{
"metadata": {
"name": "",
"signature": "sha256:a5146b953e6ce4107eb6016b9e4a4a34b2153b7ea3de0a799042c5e879c6ce01"
},
"nbformat": 3,
"nbformat_minor": 0,
"worksheets": [
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"
\n",
"
\n",
"\n",
"
This tutorial is prepared by ACM Student Chapter of King Abdullah University of Science and Technology (KAUST).
\n",
"Material has been adapted from the following:
- David Ketcheson's [Introduction to NumPy and Matplotlib](http://nbviewer.ipython.org/github/ketch/AMCS252/blob/master/2_Introduction_to_Numpy%20and_Matplotlib.ipynb)
\n", "- Software Carpentry's [Numerical analysis with NumPy](http://nbviewer.ipython.org/github/geocarpentry/2014-01-30-mit/blob/gh-pages/lessons/vignettes/Numerical%20analysis%20with%20NumPy.ipynb)
\n", "- J.R. Johansson's [Numpy - multidimensional data arrays](http://nbviewer.ipython.org/github/jrjohansson/scientific-python-lectures/blob/master/Lecture-2-Numpy.ipynb) and [SciPy - Library of scientific algorithms for Python](http://nbviewer.ipython.org/github/jrjohansson/scientific-python-lectures/blob/master/Lecture-3-Scipy.ipynb#SciPy---Library-of-scientific-algorithms-for-Python)
\n", "- Official [Tentative NumPy tutorial](http://www.scipy.org/Tentative_NumPy_Tutorial)
\n", "\n", "**Prerequisites:** Introduction to Python\n", "