Additional Cheat Sheet

By Marcelo Moreno - Universidad Rey Juan Carlos
The Econometrics Cheat Sheet Project

OLS matrix notation

The general econometric model:

$$
y_{i}=\beta_{0}+\beta_{1} x_{1 i}+\cdots+\beta_{k} x_{k i}+u_{i}
$$

Can be written in matrix notation as:

$$
y=X \beta+u
$$

Let's call \hat{u} the vector of estimated residuals $(\hat{u} \neq u)$:

$$
\hat{u}=y-X \hat{\beta}
$$

The objective of OLS is to minimize the SSR:

$$
\min \mathrm{SSR}=\min \sum_{i=1}^{n} \hat{u}_{i}^{2}=\min \hat{u}^{\top} \hat{u}
$$

- Defining $\hat{u}^{\top} \hat{u}$:

$$
\begin{aligned}
& \hat{u}^{\top} \hat{u}=(y-X \hat{\beta})^{\top}(y-X \hat{\beta})= \\
& =y^{\top} y-2 \hat{\beta}^{\top} X^{\top} y+\hat{\beta}^{\top} X^{\top} X \hat{\beta}
\end{aligned}
$$

- Minimizing $\hat{u}^{\top} \hat{u}$:

$$
\begin{gathered}
\frac{\partial \hat{u}^{\top} \hat{u}}{\partial \hat{\beta}}=-2 X^{\top} y+2 X^{\top} X \hat{\beta}=0 \\
\hat{\beta}=\left(X^{\top} X\right)^{-1}\left(X^{\top} y\right) \\
{\left[\begin{array}{c}
\beta_{0} \\
\beta_{1} \\
\vdots \\
\beta_{k}
\end{array}\right]=\left[\begin{array}{cccc}
n & \sum x_{1} & \cdots & \sum x_{k} \\
\sum x_{1} & \sum x_{1}^{2} & \cdots & \sum x_{1} x_{k} \\
\vdots & \vdots & \ddots & \vdots \\
\sum x_{k} & \sum x_{k} x_{1} & \cdots & \sum x_{k}^{2}
\end{array}\right]^{-1} \cdot\left[\begin{array}{c}
\sum y \\
\sum y x_{1} \\
\vdots \\
\sum y x_{k}
\end{array}\right]}
\end{gathered}
$$

The second derivative $\frac{\partial^{2} \hat{u}^{\top} \hat{u}}{\partial \hat{\beta}^{2}}=X^{\top} X>0$ (is a min.)

Variance-covariance matrix of $\hat{\beta}$

Has the following form:

$$
\begin{gathered}
\operatorname{Var}(\hat{\beta})=\hat{\sigma}_{u}^{2} \cdot\left(X^{\top} X\right)^{-1}= \\
=\left[\begin{array}{cccc}
\operatorname{Var}\left(\hat{\beta}_{0}\right) & \operatorname{Cov}\left(\hat{\beta}_{0}, \hat{\beta}_{1}\right) & \ldots & \operatorname{Cov}\left(\hat{\beta}_{0}, \hat{\beta}_{k}\right) \\
\operatorname{Cov}\left(\hat{\beta}_{1}, \hat{\beta}_{0}\right) & \operatorname{Var}\left(\hat{\beta}_{1}\right) & \ldots & \operatorname{Cov}\left(\hat{\beta}_{1}, \hat{\beta}_{k}\right) \\
\vdots & \vdots & \ddots & \vdots \\
\operatorname{Cov}\left(\hat{\beta}_{k}, \hat{\beta}_{0}\right) & \operatorname{Cov}\left(\hat{\beta}_{k}, \hat{\beta}_{1}\right) & \ldots & \operatorname{Var}\left(\hat{\beta}_{k}\right)
\end{array}\right]
\end{gathered}
$$

where: $\hat{\sigma}_{u}^{2}=\frac{\hat{u}^{\top} \hat{u}}{n-k-1}$
The standard errors are in the diagonal of:

