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OLS matrix notation
The general econometric model:

yi = β0 + β1x1i + · · ·+ βkxki + ui

Can be written in matrix notation as:
y = Xβ + u

Let’s call û the vector of estimated residuals (û ̸= u):

û = y −Xβ̂
The objective of OLS is to minimize the SSR:

min SSR = min
∑n

i=1 û
2
i = min ûTû

� Defining ûTû:
ûTû = (y −Xβ̂)T(y −Xβ̂) =

= yTy − 2β̂TXTy + β̂TXTXβ̂
� Minimizing ûTû:
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The second derivative ∂2ûTû

∂β̂2
= XTX > 0 (is a min.)

Variance-covariance matrix of β̂
Has the following form:

Var(β̂) = σ̂2
u · (XTX)−1 =

=


Var(β̂0) Cov(β̂0, β̂1) . . . Cov(β̂0, β̂k)

Cov(β̂1, β̂0) Var(β̂1) . . . Cov(β̂1, β̂k)
...

...
. . .

...

Cov(β̂k, β̂0) Cov(β̂k, β̂1) . . . Var(β̂k)


where: σ̂2

u = ûTû
n−k−1

The standard errors are in the diagonal of:

se(β̂) =

√
Var(β̂)

Error measurements

� SSR = ûTû = yTy − β̂TXTy =
∑

(yi − ŷi)
2

� SSE = β̂TXTy − ny2 =
∑

(ŷi − y)2

� SST = SSR + SSE = yTy − ny2 =
∑

(yi − y)2

Variance-covariance matrix of u
Has the following shape:

Var(u) =


Var(u1) Cov(u1, u2) . . . Cov(u1, un)

Cov(u2, u1) Var(u2) . . . Cov(u2, un)
...

...
. . .

...
Cov(un, u1) Cov(un, u2) . . . Var(un)


When there is no heterocedasticity and no auto-correlation,
the variance-covariance matrix of u has the form:

Var(u) = σ2
u · In =


σ2
u 0 . . . 0
0 σ2

u . . . 0
...

...
. . .

...
0 0 . . . σ2

u


where In is an identity matrix of n× n elements.

When there is heterocedasticity and auto-correlation,
the variance-covariance matrix of u has the shape:

Var(u) = σ2
u · Ω =


σ2
u1
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σ2
u2
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...
...

. . .
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
where Ω ̸= In.

� Heterocedasticity: Var(u) = σ2
ui

̸= σ2
u

� Auto-correlation: Cov(ui, uj) = σuij
̸= 0, ∀i ̸= j

Variable omission
Most of the time, is hard to get all relevant variables for an
analysis. For example, a true model with all variables:

y = β0 + β1x1 + β2x2 + v
where β2 ̸= 0, v is the error term and Cov(v|x1, x2) = 0.

The model with the available variables:
y = α0 + α1x1 + u

where u = v + β2x2.
Relevant variable omission causes OLS estimators to be bi-
ased and inconsistent, because there is no weak exogene-
ity, Cov(x1, u) ̸= 0. Depending on the Corr(x1, x2) and the
sign of β2, the bias on α̂1 could be:

Corr(x1, x2) > 0 Corr(x1, x2) < 0
β2 > 0 (+) bias (−) bias
β2 < 0 (−) bias (+) bias

� (+) bias: α̂1 will be higher than it should be (it includes
the effect of x2) → α̂1 > β1

� (−) bias: α̂1 will be lower than it should be (it includes
the effect of x2) → α̂1 < β1

If Corr(x1, x2) = 0, there is no bias on α̂1, because the
effect of x2 will be fully picked up by the error term, u.

Variable omission correction
Proxy variables
Is the approach when a relevant variable is not available
because it is non-observable, and there is no data available.
� A proxy variable is something related with the non-
observable variable that has data available.

For example, the GDP per capita is a proxy variable for
the life quality (non-observable).

Instrumental variables
When the variable of interest (x) is observable but endoge-
nous, the proxy variables approach is no longer valid.
� An instrumental variable (IV) is an observable
variable (z) that is related with the variable of interest
that is endogenous (x), and meet the requirements:

Cov(z, u) = 0 → instrument exogeneity
Cov(z, x) ̸= 0 → instrument relevance

Instrumental variables let the omitted variable in the error
term, but instead of estimate the model by OLS, it uti-
lizes a method that recognizes the presence of an omitted
variable. It can also solve error measurement problems.
� Two-Stage Least Squares (TSLS) is a method to esti-
mate a model with multiple instrumental variables. The
Cov(z, u) = 0 requirement can be relaxed, but there has
to be a minimum of variables that satisfies it.
The TSLS estimation procedure is as follows:
1. Estimate a model regressing x by z using OLS, ob-

taining x̂:
x̂ = π̂0 + π̂1z

2. Replace x by x̂ in the final model and estimate it by
OLS:

y = β0 + β1x̂+ u
There are some important things to know about TSLS:
– TSLS estimators are less efficient than OLS when the

explanatory variables are exogenous. The Hausman
test can be used to check it:

H0: OLS estimators are consistent.
If H0 is accepted, the OLS estimators are better than
TSLS and vice versa.

