. (5.7) and (5.8)], which gives k(x) ≈ ±
√
ω2 −m(x)2.

This expression can be used, for instance, to estimate the maximum number of bound states
nmax for the two curvature profiles. The largest frequency for which we see an extensional
bound state is ω = b. As shown in Figs. 5.3(a) and 5.3(b), the rays corresponding to this
frequency form two heteroclinic orbits connecting the classical turning points at x = ±∞.
Computing the area inside these orbits, we find

nmax ≈
1

πϵ

∫ +∞

−∞
dx k(x) =

{
b/ϵ (tanh type),

b̄/ϵ+O(a/ϵ) (sech type).
(5.13)

Here, b̄ = π−1b
∫ ∞
−∞ dx sech x

p
2cosh x −1 ≈ 2b. Therefore, we expect an infinitely long rod

with a sech-type curvature profile to support twice as many bound states as a rod with a
tanh-type curvature profile. A similar expression for nmax is also derived in Appendix 5.3
where we directly consider the extensional limit of the rod equations, and find the quantized
frequencies as well as the bound modes.

For the values b = 0.1 and ϵ= 0.01 we use in our examples, Eq. (5.13) predicts a maximum
of 10 bound states for a tanh-type rod and 20 bound states for a sech-type rod. This prediction
is consistent with our numerical experiments with a finite-sized rod, where we find a total of
10 and 18 bound states for the two curvature profiles. Despite this, we only expect a small
number of extensional bound states in actual experiments with curved rods, where we expect
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Figure 5.5. Ray trajectories for flexural waves on a rod with (a) tanh-type curvature
profile m1(x) and (b) sech-type curvature profile m2(x), with the phase portraits color
coded using the ratio R defined in Eq. (5.9). The black arrows in (a) and (b) indicate
rays of the same frequency as the two eigenmodes in figures (c) and (d).

the finiteness of the rod to become more important. For one thing, as the arc length x →±∞,
self-intersection is inevitable for both sech- and tanh-type rods having a nonzero thickness
(see Fig. 5.2). (Self-intersection effects, however, can be ameliorated if we allow for small
motions of the rod perpendicular to the plane containing it.) Furthermore, as the turning
points of the higher-frequency bound states are far apart, they do not always appear to be
spatially localized, even though they decay exponentially as x →±∞.

5.2.5 Flexural waves
Flexural waves are associated with the ray Hamiltonian λ− and from the corresponding Hamil-
ton’s equations in Eq. (5.12), we see that the derivatives ẋ and k̇ vanish everywhere on the
x axis. Since there are no isolated fixed points anywhere on the x axis for these rays, we do
not expect flexural waves to form bound states. This is confirmed by the phase portraits in
Figs. 5.5(a) and 5.5(b). Like rays of extensional waves, the rays of flexural waves are also invari-
ant under reflection about the x and k axes because λ− possesses the same symmetry. Two un-
bound flexural eigenmodes obtained numerically are displayed in Figs. 5.5(c) and 5.5(d). Rays
corresponding to these modes have been marked by black arrows in Figs. 5.5(a) and 5.5(b).
Although the normal component ζ dominates in these modes, they acquire a significant
tangential component with increasing curvature, which we also see from the color coding of
the phase portraits.
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Figure 5.6. The first five extensional bound states of a rod with a tanh-type curvature
profile showing (a) the normal component ζ(x) and (b) the tangential component u(x),
with lighter curves depicting higher-frequency states. The dashed black curves in (a)
and (b) represent the solutions in Eq. (5.18). (c) Comparison between the bound-state
frequencies ω obtained through quantization, and those from numerics [cf. Fig. 5.4(a)].

Although the frequencies of the extensional bound states in Figs. 5.3(c) and 5.3(d) and the
flexural eigenmodes in 5.5(c) and 5.5(d) are rather close, the mode profiles differ significantly
in appearance. Also, the frequencies of the flexural eigenmodes depend on the specific
boundary conditions chosen and other physical parameters, e.g., the total length of the rod.
When the rod length increases, we expect flexural waves to form a near continuum in the
frequency spectrum, whereas the frequencies of the extensional bound states would continue
to be determined by the quantization condition, Eq. (4.58). Setting λ− = 0 and putting k = 0 in
Eq. (5.6), we also see that flexural waves in a rod are gapless and start propagating well below
the first bound extensional state. In this sense, in very long rods, extensional bound states
appear as quasi-bound states in a continuum of flexural waves.

5.3 Extensional limit of the rod equations

We define the extensional limit of the rod equations as the limit in which the average bending
energy of a deformed rod is considerably smaller than its stretching energy. The bending
energy in the rod model we use is proportional to (∂2

xζ)2 [see Eq. (5.1)], which gives rise to the
fourth-order derivative ∂4

xζ in the rod equations, Eq. (5.3). Neglecting this term and Fourier
transforming in time, we find the extensional limit of the rod equations, which take the form

m(x) [m(x)ζ(x)−∂x u(x)] =ω2ζ(x), (5.14a)

∂x [m(x)ζ(x)−∂x u(x)] =ω2u(x). (5.14b)

The above equations possess a soft-mode solution with ω= 0 satisfying m(x)ζ(x) = ∂x u(x),
which corresponds to all linear isometries that do not stretch the rod to the lowest order.

We now look for bound-state solutions of Eqs. (5.14a) and (5.14b) satisfying ζ(±∞) =
u(±∞) = 0 with vanishing derivatives at x =±∞. Let us additionally assume that the longitu-
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dinal component u(x) = ∂xφ(x), where φ(x) is an unknown differentiable function satisfying7

φ(±∞) = 0. Equation (5.14b) then becomes a total derivative, which on integration yields

m(x)ζ(x) = ∂2
xφ(x)+ω2φ(x). (5.15)

Putting the above equation in Eq. (5.14a) and ignoring the soft-mode solution with ω = 0,
we see that ζ(x) = m(x)φ(x), from which we deduce that φ(x) satisfies a Schrödinger-like
equation with the potential m2(x), and given by

−∂2
xφ(x)+m2(x)φ(x) =ω2φ(x). (5.16)

As is well known from elementary quantum mechanics [14], Eq. (5.16) always admits a bound-
state solution provided that potential m2(x) has a minimum.

For the tanh-type curvature profile with m = m1(x) = b tanh(ϵx), Eq. (5.16) becomes
the time-independent Schrödinger equation for a particle in a Pöschl–Teller potential [138,
148], whose solutions φ(x) can be written in terms of the associated Legendre polynomials
Pµ
ν ( · ) [129]. On defining

κ(x) = tanh(ϵx), ν= 1
2

[√
1+4b2/ϵ2 −1

]
, and µ= n −ν≤ 0 (n ∈N0), (5.17)

and solving for φ(x), we find the (unnormalized) components ζ(x) = m(x)φ(x), u(x) = ∂xφ(x),
and the quantized frequencies to be

ζ(x) = bκ(x)Pµ
ν [κ(x)] , u(x) = ∂x Pµ

ν [κ(x)] , and ω2 = b2 −ϵ2µ2. (5.18)

Figure 5.6 presents a comparison of the bound states described by Eq. (5.18) and the numer-
ical results for extensional bound states. The agreement is remarkable given the fact that
the numerical results were obtained by solving the full wave equations, Eq. (5.3), without
employing any additional approximations. From Eq. (5.17) we also see that maximum number
of bound states is nmax ≈ ν= b/ϵ+O(b2/ϵ2), which agrees with the semiclassical prediction
in Eq. (5.13).