$$
\operatorname{se}(\hat{\beta})=\sqrt{\operatorname{Var}(\hat{\beta})}
$$

Error measurements

- $\operatorname{SSR}=\hat{u}^{\top} \hat{u}=y^{\top} y-\hat{\beta}^{\top} X^{\top} y=\sum\left(y_{i}-\hat{y}_{i}\right)^{2}$
- $\mathrm{SSE}=\hat{\beta}^{\top} X^{\top} y-n \bar{y}^{2}=\sum\left(\hat{y}_{i}-\bar{y}\right)^{2}$
- $\mathrm{SST}=\mathrm{SSR}+\mathrm{SSE}=y^{\top} y-n \bar{y}^{2}=\sum\left(y_{i}-\bar{y}\right)^{2}$

Variance-covariance matrix of u

Has the following shape:

$$
\operatorname{Var}(u)=\left[\begin{array}{cccc}
\operatorname{Var}\left(u_{1}\right) & \operatorname{Cov}\left(u_{1}, u_{2}\right) & \ldots & \operatorname{Cov}\left(u_{1}, u_{n}\right) \\
\operatorname{Cov}\left(u_{2}, u_{1}\right) & \operatorname{Var}\left(u_{2}\right) & \ldots & \operatorname{Cov}\left(u_{2}, u_{n}\right) \\
\vdots & \vdots & \ddots & \vdots \\
\operatorname{Cov}\left(u_{n}, u_{1}\right) & \operatorname{Cov}\left(u_{n}, u_{2}\right) & \ldots & \operatorname{Var}\left(u_{n}\right)
\end{array}\right]
$$

When there is no heterocedasticity and no auto-correlation, the variance-covariance matrix of u has the form:

$$
\operatorname{Var}(u)=\sigma_{u}^{2} \cdot I_{n}=\left[\begin{array}{cccc}
\sigma_{u}^{2} & 0 & \ldots & 0 \\
0 & \sigma_{u}^{2} & \ldots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \ldots & \sigma_{u}^{2}
\end{array}\right]
$$

where I_{n} is an identity matrix of $n \times n$ elements.
When there is heterocedasticity and auto-correlation, the variance-covariance matrix of u has the shape:

$$
\operatorname{Var}(u)=\sigma_{u}^{2} \cdot \Omega=\left[\begin{array}{cccc}
\sigma_{u_{1}}^{2} & \sigma_{u_{12}} & \ldots & \sigma_{u_{1 n}} \\
\sigma_{u_{21}} & \sigma_{u_{2}}^{2} & \ldots & \sigma_{u_{2 n}} \\
\vdots & \vdots & \ddots & \vdots \\
\sigma_{u_{n 1}} & \sigma_{u_{n 2}} & \ldots & \sigma_{u_{n}}^{2}
\end{array}\right]
$$

where $\Omega \neq I_{n}$.
Heterocedasticity: $\operatorname{Var}(u)=\sigma_{u_{i}}^{2} \neq \sigma_{u}^{2}$

- Auto-correlation: $\operatorname{Cov}\left(u_{i}, u_{j}\right)=\sigma_{u_{i j}} \neq 0, \forall i \neq j$

Variable omission

Most of the time, is hard to get all relevant variables for an analysis. For example, a true model with all variables:

$$
y=\beta_{0}+\beta_{1} x_{1}+\beta_{2} x_{2}+v
$$

where $\beta_{2} \neq 0, v$ is the error term and $\operatorname{Cov}\left(v \mid x_{1}, x_{2}\right)=0$ The model with the available variables:

$$
y=\alpha_{0}+\alpha_{1} x_{1}+u
$$

where $u=v+\beta_{2} x_{2}$.
Relevant variable omission causes OLS estimators to be biased and inconsistent, because there is no weak exogeneity, $\operatorname{Cov}\left(x_{1}, u\right) \neq 0$. Depending on the $\operatorname{Corr}\left(x_{1}, x_{2}\right)$ and the sign of β_{2}, the bias on $\hat{\alpha}_{1}$ could be:

$$
\begin{array}{c|cc}
& \operatorname{Corr}\left(x_{1}, x_{2}\right)>0 & \operatorname{Corr}\left(x_{1}, x_{2}\right)<0 \\
\hline \beta_{2}>0 & (+) \text { bias } & (-) \text { bias } \\
\beta_{2}<0 & (-) \text { bias } & (+) \text { bias }
\end{array}
$$

- (+) bias: $\hat{\alpha}_{1}$ will be higher than it should be (it includes the effect of $\left.x_{2}\right) \rightarrow \hat{\alpha}_{1}>\beta_{1}$
- (-) bias: $\hat{\alpha}_{1}$ will be lower than it should be (it includes the effect of $\left.x_{2}\right) \rightarrow \hat{\alpha}_{1}<\beta_{1}$
If $\operatorname{Corr}\left(x_{1}, x_{2}\right)=0$, there is no bias on $\hat{\alpha}_{1}$, because the effect of x_{2} will be fully picked up by the error term, u.

Variable omission correction

Proxy variables

Is the approach when a relevant variable is not available because it is non-observable, and there is no data available.

- A proxy variable is something related with the nonobservable variable that has data available.
For example, the GDP per capita is a proxy variable for the life quality (non-observable).

Instrumental variables

When the variable of interest (x) is observable but endogenous, the proxy variables approach is no longer valid.

- An instrumental variable (IV) is an observable variable (z) that is related with the variable of interest that is endogenous (x), and meet the requirements:

$$
\begin{gathered}
\operatorname{Cov}(z, u)=0 \rightarrow \text { instrument exogeneity } \\
\operatorname{Cov}(z, x) \neq 0 \rightarrow \text { instrument relevance }
\end{gathered}
$$

Instrumental variables let the omitted variable in the error term, but instead of estimate the model by OLS, it utilizes a method that recognizes the presence of an omitted variable. It can also solve error measurement problems.

- Two-Stage Least Squares (TSLS) is a method to estimate a model with multiple instrumental variables. The $\operatorname{Cov}(z, u)=0$ requirement can be relaxed, but there has to be a minimum of variables that satisfies it.
The TSLS estimation procedure is as follows:

1. Estimate a model regressing x by z using OLS, obtaining \hat{x} :

$$
\hat{x}=\hat{\pi}_{0}+\hat{\pi}_{1} z
$$

2. Replace x by \hat{x} in the final model and estimate it by OLS:

$$
y=\beta_{0}+\beta_{1} \hat{x}+u
$$

There are some important things to know about TSLS:

- TSLS estimators are less efficient than OLS when the explanatory variables are exogenous. The Hausman test can be used to check it:
H_{0} : OLS estimators are consistent.
If H_{0} is accepted, the OLS estimators are better than TSLS and vice versa.
- There could be some (or all) instrument that are not valid. This is known as over-identification, Sargan test can be used to check it:
H_{0} : all instruments are valid.

Information criterion

It is used to compare models with different number of parameters (p). The general formula:

$$
\operatorname{Cr}(p)=\log \left(\frac{\mathrm{SSR}}{n}\right)+c_{n} \varphi(p)
$$

where:

- SSR is the Sum of Squared Residuals from a model of order p.
- c_{n} is a sequence indexed by the sample size.
- $\varphi(p)$ is a function that penalizes large p orders.