– There could be some (or all) instrument that are not
valid. This is known as over-identification, Sargan
test can be used to check it:

H0: all instruments are valid.
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Information criterion
It is used to compare models with different number of pa-
rameters (p). The general formula:

Cr(p) = log(SSRn ) + cnφ(p)
where:
� SSR is the Sum of Squared Residuals from a model of
order p.

� cn is a sequence indexed by the sample size.
� φ(p) is a function that penalizes large p orders.
Is interpreted as the relative amount of information lost by
the model. The p order that min. the criterion is chosen.
There are different cnφ(p) functions:
� Akaike: AIC(p) = log(SSRn ) + 2

np

� Hannan-Quinn: HQ(p) = log(SSRn ) + 2 log(log(n))
n p

� Schwarz: Sc(p) = log(SSRn ) + log(n)
n p

Sc(p) ≤ HQ(p) ≤ AIC(p)

The non-restricted hypothesis test
Is an alternative to the F test when there are few hypoth-
esis to test on the parameters. Let βi, βj be parameters,
a, b, c ∈ R are constants.
� H0 : aβi + bβj = c
� H1 : aβi + bβj ̸= c

Under H0: t =
aβ̂i + bβ̂j − c√
Var(aβ̂i + bβ̂j)

=
aβ̂i + bβ̂j − c√

a2Var(β̂i) + b2 ·Var(β̂j)± 2abCov(β̂i, β̂j)

If |t| > |tn−k−1,α/2|, there is evidence to reject H0.

ANOVA
Decompose the total sum of squared in sum of squared
residuals and sum of squared explained: SST = SSR+SSE

Variation origin Sum Sq. df Sum Sq. Avg.
Regression SSE k SSE/k
Residuals SSR n− k − 1 SSR/(n− k − 1)
Total SST n− 1

The F statistic:

F =
SSA of SSE

SSA of SSR
=

SSE

SSR
· n− k − 1

k
∼ Fk,n−k−1

If Fk,n−k−1 < F , there is evidence to reject H0.

Incorrect functional form
To check if the model functional form is correct, we can
use Ramsey’s RESET (Regression Specification Error
Test). It test the original model vs. a model with vari-
ables in powers.

H0: the model is correctly specified.
Test procedure:
1. Estimate the original model and obtain ŷ and R2:

ŷ = β̂0 + β̂1x1 + · · ·+ β̂kxk

2. Estimate a new model adding powers of ŷ and obtain
the new R2

new:
ỹ = ŷ + γ̃2ŷ

2 + · · ·+ γ̃lŷ
l

3. Define the test statistic, under γ2 = · · · = γl = 0 as null
hypothesis:

F =
R2

new−R2

1−R2
new

· n−(k+1)−l
l ∼ Fl,n−(k+1)−l

If Fl,n−(k+1)−l < F , there is evidence to reject H0.

Logistic regression

When there is a binary (0, 1) dependent variable, the lin-
ear regression model is no longer valid, we can use logistic
regression instead. For example, a logit model:

Pi =
1

1 + e−(β0+β1xi+ui)
=

eβ0+β1xi+ui

1 + eβ0+β1xi+ui

where Pi = E(yi = 1 | xi) and (1− Pi) = E(yi = 0 | xi)
The odds ratio (in favor of yi = 1):

Pi

1− Pi
=

1 + eβ0+β1xi+ui

1 + e−(β0+β1xi+ui)
= eβ0+β1xi+ui

Taking the natural logarithm of the odds ratio, we obtain
the logit:

Li = ln

(
Pi

1− Pi

)
= β0 + β1xi + ui

Pi is between 0 and 1, but
Li goes from −∞ to +∞.

If Li is positive, it means
that when xi increments, the
probability of yi = 1 in-
creases, and vice versa.

P

x
0

1

Statistical definitions
Let ξ, η be random variables, a, b ∈ R constants, and P
denotes probability.

Mean
Definition: E(ξ) =

∑n
i=1 ξi · P [ξ = ξi]

Population mean:

E(ξ) =
1

N

∑N
i=1 ξi

Sample mean:

E(ξ) =
1

n

∑n
i=1 ξi

Some properties:
� E(a) = a
� E(ξ + a) = E(ξ) + a
� E(a · ξ) = a · E(ξ)
� E(ξ ± η) = E(ξ) + E(η)
� E(ξ · η) = E(ξ) · E(η) only if ξ and η are independent.
� E(ξ − E(ξ)) = 0
� E(a · ξ + b · η) = a · E(ξ) + b · E(η)

Variance
Definition: Var(ξ) = E(ξ − E(ξ))2

Population variance:

Var(ξ) =

∑N
i=1(ξi − E(ξ))2

N

Sample variance:

Var(ξ) =

∑n
i=1(ξi − E(ξ))2

n− 1

Some properties:
� Var(a) = 0
� Var(ξ + a) = Var(ξ)
� Var(a · ξ) = a2 ·Var(ξ)
� Var(ξ ± η) = Var(ξ) + Var(η)± 2 · Cov(ξ, η)
� Var(a · ξ± b ·η) = a2 ·Var(ξ)+ b2 ·Var(η)±2ab ·Cov(ξ, η)

Covariance
Definition: Cov(ξ, η) = E[(ξ − E(ξ)) · (η − E(η))]

Population covariance:∑N
i=1(ξi − E(ξ)) · (ηi − E(η))

N

Sample covariance:∑n
i=1(ξi − E(ξ)) · (ηi − E(η))

n− 1

Some properties:
� Cov(ξ, a) = 0
� Cov(ξ + a, η + b) = Cov(ξ, η)
� Cov(a · ξ, b · η) = ab · Cov(ξ, η)
� Cov(ξ, ξ) = Var(ξ)
� Cov(ξ, η) = Cov(η, ξ)
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VAR (Vector Autoregressive)
A VAR model captures dynamic interactions between time series variables. The
VAR(p):

yt = A1yt−1 + · · ·+Apyt−p +B0xt + · · ·+Bqxt−q + CDt + ut

where:
� yt = (y1t, . . . , yKt)

T is a vector of K observable endogenous time series variables.
� Ai’s are K ×K coefficient matrices.
� xt = (x1t, . . . , xMt)

T is a vector of M observable exogenous time series variables.
� Bj ’s are K ×M coefficient matrices.
� Dt is a vector that contains all deterministic terms, that may be a: constant, linear
trend, seasonal dummy, and/or any other user specified dummy variables.

� C is a coefficient matrix of suitable dimension.
� ut = (u1t, . . . , uKt)

T is a vector of K white noise series.
The process is stable if:

det(IK −A1z − · · · −Apz
p) ̸= 0 for |z| ≤ 1

this is, there are no roots in and on the complex unit circle.
For example, a VAR model with two endogenous variables (K = 2), two lags (p = 2), an
exogenous contemporaneous variable (M = 1), a constant (const) and a trend (Trendt):[

y1t
y2t

]
=

[
a11,1 a12,1
a21,1 a22,1

]
·
[
y1,t−1

y2,t−1

]
+

[
a11,2 a12,2
a21,2 a22,2

]
·
[
y1,t−2

y2,t−2

]
+

[
b11
b21

]
·
[
xt

]
+

[
c11 c12
c21 c22

]
·
[
const
Trendt

]
+

[
u1t

u2t

]
Visualizing the separate equations:
y1t = a11,1y1,t−1 + a12,1y2,t−1 + a11,2y1,t−2 + a12,2y2,t−2 + b11xt + c11 + c12Trendt + u1t

y2t = a21,1y2,t−1 + a22,1y1,t−1 + a21,2y2,t−2 + a22,2y1,t−2 + b21xt + c21 + c22Trendt + u2t

If there is an unit root, the determinant is zero for z = 1, then some or all variables are
integrated and a VAR model is no longer appropiate (is unstable).

VECM (Vector Error Correction Model)
If cointegrating relations are present in a system of variables, the VAR form is not the
most convenient. It is better to use a VECM, that is, the levels VAR substracting yt−1

from both sides. The VECM(p− 1):
∆yt = Πyt−1 + Γ1∆yt−1 + · · ·+ Γp−1∆yt−p+1 +B0xt + · · ·+Bqxt−q + CDt + ut

where:
� yt, xt, Dt and ut are as specified in VAR.
� Π = −(IK − A1 − · · · − Ap) for i = 1, . . . , p − 1 ; Πyt−1 is referred as the long-term
part.

� Γi = −(Ai+1 + · · ·+Ap) for i = 1, . . . , p− 1 is referred as the short-term parameters.
� Ai, Bj and C are coefficient matrices of suitable dimensions.
If the VAR(p) process is unstable (there are roots), Π can be written as a prod-
uct of (K × r) matrices α (loading matrix) and β (cointegration matrix) with
rk(Π) = rk(α) = rk(β) = r (cointegrating rank) as follows Π = αβT.
� βTyt−1 contains the cointegrating relations.
For example, if there are three endogenous variables (K = 3) with two cointegratig rela-
tions (r = 2), the long term part of the VECM:

Πyt−1 = αβTyt−1 =

α11 α12

α21 α22

α31 α32

[
β11 β21 β31

β12 β22 β32

]y1,t−1

y2,t−1

y3,t−1

 =

α11ec1,t−1 + α12ec2,t−1

α21ec1,t−1 + α22ec2,t−1

α31ec1,t−1 + α32ec2,t−1


where:

ec1,t−1 = β11y1,t−1 + β21y2,t−1 + β31y3,t−1

ec2,t−1 = β12y1,t−1 + β22y2,t−1 + β32y3,t−1
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