We are currently unaware of an exact solution of Eq. (5.16) for the potential m2
2(x) = [b −

(b −a)sech(ϵx)]2 corresponding to a sech-type curvature profile, even though exact solutions
for similar potentials exist [71, 95, 127]. However, we can crudely approximate m2

2(x) as a
deformed Pöschl–Teller potential of the form

m2
χ(x) = b2 − (b2 −a2)sech2(ϵχx). (5.19)

We fix the deformation parameter χ by demanding that the full widths at half minima of both
m2
χ(x) and m2

2(x) be equal, which gives

χ= sech−1

√
b2 +a2

2(b2 −a2)

/
sech−1

[
b −

√
(b2 −a2)/2

b −a

]
. (5.20)

When b = 0.1, a = 0.01, the deformation parameter χ≈ 0.49 and mχ(x) approximates m(x)
to around 97% accuracy when |x| > 1

2∆, where ∆ is the full width at half maximum. The

7Assuming φ(±∞) = 0 does not result in any loss in generality. Without this assumption, on integrating Eq. (5.14b)
we see that φ(±∞) =C (constant). We then obtain Eq. (5.16) in terms of φ̃(x) =φ(x)−C with ζ= mφ̃ so that we can
work in terms of φ̃ alone, which is equivalent to setting C = 0.
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Figure 5.7. The first five extensional bound states of a rod with a sech-type curvature
profile showing (a) the normal component ζ(x) and (b) the tangential component u(x).
Lighter curves in (a) and (b) depict higher-frequency states and the dashed black curves
represent the solutions obtained analogously to those in Eq. (5.18) after setting b2 →
b2 −a2 and ϵ→ χϵ. (c) Comparison between the bound-state frequencies ω obtained
through quantization, and those from numerics [cf. Fig. 5.4(b)].

approximation becomes significantly worse for |x| < 1
2∆, with a maximum relative error of

68%. Therefore, we only expect the higher-frequency bound states of mχ(x) to represent states
of m(x) reasonably well, which is exactly what we see from the results in Fig. 5.7.

At this juncture, let us remark that Eq. (5.16) can also be derived by diagonalizing the full
wave equation in Eq. (5.3) using the asymptotic method outlined by Littlejohn and cowork-
ers [99, 100, 168], without appealing to any physical arguments. In this method, aspects
of which has been reviewed in Section 4.2, the operators of the diagonalized equations in
symbol form are the two eigenvalues λ± of the dispersion matrix D(0). To find the exten-
sional bound states, we focus on λ+, the ray Hamiltonian for extensional waves. Instead of
using λ+ from Eq. (5.6), which involves a radical expression, we use the approximate version
λ+ ≈ k2−m2−ω2 [see Eqs. (5.7) and (5.8)]. Next, we promote k → k̂ =−i∂x , which “quantizes”
the ray Hamiltonian λ+ and we obtain Eq. (5.16) for an unknown wave function φ(x). The full
wave field can be recovered from φ(x) using (ζ,u) ∼ τ̂+φ(x), where τ̂+ is a two-component
operator obtained by promoting k → k̂ in the symbol form of the polarization vector τ+. From
Eq. (5.10), we see that τ+ ≈ [m(x), i k], so τ̂+ ≈ [m(x), ∂x ]. We then find ζ(x) ∼ m(x)φ(x) and
u(x) ∼ ∂xφ(x), consistent with our analysis.

5.4 Higher-order rod equations
A slightly different set of rod equations, with higher-order curvature-dependent terms is
sometimes considered instead of the equations that we have been using. Given the ubiquity
of the higher-order equations,8 it is useful to briefly discuss them here and contrast the results
to those obtained so far. The higher-order rod model is derived from the following energy
functional:

U [ζ,u] =
∫

dt dx 1
2

{
ρ

(
u̇2 + ζ̇2)−E [∂x u −m(x)ζ]2 −B

[
∂2

xζ+m(x)∂x u
]2

}
, (5.21)

8See, e.g., Eq. (30) of Ref. [121], Eq. (3.5.24) of Ref. [54], and Eq. (3.34) of Ref. [34].
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Figure 5.8. (a) Ray trajectories for extensional waves described by the higher-order rod
equations, Eq. (5.22), for the sech-type curvature profile m2(x) [cf. Fig. 5.3(b)]. (b) Bound-
state frequencies obtained from numerics compared to those obtained by quantization.

The only difference between Eq. (5.1) and Eq. (5.21) is the curvature-dependent term m(x)∂x u
in the bending energy density, with all other physical parameters having the same mean-
ing. Using the same nondimensionalization as before, we find that Eq. (5.21) results in the
following equations of motion:

∂2
t

(
ζ

u

)
+ Ĥ

(
ζ

u

)
= 0, (5.22)

where the matrix operator

Ĥ=
(

∂4
x +m2 −m∂x (1−∂2

x )+2m′∂2
x +m′′∂x

m∂x (1−∂2
x )+m′(1−∂2

x ) −(1+m2)∂2
x −2mm′∂x

)
. (5.23)

To see why Eq. (5.3) is a good approximation to Eq. (5.22), we write down the dispersion matrix
by following the usual procedure of expressing the derivatives in terms of the momentum
operator and converting operators to symbols, after which we find9

D(0) =
(
k4 +m2 −ω2 −i mk(1+k2)
i mk(1+k2) (1+m2)k2 −ω2

)
and D(1) = 1

2

(
0 m′(1−k2)

m′(1−k2) 0

)
. (5.24)

Clearly, for small wave numbers (k ≪ 1) and weak curvatures (m ≪ 1), we can drop k2 and
m2 in comparison to unity in the entries of D(0) and D(1). Doing so would lead us back to the
dispersion matrices in Eq. (5.5).

The ray Hamiltonian for extensional and flexural waves (λ+ and λ−, respectively) are the
two eigenvalues of D(0), given by

λ±(x,k) = 1
2

{[
1+k2][

k2 +m2(x)
]+√[

k2 +1
]2 [

k2 +m2(x)
]2 −4

[
k3 −km2(x)

]2
}
−ω2. (5.25)

A simple analysis, either by plotting the rays or writing down the corresponding Hamilton’s
equations, reveals that even when higher-order, curvature-dependent corrections are included,

9Note that unlike the dispersion matrices in Eq. (5.5), here we also have an O(ϵ2) correction D(2), which we
ignore in our analysis.
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flexural waves fail to form bound states, and so we focus on extensional waves instead.
Figure 5.8(a) shows the ray trajectories for extensional waves described by Eq. (5.22). Clearly,
these rays are nearly identical to those seen previously in Fig. 5.3(b), showing again that the
simpler rod equations are an excellent approximation to Eq. (5.22) in the weak curvature
limit. For the same reason, the frequencies of the extensional bound states obtained through
quantization and numerics also tend to agree rather well10 with our previous results; compare,
for example, Fig. 5.8(b) with Fig. 5.4(b).