Is interpreted as the relative amount of information lost by the model. The p order that min. the criterion is chosen.
There are different $c_{n} \varphi(p)$ functions:

- Akaike: $\operatorname{AIC}(p)=\log \left(\frac{\mathrm{SSR}}{n}\right)+\frac{2}{n} p$
- Hannan-Quinn: $\operatorname{HQ}(p)=\log \left(\frac{\operatorname{SSR}}{n}\right)+\frac{2 \log (\log (n))}{n} p$
- Schwarz: $\operatorname{Sc}(p)=\log \left(\frac{\mathrm{SSR}}{n}\right)+\frac{\log (n)}{n} p$
$\mathrm{Sc}(p) \leq \mathrm{HQ}(p) \leq \mathrm{AIC}(p)$

The non-restricted hypothesis test

Is an alternative to the F test when there are few hypothesis to test on the parameters. Let β_{i}, β_{j} be parameters, $a, b, c \in \mathbb{R}$ are constants.

- $H_{0}: a \beta_{i}+b \beta_{j}=c$
- $H_{1}: a \beta_{i}+b \beta_{j} \neq c$

$$
\begin{array}{r}
\text { Under } H_{0}: \quad t=\frac{a \hat{\beta}_{i}+b \hat{\beta}_{j}-c}{\sqrt{\operatorname{Var}\left(a \hat{\beta}_{i}+b \hat{\beta}_{j}\right)}} \\
=\frac{a \hat{\beta}_{i}+b \hat{\beta}_{j}-c}{\sqrt{a^{2} \operatorname{Var}\left(\hat{\beta}_{i}\right)+b^{2} \cdot \operatorname{Var}\left(\hat{\beta}_{j}\right) \pm 2 a b \operatorname{Cov}\left(\hat{\beta}_{i}, \hat{\beta}_{j}\right)}}
\end{array}
$$

If $|t|>\left|t_{n-k-1, \alpha / 2}\right|$, there is evidence to reject H_{0}.

ANOVA

Decompose the total sum of squared in sum of squared residuals and sum of squared explained: $\mathrm{SST}=\mathrm{SSR}+\mathrm{SSE}$

Variation origin	Sum Sq.	df	Sum Sq. Avg.
Regression	SSE	k	SSE $/ k$
Residuals	SSR	$n-k-1$	SSR $/(n-k-1)$
Total	SST	$n-1$	

The F statistic:

$$
F=\frac{\text { SSA of } \mathrm{SSE}}{\mathrm{SSA} \text { of } \mathrm{SSR}}=\frac{\mathrm{SSE}}{\mathrm{SSR}} \cdot \frac{n-k-1}{k} \sim F_{k, n-k-1}
$$

If $F_{k, n-k-1}<F$, there is evidence to reject H_{0}.

Incorrect functional form

To check if the model functional form is correct, we can use Ramsey's RESET (Regression Specification Error Test). It test the original model vs. a model with variables in powers.

$$
H_{0}: \text { the model is correctly specified. }
$$

Test procedure:

1. Estimate the original model and obtain \hat{y} and R^{2} :

$$
\hat{y}=\hat{\beta}_{0}+\hat{\beta}_{1} x_{1}+\cdots+\hat{\beta}_{k} x_{k}
$$

2. Estimate a new model adding powers of \hat{y} and obtain the new $R_{\text {new }}^{2}$:

$$
\tilde{y}=\hat{y}+\tilde{\gamma}_{2} \hat{y}^{2}+\cdots+\tilde{\gamma}_{l} \hat{y}^{l}
$$

3. Define the test statistic, under $\gamma_{2}=\cdots=\gamma_{l}=0$ as null hypothesis:

$$
F=\frac{R_{\text {new }}^{2}-R^{2}}{1-R_{\text {new }}^{2}} \cdot \frac{n-(k+1)-l}{l} \sim F_{l, n-(k+1)-l}
$$

If $F_{l, n-(k+1)-l}<F$, there is evidence to reject H_{0}.

Logistic regression

When there is a binary $(0,1)$ dependent variable, the linear regression model is no longer valid, we can use logistic regression instead. For example, a logit model:

$$
P_{i}=\frac{1}{1+e^{-\left(\beta_{0}+\beta_{1} x_{i}+u_{i}\right)}}=\frac{e^{\beta_{0}+\beta_{1} x_{i}+u_{i}}}{1+e^{\beta_{0}+\beta_{1} x_{i}+u_{i}}}
$$

$$
\text { where } P_{i}=\mathrm{E}\left(y_{i}=1 \mid x_{i}\right) \text { and }\left(1-P_{i}\right)=\mathrm{E}\left(y_{i}=0 \mid x_{i}\right)
$$

The odds ratio (in favor of $y_{i}=1$):

$$
\frac{P_{i}}{1-P_{i}}=\frac{1+e^{\beta_{0}+\beta_{1} x_{i}+u_{i}}}{1+e^{-\left(\beta_{0}+\beta_{1} x_{i}+u_{i}\right)}}=e^{\beta_{0}+\beta_{1} x_{i}+u_{i}}
$$

Taking the natural logarithm of the odds ratio, we obtain the logit:

$$
L_{i}=\ln \left(\frac{P_{i}}{1-P_{i}}\right)=\beta_{0}+\beta_{1} x_{i}+u_{i}
$$

P_{i} is between 0 and 1 , but L_{i} goes from $-\infty$ to $+\infty$.

If L_{i} is positive, it means that when x_{i} increments, the probability of $y_{i}=1$ increases, and vice versa.

Statistical definitions

Let ξ, η be random variables, $a, b \in \mathbb{R}$ constants, and P denotes probability.

Mean

Definition: $\quad E(\xi)=\sum_{i=1}^{n} \xi_{i} \cdot P\left[\xi=\xi_{i}\right]$
Population mean: Sample mean:

$$
\mathrm{E}(\xi)=\frac{1}{N} \sum_{i=1}^{N} \xi_{i} \quad \mathrm{E}(\xi)=\frac{1}{n} \sum_{i=1}^{n} \xi_{i}
$$

Some properties:

- $\mathrm{E}(a)=a$
- $\mathrm{E}(\xi+a)=\mathrm{E}(\xi)+a$
- $\mathrm{E}(a \cdot \xi)=a \cdot \mathrm{E}(\xi)$
- $\mathrm{E}(\xi \pm \eta)=\mathrm{E}(\xi)+\mathrm{E}(\eta)$
- $\mathrm{E}(\xi \cdot \eta)=\mathrm{E}(\xi) \cdot \mathrm{E}(\eta) \quad$ only if ξ and η are independent.
- $\mathrm{E}(\xi-\mathrm{E}(\xi))=0$
- $\mathrm{E}(a \cdot \xi+b \cdot \eta)=a \cdot \mathrm{E}(\xi)+b \cdot \mathrm{E}(\eta)$

Variance

Definition: $\quad \operatorname{Var}(\xi)=\mathrm{E}(\xi-\mathrm{E}(\xi))^{2}$
Population variance: Sample variance:
$\operatorname{Var}(\xi)=\frac{\sum_{i=1}^{N}\left(\xi_{i}-\mathrm{E}(\xi)\right)^{2}}{N} \quad \operatorname{Var}(\xi)=\frac{\sum_{i=1}^{n}\left(\xi_{i}-\mathrm{E}(\xi)\right)^{2}}{n-1}$
Some properties:

- $\operatorname{Var}(a)=0$
- $\operatorname{Var}(\xi+a)=\operatorname{Var}(\xi)$
- $\operatorname{Var}(a \cdot \xi)=a^{2} \cdot \operatorname{Var}(\xi)$
- $\operatorname{Var}(\xi \pm \eta)=\operatorname{Var}(\xi)+\operatorname{Var}(\eta) \pm 2 \cdot \operatorname{Cov}(\xi, \eta)$
- $\operatorname{Var}(a \cdot \xi \pm b \cdot \eta)=a^{2} \cdot \operatorname{Var}(\xi)+b^{2} \cdot \operatorname{Var}(\eta) \pm 2 a b \cdot \operatorname{Cov}(\xi, \eta)$