Let us conclude the discussion on rods by emphasizing that all rod models are approximate
to a certain degree. And although we have limited our analysis to just two models, we expect
to see our basic result, i.e., extensional waves forming bound states around points where the
absolute curvature has a minimum, in other models as well. We next turn to wave propagation
on curved shells.

5.5 Waves on a curved shell

One of the simplest shell theories that involve a curvature-mediated coupling between the
tangential and normal components of the displacement field is the widely used Donnell–Yu
shell model [33, 177]. It is simple in the sense that it describes the undulations of a three-
dimensional shell solely in terms of the deformation of the shell’s two-dimensional midsurface,
ignoring higher-order effects and retaining only the lowest-order derivatives. For an arbitrarily
parameterized midsurface, it is easiest to extract the equations of motion from the covariant
form of the Donnell–Yu shell equations derived by Pierce [136].

5.5.1 Equations of motion

We consider the middle surface of the shell to be a generalized cylinder [141] obtained by
translating a plane curve σ : X → R3, parameterized by x ∈ X ⊂ R, perpendicular to the
plane containing it. Thus, the shell is defined by Σ : X ×Y →R3, Σ(x, y) =σ(x)+ ye y , where
e y = ∂yΣ is a constant unit vector perpendicular to the plane containing σ(x). Also, y ∈Y is
the coordinate along e y . For simplicity, and to make comparisons with the rod equations
easier, we assume that x is the arclength. So, ex = ∂xΣ= t is the unit tangent along the curve
σ. Furthermore, we orient e y such that surface normal ex × e y coincides with the normal
n to σ. Then, the only nonvanishing principal curvature of the shell is equal to the curve’s
signed curvature m(x). Propagating waves displace the shell from Σ→Σ+δΣ. We write the
displacement field δΣ as δΣ = uex + ve y + ζn. Assuming no external forces, the dynamic
Donnell–Yu equations are

ϱ
∂2ζ

∂t 2 =−B̃∆2ζ− Ẽm2(x)ζ+ Ẽm(x)

(
∂u

∂x
+η∂v

∂y

)
, (5.26a)

ϱ

Ẽ

∂2u

∂t 2 =−∂ [m(x)ζ]

∂x
+ ∂2u

∂x2 + (1−η)

2

∂2u

∂y2 + (1+η)

2

∂2v

∂x∂y
, (5.26b)

10Other aspects of quantization, e.g., the lack of the extra phase γ, location of the turning points, m2(x⋆) =ω2,
etc., also carry over.
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ϱ

Ẽ

∂2v

∂t 2 =−ηm(x)
∂ζ

∂y
+ (1+η)

2

∂2u

∂x∂y
+ (1−η)

2

∂2v

∂x2 + ∂2v

∂y2 . (5.26c)

Here ∆ is the two-dimensional Laplacian, η is the Poisson’s ratio, and ϱ is the density per unit
area. Also, the extensional stiffness Ẽ = Y h/(1−η2) and bending stiffness B̃ = Y h3/[12(1−η2)],
with Y being the Young’s modulus and h being the thickness of the shell. On setting the

length units to
√

B̃/Ẽ and time units to
√

B̃ϱ/Ẽ , we arrive at the nondimensional form of
these equations, which in matrix form reads

∂2
t

ζu
v

+ Ĥ

ζu
v

= 0, (5.27)

where the operator Ĥ is defined by

Ĥ=
 ∆2 +m2(x) −m(x)∂x −ηm(x)∂y

m(x)∂x +m′(x) −∂2
x − 1

2 (1−η)∂2
y − 1

2 (1+η)∂x∂y

ηm(x)∂y − 1
2 (1+η)∂x∂y − 1

2 (1−η)∂2
x −∂2

y

 . (5.28)

A set of equations analogous to the rod equations [see Eq. (5.3)] can be obtained by suppress-
ing the y derivatives in the submatrix obtained by deleting the third row and column of the
operator Ĥ given above.

Translation invariance of Ĥ along y lets us look for time-harmonic solutions with the
common factor e i (l y−ωt ), where l is the transverse wave number in the y direction and ω

is the frequency of oscillation. This makes the wave field depend only on the coordinate x,
and makes the transverse wave number l an additional parameter of the operator Ĥ. But the
operator Ĥ now has complex coefficients, and the components of its eigenmodes are complex
functions. However, while discussing the numerical results, we use a phase convention such
that ζ,u are real, and v is imaginary.

Similar to what we did for the rod equations, we perform a change of variables x → ϵ−1x
and recast the spatial derivatives in terms of the momentum operator k̂. Finally, we find the
dispersion matrix D(0) as

D(0) =
(k2 + l 2)2 +m2(x)−ω2 −i km(x) −iηlm(x)

i km(x) k2 + 1
2 (1−η)l 2 −ω2 1

2 (1+η)kl
iηlm(x) 1

2 (1+η)kl 1
2 (1−η)k2 + l 2 −ω2

 , (5.29)

and find its first-order correction D(1) to be

D(1) = 1
2

 0 m′(x) 0
m′(x) 0 0

0 0 0

 . (5.30)
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Figure 5.9. Dispersion curves for plain waves propagating on a cylinder of constant
curvature m = 0.05 for (a) flexural, (b) shear, and (c) extensional waves. In each plot,
the solid blue curves represent the actual dispersion curves obtained by finding ω using
Eq. (5.35). The dashed red curves represent the approximate dispersion relation in
Eq. (5.39). Also, the dashed black curves indicate the dispersion curves for an uncurved
flat plate, i.e., when m = 0 [Eq. (5.32)]. The transverse wave number l = 0.1 and Poisson’s
ratio η= 0.3 for all curves.

For later analysis, it is also useful to note down the determinant11 of D(0), which is

detD(0) = m2(x)
{[
ω2 − 1

2 (1−η)l 2][
ω2 − (1−η2)l 2]− 1

2 (1−η)k2ω2}
− [
ω2 − (k2 + l 2)2][

ω2 − 1
2 (1−η)(k2 + l 2)

][
ω2 − (k2 + l 2)

]
.

(5.31)

Before we continue, it is insightful to examine the dispersion relations for plain waves propa-
gating on singly curved shells of constant curvature.

5.5.2 Shells of constant curvature
First we analyze the zero curvature limit, i.e., when the shell becomes a flat plate. In this limit,
the wave equation, Eq. (5.28), decouples into two equations, the first of which involves only
the normal component ζ, and represents flexural waves. The second equation, representing
extensional and shear waves, only involves the tangential components u and v . Shear waves
propagate transversely to the in-plane wave vector kex + l e y , whereas extensional waves
are longitudinal to it. Setting m = 0 in Eq. (5.31), we find the following flat-plate dispersion
relations

ω2
0 =

(
k2 + l 2)2

, ω2
0 = 1

2

(
1−η)(

k2 + l 2) , and ω2
0 =

(
k2 + l 2) , (5.32)

which we recognize as the dispersion relations of flexural, shear, and extensional waves,
respectively [45]. The above dispersion relations for a fixed transverse wave number l are
indicated by the dashed black curves in Fig. 5.9. Because l is nonzero, there is now a gap in
the dispersion curves and a corresponding nonzero cut-on frequency for each of these waves.

11The expression for detD(0) in Eq. (5.31) is sometimes referred to as the “full” dispersion relation [155]. In reality,
detD(0) is the product of three dispersion relations—a fact that we will later exploit for finding the ray trajectories.
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Exact dispersion relations
For nonzero but constant curvature, plain waves continue to propagate on the shell, which
now becomes part of a thin cylinder. For simplicity, we shall continue to call these waves as
being flexural, extensional, or shear in nature. However, as with the curved rod, we expect
some amount of mixing of the tangential and normal displacements due to nonzero curvature.
Also, to find the dispersion relations from Eq. (5.31) we now need to use the general cubic
formula [129], which results in unwieldy analytical expressions. More specifically, these
relations can be obtained by solving the following cubic in ω2:

ω6 −aω4 −bω2 − c = 0 (5.33)

where the coefficients

a = 1
2 q2 [

(3−η)+2q2] ,

b =− 1
2 q4 [

(3−η)q2 + (1−η)
]− 1

2 m2(1−η)
[
q2 +2(1+η)l 2] ,

c = 1
2 (1−η)

[
q8 +m2l 4 (

1−η2)] ,

(5.34)

and q2 = k2 + l 2 is the magnitude of the wave vector. The above cubic has the solution

ω2 =



1
3 a + 21/3

(
a2 +3b

)
3d

+ d

3×21/3
(extensional),

1
3 a −

(
1− i

p
3
)(

a2 +3b
)

3×22/3d
−

(
1+ i

p
3
)

d

6×21/3
(shear),

1
3 a −

(
1+ i

p
3
)(

a2 +3b
)

3×22/3d
−

(
1− i

p
3
)

d

6×21/3
(flexural).

(5.35)

where

d =
(
2a3 +9ab +27c +3

p
3
√

4a3c −a2b2 +18abc −4b3 +27c2
)1/3

. (5.36)

It is not directly obvious how the roots in Eq. (5.35) can be associated with a specific wave
polarization. To do so, we have to take the limit m → 0 numerically and find which of the
roots reduce to the flat-plate results in Eq. (5.32).

As an example, using Eq. (5.35), we find the dispersion curves at a curvature value of
m = 0.05, which are indicated by the solid lines in Fig. 5.9. We make two observations on
comparing these curves with the dispersion curves for a flat plate: (i) the gap in the dispersion
curves for flexural and extensional waves [Figs. 5.9(a) and 5.9(c)] have increased, and the
flexural dispersion curve now has a double-well appearance; (ii) although the dispersion curve
for shear waves has changed in appearance [Fig. 5.9(b)], the gap remains the same and the
cut-on frequency remains unchanged. The cut-on frequencies at nonzero m can be computed
from Eq. (5.31) after setting k = 0, and we find three roots

ω2
cut-on = 1

2

(
l 2 + l 4 +m2 ±

√(
l 2 − l 4 −m2

)2 +4η2l 2m2

)
and 1

2 (1−η)l 2. (5.37)

Our intuition and a series expansion in m suggests that the lowest of the first two roots must
be associated with flexural waves and the highest root must be associated with extensional
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waves. The third root, which is independent of the curvature m, must then correspond to the
cut-on frequency for shear waves. As we shall see, this association is only correct at very low
curvatures.

Approximate dispersion relations
Although the exact dispersion relations for nonzero curvature are unwieldy, we can find an
approximate expression for the dispersion relations in the very weak curvature limit. To this
end, we write the roots ω2 as a regular perturbation series [6] in even powers of m, i.e.,

ω2(k, l ) =ω2
0(k, l )+

∞∑
n=1

m2nQn(k, l ), (5.38)

where ω0 is one of the three roots in Eq. (5.32) and Qn(k, l ) are coefficients to the correction
terms that we have to determine.12 Since the curvature is assumed to be very weak, the
dispersion relations obtained this way can be associated with a wave type based on the choice
we make for ω0. Putting Eq. (5.38) in Eq. (5.31), and dropping powers of k and l in comparison
to unity, we find

ω2 =



(
k2 + l 2)2 + (

1−η2)m2 l 4(
k2 + l 2

)2 +O(m4) (flexural),

1
2

(
1−η)(

k2 + l 2)+2
(
1−η)

m2 k2l 2(
k2 + l 2

)2 +O(m4) (shear),

(k2 + l 2)+m2

(
k2 +ηl 2

)2(
k2 + l 2

)2 +O(m4) (extensional).

(5.39)

The above approximate dispersion relations are identical to those found in the literature and
derived using alternative approaches [49, 128, 135, 146]. Also, in their analytical characteriza-
tion of bound waves in a musical saw, Shankar et al. [151] works exclusively with the above
approximate dispersion relation for flexural waves, which has also been observed experimen-
tally [170]. In Fig. 5.9, the approximate dispersion relations for m = 0.05 are indicated by
the red dashed curves, from which we can see that Eq. (5.39) captures the true dispersion
relations to a reasonably good accuracy.

Equation (5.39) must break down beyond a certain value of the curvature. Indeed, we
only expect it to capture the true dispersion when the O(m2) correction term in Eq. (5.38)
is smaller than ω2

0, and more conservatively, only when m ≪ k2 + l 2. We would expect the
dispersion relation to deviate significantly from Eq. (5.39) as m increases. In fact, for small
k and l , Eq. (5.39) completely breaks down at a curvature at which the cut-on frequency for
flexural and extensional waves become equal. For nonzero l , from Eq. (5.37), we see that this
happens at a curvature value

m2
‡ =

(1+η)l 2
[ 1

2 (1−η)− l 2
](

1+2η
)(

1−η) = 1
2

(
1+η

1+2η

)
l 2 +O(l 4). (5.40)

12Note that it is a futile task to expand the roots in Eq. (5.35) in powers of m to find the approximate dispersion
relationships.
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Figure 5.10. Cut-on frequencies for a singly curved shell as a function of the curvature
m for (a) flexural, (b) shear, and (c) extensional waves. The blue dashed curves represent
the cut-on frequency predicted by Eq. (5.39), which holds only when m is small. The
solid curves represent the actual cut-on frequency obtained by finding ω from Eq. (5.31)
using the general cubic formula, and taking the limit k → 0 numerically. The transverse
wave number l = 0.1 and Poisson’s ratio η= 0.3 in all plots.

We graphically demonstrate this in Fig. 5.10, from which we can see that the expressions
for the cut-on frequencies for shear and flexural waves get interchanged at large m. Hence,
for m > m‡, the lowest of the first two cut-on frequencies in Eq. (5.37), should be associated
with shear waves, whose dispersion curves would now have a curvature-dependent gap. The
cut-on frequency for flexural waves, however, would now be equal to 1

2 (1−η)l 2. We remark
that this switching of the cut-on frequencies does not happen if l 2 > 1

2 (1−η) as Eq. (5.40) fails
to have a real root. Also, as the cut-on frequencies of flexural and shear waves are equal for
m = m‡, in principle, mode conversion can occur close to the entire k axis on the phase plane.
Despite such a possibility, we did not observe any discernible effects of mode conversion in
our numerical experiments, and we shall it ignore in our analysis.