Covariance

Definition: $\quad \operatorname{Cov}(\xi, \eta)=\mathrm{E}[(\xi-E(\xi)) \cdot(\eta-E(\eta))]$
Population covariance: Sample covariance:
$\frac{\sum_{i=1}^{N}\left(\xi_{i}-\mathrm{E}(\xi)\right) \cdot\left(\eta_{i}-\mathrm{E}(\eta)\right)}{N} \frac{\sum_{i=1}^{n}\left(\xi_{i}-\mathrm{E}(\xi)\right) \cdot\left(\eta_{i}-\mathrm{E}(\eta)\right)}{n-1}$
Some properties:

- $\operatorname{Cov}(\xi, a)=0$
- $\operatorname{Cov}(\xi+a, \eta+b)=\operatorname{Cov}(\xi, \eta)$
- $\operatorname{Cov}(a \cdot \xi, b \cdot \eta)=a b \cdot \operatorname{Cov}(\xi, \eta)$
- $\operatorname{Cov}(\xi, \xi)=\operatorname{Var}(\xi)$
- $\operatorname{Cov}(\xi, \eta)=\operatorname{Cov}(\eta, \xi)$

VAR (Vector Autoregressive)

A VAR model captures dynamic interactions between time series variables. The $\operatorname{VAR}(p)$:

$$
y_{t}=A_{1} y_{t-1}+\cdots+A_{p} y_{t-p}+B_{0} x_{t}+\cdots+B_{q} x_{t-q}+C D_{t}+u_{t}
$$

where:

- $y_{t}=\left(y_{1 t}, \ldots, y_{K t}\right)^{\top}$ is a vector of K observable endogenous time series variables.
- A_{i} 's are $K \times K$ coefficient matrices.
- $x_{t}=\left(x_{1 t}, \ldots, x_{M t}\right)^{\top}$ is a vector of M observable exogenous time series variables.
- B_{j} 's are $K \times M$ coefficient matrices.
- D_{t} is a vector that contains all deterministic terms, that may be a: constant, linear trend, seasonal dummy, and/or any other user specified dummy variables.
- C is a coefficient matrix of suitable dimension.
- $u_{t}=\left(u_{1 t}, \ldots, u_{K t}\right)^{\top}$ is a vector of K white noise series.

The process is stable if:

$$
\operatorname{det}\left(I_{K}-A_{1} z-\cdots-A_{p} z^{p}\right) \neq 0 \quad \text { for } \quad|z| \leq 1
$$

this is, there are no roots in and on the complex unit circle.
For example, a VAR model with two endogenous variables ($K=2$), two lags $(p=2)$, an exogenous contemporaneous variable $(M=1)$, a constant (const) and a trend (Trend ${ }_{t}$)

$$
\left[\begin{array}{l}
y_{1 t} \\
y_{2 t}
\end{array}\right]=\left[\begin{array}{ll}
a_{11,1} & a_{12,1} \\
a_{21,1} & a_{22,1}
\end{array}\right] \cdot\left[\begin{array}{l}
y_{1, t-1} \\
y_{2, t-1}
\end{array}\right]+\left[\begin{array}{ll}
a_{11,2} & a_{12,2} \\
a_{21,2} & a_{22,2}
\end{array}\right] \cdot\left[\begin{array}{l}
y_{1, t-2} \\
y_{2, t-2}
\end{array}\right]+\left[\begin{array}{l}
b_{11} \\
b_{21}
\end{array}\right] \cdot\left[x_{t}\right]+\left[\begin{array}{ll}
c_{11} & c_{12} \\
c_{21} & c_{22}
\end{array}\right] \cdot\left[\begin{array}{c}
\text { const } \\
\text { Trend }_{t}
\end{array}\right]+\left[\begin{array}{l}
u_{1 t} \\
u_{2 t}
\end{array}\right]
$$