5.5.3 Shells with varying curvature

We shall now consider singly curved shells with varying curvature profiles. Given the com-
plexity of the general dispersion relations and the myriad of subtleties, we shall, however,
perform a less exhaustive analysis compared to what we did for the rod. We shall only look at
a limited number of examples, and to simplify matters, we set the transverse wave number
l = 0.1 and Poisson’s ratio η= 0.3 (corresponding to that of steel) throughout. As for the rod,
we will consider both tanh-type and sech-type curvature profiles, but we assume that the
largest absolute curvature b > m‡. This would let us examine the problem beyond the range
of validity of the approximate dispersion relation in Eq. (5.39). For the sech-type curvature
profile, we additionally assume that the smallest curvature a < m‡. With l = 0.1 and η= 0.3,
we have m‡ ≈ 0.06, and these assumptions are satisfied by the choices a = 0.01 and b = 0.1
that we made for the rod, and we use them for the shell as well.

From our earlier analysis, we saw that the spectral gap in the dispersion relation for all
three wave polarizations grows with increasing curvature. Now, consider a wave traveling
from a region of low curvature to one of high curvature. As the wave moves, at some point,
the frequency of the wave would fall below the local cut-on frequency of waves, where it
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Figure 5.11. Rays trajectories for a curved shell with a tanh-type curvature profile (top
panels) and a sech-type curvature profile (bottom panels) showcasing (a), (d) flexural
waves, (b), (e) shear waves, and (c), (f) extensional waves. In all figures the closed curves
represent rays associated with quantized bound states and the dashed black curves
represent the highest frequency for which there is a bound state. The phase portraits
have also been color coded with the ratio Rs defined in Eq. (5.41).

gets reflected back. Intuitively, we therefore expect bound states to occur for all three wave
polarizations.

For ray analysis, we usually directly work with the eigenvalues of the dispersion matrix D(0).
This proves to be difficult for the shell as the expressions for the eigenvalues are unwieldy. In
the absence of mode conversion, however, only one eigenvalue, say λ, will vanish at a given
phase-space point (x,k), causing the determinant detD(0) to vanish as well. Hence, the rays
determined by λ(x,k;ω) = 0 and detD(0) = 0 are identical, allowing us to use detD(0) as the ray
Hamiltonian.13 Using detD(0) instead of λ would amount to a trivial reparameterization of
Hamilton’s equations [163]. Judicious choices of the initial conditions, i.e., the coordinates
(x,k) and frequency ω, obtained from the local dispersion curves at a given (x,k), would
determine the type of wave the ray represents. When analyzing a given wave type, it is also
useful to compute an amplitude ratio, analogous to the one we used for the curved rod, and

13Let us remark that the ray trajectories can also be obtained by treating ω2 in Eq. (5.35) as the ray Hamiltonian.
However, given the general awkwardness of the expressions, it is better to work with detD(0) instead.
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defined by

Rs =
|ζ|

|ζ|+ |u|+ |v | ∼
|τ1|

|τ1|+ |τ2|+ |τ3|
. (5.41)

Above, we have also made use of the fact that the wave field is asymptotic to the polarization
vector τ to write Rs in terms of the components of τ. With the above definition, flexural
waves in a flat plate have Rs = 1, whereas both shear and extensional waves have Rs = 0.
In a curved shell, because we expect both the normal and tangential components of the
wave field to be significant, Rs for the three wave polarizations would deviate from their
flat-plate counterparts. For all three wave types, a significant amount of normal and tangential
contribution to the displacement field is indicated by values of Rs in the range 1/3 <Rs < 1/2.
We discuss flexural waves first.

Flexural waves
Our intuitive expectation of flexural bound states is confirmed by the actual ray trajectories
for flexural waves showcased in Figs. 5.11(a) and 5.11(d). For frequencies slightly above the
cut-on frequency at x = 0, the rays appear in the form of closed, vertically elongated orbits
that remain confined to a region where the curvature is very small. At larger frequencies,
the rays begin to enter regions of higher curvature, and orbits change from being elliptical
to highly eccentric, “peanut”-shaped curves. For these orbits, we have a total of six caustics
where ẋ = 0. [Compare Figs. 5.11(a) and 5.11(d) with Fig. 4.1(b).] Two of these caustics, which
are on the x axis, are the usual classical turning points where k = 0. At the other four caustics
k ̸= 0, and they arise due to the two double-well minima in the (local) dispersion curves where
dω/dk = 0.

For the peanut-shaped orbits, bound states do not occur beyond a frequency where the
four caustics with k ̸= 0 get pushed to x =±∞. Since the absolute curvature |m(±∞)| = b for
both curvature profiles, the largest frequency for which we see a bound state—represented
by the dashed rays in Figs. 5.11(a) and 5.11(d)—must be the frequency of the double-well
minimum in the dispersion curves for m = b. For small enough b, using Eq. (5.39), we find
this minimum to be ω2 ≈ 2

√
l 4b2(1−η2). This expression, however, turns out to overestimate

the actual minimum for larger b, and we must find it numerically. Also, this minimum exists
only when b ≳ l 2/

√
1−η2. For smaller b, rays of the bound states remain elliptical in nature,

with the classical turning points being the only caustics.
An example profile of a low-frequency flexural bound state is shown in Fig. 5.12(a). This

state has negligible tangential components u and v , and remains confined to a region of
similar extent as the classical turning points. At higher frequencies, flexural bound states grow
beyond the classical turning points and enter regions of higher curvature. Here curvature
effects become more prominent, and the states tend to have both tangential and normal
components as seen from Fig. 5.12(b), and the color coding of the phase portraits. They,
however, remain confined to a region of similar extent as the four caustics with ẋ = 0.

Shear waves
From the phase portraits in Fig. 5.11(b) and 5.11(e), we see that shear waves also form bound
rays confined between two classical turning points. As the frequency of the orbits increase,
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Figure 5.12. Numerical eigenmodes of a curved shell with a tanh-type curvature profile
showing (a),(b) flexural, (c),(d) shear, and (e),(f) extensional bound states. In our phase
convention, ζ and u are always real, whereas v is always complex, which is why we only
show its imaginary component ℑ(v). Left panels depict low-frequency bound states,
whereas the ones on the right panels have a higher frequency. The dashed vertical lines
indicate the locations of the caustics.

the turning points move to x =±∞, where the absolute curvature for both curvature types
is b. Thus, the largest frequency for which we observe shear bound states is the shear-wave
cut-on frequency for a cylindrical shell of curvature equal to b, obtained by setting m = b in
the second root of Eq. (5.37). Beyond this frequency, shear waves form unbound states. The
rays of shear bound states are elongated along the x direction as the spectral gap in the local
dispersion curve does not begin increasing until m(x) > m‡. For the same reason, shear waves
do not get localized if b < m‡. It is then natural to wonder if the localization of shear waves
seen in the phase portraits is an artifact of having chosen a relatively large value of b = 0.1.
But from Eq. (5.40) we see that m‡ can be made arbitrarily small by adjusting the value of
transverse wave number l , so even for small b we would expect shear bound states.

Example profiles of two shear bound states are shown in Figs. 5.12(c) and 5.12(d). The first
one has a frequency that is only slightly above the shear-wave cut-on frequency and hence
its local wave number k is small. Therefore, its (local) wave vector is predominantly in the
y direction [see Fig. 5.1(b)]. Furthermore, as expected from the transverse nature of shear
waves, the dominant tangential component is u, which is the displacement along x. The
second shear bound state shown in Fig. 5.12(f) has a higher frequency, causing it to spread to
regions of higher curvature, where curvature effects become more prominent. This can also
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Figure 5.13. Bound-state frequencies of a curved shell obtained from numerics com-
pared to that obtained through quantization for (a) tanh-type curvature profile m1(x)
and (b) sech-type curvature profile m2(x). For both plots, the gray guide line in the
background represents ω (quantized) = ω (numerical).

be inferred from the color coding of Figs. 5.11(b) and 5.11(e), which shows that shear bound
states develop a significant normal component at higher frequencies.

Extensional waves
Color-coded phase portraits of extensional waves indicating bound states are shown in
Figs. 5.11(c) and 5.11(f). The caustics for these bound states are the usual classical turn-
ing points with k = 0. For higher-frequency bound states, these points move to ±∞, where
the absolute curvature is b. Hence, the largest frequency for which we observe extensional
bound states must be the cut-on frequency for extensional waves in a shell having a curvature
equal to b, obtained by putting m = b in the first root in Eq. (5.37).

Example profiles of two extensional bound states are shown in Figs. 5.12(e) and 5.12(f).
Low-frequency extensional bound states, such as the one in Fig. 5.12(e), are expected to
displace the shell predominantly in the y direction as seen from the comparatively large
values of the tangential component v . The bound state in Fig. 5.12(f) has a slightly higher
frequency, causing it to spread to regions of higher curvature, where it develops a significant
normal component, which we also infer from the color coding of Figs. 5.11(c) and 5.11(f).

Bound states and quantization
To find the bound-state frequencies, we first set k = 0 in Eq. (5.31) and rearrange terms to find
that that classical turning points x⋆ are given by the solutions to the implicit equation

m2(x⋆) =
[

ω2 − l 2

ω2 − (
1−η2

)
l 2

](
ω2 − l 4) . (5.42)

Depending on the value of ω, the turning points found using the above equation could corre-
spond to turning points on the bound rays of all three waves. We use the same quantization
procedure as for the rod to determine the bound-state frequencies (Appendix 5.B). Further-
more, the extra phases γG and γNG in the quantization condition in Eq. (4.58) vanish for the
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Figure 5.14. (a) Curvature profile m3(x) = b sechϵx and (b) a curve with this curvature
profile in Cartesian space with coordinates X and Z . As the curve has multiple self-
intersections, only a physically unrealistic “phantom” shell can have this curvature profile.
The parameters b = 0.1 and ϵ= 0.01.

shell equations as well (Appendix 5.A). The Keller–Maslov index continues to be α = 2 for
all orbits—including the peanut-shaped orbits with six caustics—as they can be smoothly
deformed into a circle centered around the origin [134]. From Fig. 5.13, we see that the
bound-state frequencies obtained through quantization agree rather well with the numerical
values for both curvature profiles.

Although waves of all three types form bound states, from our preceding analyses and
Fig. 5.13, we see that flexural bound states appear first, followed by shear and extensional
bound states. Thus, in very long shells, shear waves form bound states that lie in a quasi-
continuum of flexural waves spread across the shell. Likewise, extensional bound states would
lie in a quasi-continuum of unbound flexural and shear waves. Similar to the curved rod, the
bound states of the curved shell are also of definite parity when the curvature profile m(x) is
odd or even. More specifically, when m(x) is even, the components ζ(x) and v(x) have the
same parity, with u(x) having the opposite parity. For odd m(x), however, ζ(x) and u(x) have
the same parity, with v(x) having the opposite parity, as can be seen from the example bound
states in Fig. 5.12.

5.6 Shells with sharp bends

Flexural bound states have also been predicted to exist in curved shells around points of
maximal curvature [120]. To illustrate this, we consider the curvature profile14 m3(x) =
b sech(ϵx). For the parameter values b = 0.1 and ϵ= 0.01, Fig. 5.14 shows the function m3(x)
and the shape of a curve with this curvature profile. Clearly, the curve intersects itself at
multiple points, and hence m3(x) can only be the curvature profile of a physically unrealizable
“phantom” shell that allows self-intersections. Although self-intersections can be avoided by
choosing a smaller value for b (or a larger value for ϵ), doing so would lead to the formation
of very few or barely discernible bound states. For this reason, we will continue to work with
the choice b = 0.1 so that the bound states appear more conspicuous.

14The authors of Refs. [120, 155] use a much more complicated curvature profile in their analysis. However, for
our purposes, m3(x) has the basic features of the profiles that these authors consider.
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Figure 5.15. Rays trajectories for a curved shell with the curvature profile m3(x) showing
(a) flexural waves, (b) shear waves, and (c) extensional waves. Only flexural waves form
bound states. The phase portraits are color coded with the ratio Rs defined in Eq. (5.41).

Ray trajectories of all three wave types for the curvature profile m3(x) are shown in Fig. 5.15.
As we see from this figure, only flexural waves form bound states. For this reason, we forgo
a more detailed analysis of shear and extensional waves, and concentrate on flexural waves
alone. In the phase portrait of Fig. 5.15(a), we see that in addition to the nonlinear center at
the origin, there are two saddle points on the k axis. The saddle points arise because of the
double-well minimum in the flexural dispersion curves where dω/dk = 0. A more detailed
analysis of the phase portraits and bound states of flexural waves reveals the following:

(i) The existence of bound states around regions of high curvature cannot simply be
explained by considering the gap and/or cut-on frequency in the dispersion curves—
after all, as we move away from regions of high curvature to regions of low curvature,
this gap decreases. In reality, these bound states arise due to the double-well nature of

the flexural dispersion curves at nonzero curvature. Indeed, if l = 0 or b ≲ l 2/
√

1−η2,
the dispersion curves fail to have a double-well nature and bound states do not exist.15

(ii) Smaller orbits in the phase portraits represent bound states of higher frequency. Hence,
higher-frequency bound states are represented by a smaller quantum number n. The
smallest bound orbit has a frequency slightly above the cut-on frequency of flexural
waves at curvature m = b. For b > m‡, as the frequency of the orbit approaches the
cut-on frequency, the whole orbit flattens to a small line segment on the x axis; for
b < m‡, the orbit shrinks to the origin. [See Eq. (5.40) for the definition of m‡.]

(iii) As the frequency of the bound orbits gets smaller, they increase in size, but remain
confined between the two heteroclinic orbits [shown as dashed curves in Fig. 5.15(a)]
connecting the saddle points on the k axis. The heteroclinic orbits have a frequency
equal to the double-well minimum in the dispersion curves, which puts a limit on the
lowest frequency for which we expect a bound mode.

15This should be contrasted with flexural bound states around points of minimal curvature, which continue to

exist even for b ≲ l 2/
√

1−η2; see the discussion on p. 92.
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Figure 5.16. (a), (b) Example flexural bound states for a shell with curvature profile
m3(x); the grey vertical lines indicate the locations of the classical turning points. Tun-
neling effects around the saddle points cause the lower-frequency modes, such as the
one in (a), to leak out. (c) Comparison between the quantization results and numerics;
the grey guideline in the background represents ω (quantized) =ω (numerical).