Visualizing the separate equations:
$y_{1 t}=a_{11,1} y_{1, t-1}+a_{12,1} y_{2, t-1}+a_{11,2} y_{1, t-2}+a_{12,2} y_{2, t-2}+b_{11} x_{t}+c_{11}+c_{12} \operatorname{Trend}_{t}+u_{1 t}$ $y_{2 t}=a_{21,1} y_{2, t-1}+a_{22,1} y_{1, t-1}+a_{21,2} y_{2, t-2}+a_{22,2} y_{1, t-2}+b_{21} x_{t}+c_{21}+c_{22} \operatorname{Trend}_{t}+u_{2 t}$ If there is an unit root, the determinant is zero for $z=1$, then some or all variables are integrated and a VAR model is no longer appropiate (is unstable).

VECM (Vector Error Correction Model)

If cointegrating relations are present in a system of variables, the VAR form is not the most convenient. It is better to use a VECM, that is, the levels VAR substracting y_{t-1} from both sides. The $\operatorname{VECM}(p-1)$:

$$
\Delta y_{t}=\Pi y_{t-1}+\Gamma_{1} \Delta y_{t-1}+\cdots+\Gamma_{p-1} \Delta y_{t-p+1}+B_{0} x_{t}+\cdots+B_{q} x_{t-q}+C D_{t}+u_{t}
$$ where:

- y_{t}, x_{t}, D_{t} and u_{t} are as specified in VAR.
- $\Pi=-\left(I_{K}-A_{1}-\cdots-A_{p}\right)$ for $i=1, \ldots, p-1 ; \Pi y_{t-1}$ is referred as the long-term part.
- $\Gamma_{i}=-\left(A_{i+1}+\cdots+A_{p}\right)$ for $i=1, \ldots, p-1$ is referred as the short-term parameters.
- A_{i}, B_{j} and C are coefficient matrices of suitable dimensions.

If the $\operatorname{VAR}(p)$ process is unstable (there are roots), Π can be written as a product of $(K \times r)$ matrices α (loading matrix) and β (cointegration matrix) with $\operatorname{rk}(\Pi)=\operatorname{rk}(\alpha)=\operatorname{rk}(\beta)=r$ (cointegrating rank) as follows $\Pi=\alpha \beta^{\top}$.

- $\beta^{\top} y_{t-1}$ contains the cointegrating relations.

For example, if there are three endogenous variables $(K=3)$ with two cointegratig relations $(r=2)$, the long term part of the VECM:

$$
\Pi y_{t-1}=\alpha \beta^{\top} y_{t-1}=\left[\begin{array}{ll}
\alpha_{11} & \alpha_{12} \\
\alpha_{21} & \alpha_{22} \\
\alpha_{31} & \alpha_{32}
\end{array}\right]\left[\begin{array}{lll}
\beta_{11} & \beta_{21} & \beta_{31} \\
\beta_{12} & \beta_{22} & \beta_{32}
\end{array}\right]\left[\begin{array}{l}
y_{1, t-1} \\
y_{2, t-1} \\
y_{3, t-1}
\end{array}\right]=\left[\begin{array}{l}
\alpha_{11} e c_{1, t-1}+\alpha_{12} e c_{2, t-1} \\
\alpha_{21} e c_{1, t-1}+\alpha_{22} e c_{2, t-1} \\
\alpha_{31} e c_{1, t-1}+\alpha_{32} e c_{2, t-1}
\end{array}\right]
$$

where:

$$
\begin{aligned}
& e c_{1, t-1}=\beta_{11} y_{1, t-1}+\beta_{21} y_{2, t-1}+\beta_{31} y_{3, t-1} \\
& e c_{2, t-1}=\beta_{12} y_{1, t-1}+\beta_{22} y_{2, t-1}+\beta_{32} y_{3, t-1}
\end{aligned}
$$