(iv) Incoming and outgoing rays close to the saddle point are nearly tangent to each other,
leading to the formation of a tunneling region around the saddle point.16 In this region,
waves represented by one ray can transfer their energy to waves represented by the
other ray [163], which causes the lower-frequency bound states to “leak out” as shown
in Fig. 5.16(a). This, however, does not seem to have a considerable effect on the
quantization results, and we recover the frequencies of the observed bound modes
accurately [see Fig. 5.16(c)].

(v) Finally, bound states at higher frequencies, such as the one in Fig. 5.16(b), tend to
have fewer nodes and appear to be more spatially confined.17 They also have a more
significant tangential contribution as evident from the color coding of Fig. 5.15(a).

In summary, flexural bound states in a shell can also develop around points of maximal
curvature. Let us again remark, however, that for the parameter choices b = 0.1 and ϵ= 0.01,
the curvature profile m3(x) is a physical unrealizable one. On the other hand, numerical
experiments with more realistic shells (with small b and/or large ϵ) revealed very few or
practically nonexistent bound states—something that we expect to happen in real experiments
as well.

5.7 Concluding remarks
In this chapter we have considered the localization of waves in thin elastic structures in-
duced by variations in the structure’s curvature profile. For both the example structures we

16Mohammed et al. [120] presents a detailed analysis of this tunneling phenomenon.
17This is in contrast to all the bound states, including those on the curved rod, that we have described so far.
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considered, bound states develop around points where the structure’s absolute curvature
has a minimum. In case of the shell, flexural, shear, and extensional waves form bound
states. Additionally, flexural bound states can also develop around points of a shell where the
absolute curvature has a maximum. In contrast to shells, bound states in a curved rod (which
are always extensional in nature) only exist around points where the absolute curvature has a
minimum. These findings set the stage for the design of simple devices capable of inducing
wave localization without relying on metamaterials with nontrivial microstructure.

Semiclassical approximation presents challenges of its own when used to study multi-
component waves, particularly due to the presence of nontrivial phases in the quantization
rule. The rod and shell equations we use in this chapter, however, have properties that cause
these phases to vanish. Nevertheless, topologically protected waves in continuous media can
arise when this phase is nonzero, especially when time-reversal symmetry is broken [165].
For this reason, it is worthwhile to explore the use of semiclassical methods in problems with
broken time-reversal symmetry such as those in rotating elastic media [110], fluids with odd
viscosity [157], and magnetoelastic waves [5], where one would generically expect this phase
to be nonzero.

Ray tracing methods have continued to receive extensive attention in recent years. An
interesting line of work involves the phenomenon of branched flows—the spatial branching
of rays as a result of random, but weak inhomogeneities in the medium, the end result being
the formation of tree-like structures and fluctuations of extreme intensity [64]. Branched
flows have been observed in a host of systems, including tsunami waves in the ocean, light
propagation in soap films, the flow of electrons in semiconductors, etc. In elastodynamics,
branched flows have been shown to exist in thin elastic plates and cylinders with varying
thickness profiles [73–75]. It would be interesting to extend these results to consider shells
with random curvature profiles, akin to crumpled paper [53].

5.A Additional phases

In this appendix we will look at situations where the extra phase γ that appears in the quanti-
zation condition in Eq. (4.58) vanishes. As we discussed during the derivation of Eq. (4.56),
γ= γG +γNG, where γG is the term that gives rise to a nonzero geometric phase and γNG is
the other (non-geometric) term. First, we shall analyze general N -component wave equations
with an N ×N dispersion matrix D(0).

5.A.1 General wave equations

Consider a general N -component polarization vector τ of the dispersion matrix D(0), given by

τ=
[

r1(x,k)e iϕ1(x,k), r2(x,k)e iϕ2(x,k), . . . , rN (x,k)e iϕN (x,k)
]

. (5.43)

Above, we have expressed the j th component τ j in terms of a real amplitude r j (x,k) and a
phase ϕ j (x,k), both of which are functions of the phase-space coordinates (x,k). Since τ is
normalized, we have ∥τ∥2 =∑n

j=1 r 2
j (x,k) = 1 for all (x,k). Putting Eq. (5.43) in Eq. (4.56), we
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see that the rate of change of the first (geometric) phase γG is

γ̇G = iτ∗j
{
τ j ,λ

}= i r j
{
r j ,λ

}− r 2
j

{
ϕ j ,λ

}
= (i /2)

{∥τ∥2,λ
}− r 2

j

{
ϕ j ,λ

}
=−r 2

j

{
ϕ j ,λ

}
.

(5.44)

In the last step above, we have made use of the fact that ∥τ∥ = 1 always, so {∥τ∥2,λ} vanishes.
Clearly, if the phases ϕ j (x,k) are constants, then γ̇G vanishes. More generally, γ̇G would
vanish if all (x,k) dependence in the phases ϕ j can be removed by an overall rephasing of τ
(as such a rephasing does not affect the normalization of τ). In other words, only the relative
phases between the components of τ contribute to γ̇G. From here on we assume that the
phases ϕ j are constants, so all Poisson brackets involving ϕ j can be set to zero. In that case
γ̇G = 0 everywhere on the phase space, and the accumulated phase γG as we move along an
orbit can be taken to be zero.

But what about the second (non-geometric) phase γNG? From Eq. (4.56) we see that the
rate of change of γNG is given by

γ̇NG = (i /2)D(0)
j k

{
τ∗j ,τk

}
−τ∗j D(1)

j kτk

= (i /2)
∑
j<k

(
D(0)

j k e−iϕ j k −D(0)∗
j k e iϕ j k

){
r j ,rk

}−τ∗j D(1)
j kτk .

(5.45)

In the last step above, we have used Eq. (5.43) to simplify the first term on the RHS and have
defined ϕ j k =ϕ j −ϕk . We have also made use of the Hermiticity of D(0) to express the first
term in terms of the off-diagonal entries of D(0). From Eq. (5.45) we see that even when the
phases ϕ j are constants, γNG could be nonzero. However, in the following subsection we
show that for wave equations of thin elastic structures with certain invariant properties, in
addition to a vanishing γG, the phase γNG vanishes as well.

5.A.2 Wave equations of thin elastic structures
We begin by noting that the rod equations, Eq. (5.3), as well as the shell equations, Eq. (5.28),
remain invariant on simultaneously inverting the sign18 of the spatial derivatives and the tan-
gential components of the displacement field, i.e., under (∂x ,∂y ) → (−∂x ,−∂y ) and (ζ,u, v) →
(ζ,−u,−v). This invariance can be traced back to the invariance of the strain expressions19

used to derive these equations. The same invariance is also found in many higher-order theo-
ries of rods [19, 167] and shells [34]. For these reasons, it is useful to consider a general linear
elastodynamic equation involving a 3-component wave field Ψ= (ζ,u, v) and possessing this
invariance, and given by

∂2
tΨ(x, y, t )+ ĤΨ(x, y, t ) = 0 with Ĥ=

 Ẑ Â B̂
Â† Û Ĉ
B̂ † Ĉ † V̂

 , (5.46)

18Note that under (∂x ,∂y ) → (−∂x ,−∂y ) derivatives of the curvature transform as m′(x) →−m′(x).
19More specifically, this invariance arises when the linearized extensional and bending strains are comprised of

terms involving only odd derivatives of u and v , and even derivatives of ζ, as in models based on the Kirchhoff–Love
assumptions [151].
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Above, the entries of Ĥ are linear differential operators comprised of powers of ∂x and ∂y . Also,
the diagonal entries Ẑ , Û , and V̂ are Hermitian operators and Â† is the Hermitian adjoint
of Â. Additionally, since Eq. (5.46) represents an elastodynamic system, we assume that the
coefficients of all the derivatives in Ĥ are real so that Ψ can be taken to be real as well.

Any invariance possessed by Eq. (5.46) must be shared by the (potential) energy den-
sity J = 1

2Ψ
TĤΨ used to derive it from Hamilton’s principle. If J is to be invariant under

(∂x ,∂y ) → (−∂x ,−∂y ) and (ζ,u, v) → (ζ,−u,−v) for an arbitrary Ψ, the off-diagonal operators
Â and B̂ must be odd under (∂x ,∂y ) → (−∂x ,−∂y ). In other words, they can only have terms
involving exactly one odd power of ∂x (or ∂y ). Odd powers of ∂x , ∂y acquire complex coeffi-

cients when expressed in terms of the momentum operator: ∂2n+1
x = (−1)n i k̂2n+1. Meanwhile,

coefficients of even powers of ∂x , ∂y remain real: ∂2n
x = (−1)n k̂2n . Using the rules in Eq. (4.62),

we therefore conclude that the lowest-order symbols of the off-diagonal operators Â and
B̂ must be purely complex (as Ĥ did not have complex coefficients to begin with). From
Eq. (4.62) we also see that the O(ϵ) corrections to these symbols must be real. Therefore, we
can write down the symbols of the operators Â and B̂ as

A = i A(0) +ϵA(1) +O(ϵ2),

B = i B (0) +ϵB (1) +O(ϵ2).
(5.47)

where A(0),B (0), etc., are real functions. A similar reasoning would reveal that the operator Ĉ
must be even under (∂x ,∂y ) → (−∂x ,−∂y ), and consequently, its symbol is of the form

C =C (0) + iϵC (1) +O(ϵ2), (5.48)

where C (0) and C (1) are real. As Ĥ is a Hermitian operator, the symbols of the diagonal entries
are all real and O(ϵ) corrections to these symbols must vanish.

For finding the eigenmodes, after Fourier transforming in time, we define D̂= Ĥ−ω2I3 and
convert D̂ to its symbol form D=D(0) +ϵD(1) +O(ϵ2). From the above discussion, we see that
most general dispersion matrix D(0) and its O(ϵ) correction D(1) that can be written down is of
the form

D(0) =
Z (0) −ω2 i A(0) i B (0)

−i A(0) U (0) −ω2 C (0)

−i B (0) C (0) V (0) −ω2

 and D(1) =
 0 A(1) B (1)

A(1) 0 iC (1)

B (1) −iC (1) 0

 . (5.49)

A polarization vector τ is defined up to an overall phase and normalization by D(0)τ= 0.
Direct inspection reveals that for D(0) defined in Eq. (5.49), we can take τ to be of the form20

τ=
 τ1

iτ2

iτ3

 , (5.50)

where τ1, τ2, and τ3 are real functions defined on the phase space. Clearly, the relative phases
ϕ12 and ϕ13 between the components of τ are either ±π/2 or 0 (when τ1 or τ2 vanishes).

20To see this more explicitly, take τ = (r1eiφ1 , τ2, τ3) and solve for the components τ2 and τ3 from D(0)τ = 0.
Upon rephasing τ by e−iφ1 , we find that τ is of the general form in Eq. (5.50).
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Likewise, the relative phase ϕ23 is either 0 or π. Because the relative phases are constants,
from our discussion in the previous subsection, it then follows that the geometric phase γG = 0.
When the matrix D(1) is of the form in Eq. (5.49), using the polarization vector τ in Eq. (5.50),
a straightforward computation shows that second term in the expression for γ̇NG, Eq. (5.45),
vanishes. Next, we note that D(0)

12 e−iϕ12 =±A(0), D(0)
13 e−iϕ13 =±B (0), and D(0)

23 e−iϕ23 =±C (0), are
all real. From Eq. (5.45) it then follows that γ̇NG vanishes, and we can take γNG to be zero as
well.

The dispersion matrices for the thin shell we considered in Eq. (5.30) are of the form
in Eq. (5.49), and hence the phase γ = γG +γNG is zero for the shell. It can be verified that
the dispersion matrices for many higher-order shell theories [34] would also be of this form.
For the curved rod, the dispersion matrices in Eq. (5.5) are identical to the shell dispersion
matrices once we delete the third row and column, and set l = 0. Proceeding by arguments
similar to previous ones, we see that the extra phase γ vanishes for the rod as well.

5.B Numerical details
To find the eigenmodes numerically, we solve the rod and shell equations, Eqs. (5.3) and (5.28),
with x ∈X = [−1000,1000], using Dedalus [15] with a Chebyshev spectral decomposition and
2048 modes.21 Bound states are identified by manual examination of the eigenmode profiles.
To test the robustness of the bound states, we independently use clamped, simply supported,
and mixed clamped–simply supported boundary conditions for both the rod and the shell. At
the clamped end of a rod, the geometric boundary conditions are ζ(x) = ∂xζ(x) = u(x) = 0 [88].
For the shell, at the clamped end, we additionally have v(x) = 0 as well. At a simply supported
end of a rod, we have the geometric boundary condition ζ(x) = u(x) = 0 and the natural
boundary condition ∂2

xζ(x) = 0 (no bending moment) [45]. In case of a shell, at a simply
supported end, we have ζ(x) = u(x) = v(x) = 0 and ∂2

xζ(x)−ηl 2ζ(x) = 0 [177].
For finding the quantized frequencies numerically, for a given n ∈N0, we start with an

approximate guess for the frequency ω based on the numerical results. We then numerically
integrate the ray equations starting at one of the classical turning points on the x axis, e.g.,
the one at x =−x⋆, until the ray reaches the other turning point at x = x⋆ (see Fig. 4.1). Next,
we compute

n(ω) = (πϵ)−1
∫ x⋆

−x⋆
dx k(x)− 1

2 (5.51)

using points [x,k(x)] from the ray trajectory, with the integral evaluated by quadrature. For
a general ω, the estimated n(ω) will not be integer-valued. Quantized frequencies ω can be
obtained by solving n(ω) = n using a numerical root finder. Alternatively, we could minimize
the absolute “error” |n −n(ω)| using random values of ω spread around the initial guess, and
take the quantized frequency to be argminω |n−n(ω)|. For the results reported in this chapter,
this error is less than 10−10.

21Numerical code is publicly available at https:/github.com/manu-mannattil/glwtes.

https:/github.com/manu-mannattil/glwtes
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