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Basic concepts

Definitions
Econometrics - is a social science discipline with the
objective of quantify the relationships between economic
agents, test economic theories and evaluate and implement
government and business policies.
Econometric model - is a simplified representation of the
reality to explain economic phenomena.
Ceteris paribus - if all the other relevant factors remain
constant.

Data types
Cross section - data taken at a given moment in time, an
static photo. Order doesn’t matter.
Time series - observation of variables across time. Order
does matter.
Panel data - consist of a time series for each observation
of a cross section.
Pooled cross sections - combines cross section from dif-
ferent time periods.

Phases of an econometric model
1. Specification.
2. Estimation.

3. Validation.
4. Utilization.

Regression analysis
Study and predict the mean value of a variable (dependent
variable, y) regarding the base of fixed values of other vari-
ables (independent variables, x’s). In econometrics it is
common to use Ordinary Least Squares (OLS) for regres-
sion analysis.

Correlation analysis
Correlation analysis don’t distinguish between dependent
and independent variables.
� Simple correlation measures the grade of linear associa-
tion between two variables.

r = Cov(x,y)
σx·σy

=
∑n

i=1((xi−x)·(yi−y))√∑n
i=1(xi−x)2·

∑n
i=1(yi−y)2

� Partial correlation measures the grade of linear associa-
tion between two variables controlling a third.

Assumptions and properties

Econometric model assumptions
Under this assumptions, the OLS estimator will present
good properties. Gauss-Markov assumptions:
1. Parameters linearity (and weak dependence in time

series). y must be a linear function of the β’s.
2. Random sampling. The sample from the population

has been randomly taken. (Only when cross section)
3. No perfect collinearity.

� There are no independent variables that are constant:
Var(xj) ̸= 0, ∀j = 1, . . . , k.

� There isn’t an exact linear relation between indepen-
dent variables.

4. Conditional mean zero and correlation zero.
a. There aren’t systematic errors: E(u | x1, . . . , xk) =

E(u) = 0 → strong exogeneity (a implies b).
b. There are no relevant variables left out of the model:

Cov(xj , u) = 0, ∀j = 1, . . . , k → weak exogeneity.
5. Homoscedasticity. The variability of the residuals is

the same for all levels of x:
Var(u | x1, . . . , xk) = σ2

u

6. No auto-correlation. Residuals don’t contain infor-
mation about any other residuals:
Corr(ut, us | x1, . . . , xk) = 0, ∀t ̸= s.

7. Normality. Residuals are independent and identically
distributed: u ∼ N (0, σ2

u)
8. Data size. The number of observations available must

be greater than (k + 1) parameters to estimate. (It is
already satisfied under asymptotic situations)

Asymptotic properties of OLS
Under the econometric model assumptions and the Central
Limit Theorem (CLT):

� Hold 1 to 4a: OLS is unbiased. E(β̂j) = βj

� Hold 1 to 4: OLS is consistent. plim(β̂j) = βj (to 4b
left out 4a, weak exogeneity, biased but consistent)

� Hold 1 to 5: asymptotic normality of OLS (then, 7 is
necessarily satisfied): u ∼

a
N (0, σ2

u)

� Hold 1 to 6: unbiased estimate of σ2
u. E(σ̂

2
u) = σ2

u

� Hold 1 to 6: OLS is BLUE (Best Linear Unbiased Esti-
mator) or efficient.

� Hold 1 to 7: hypothesis testing and confidence intervals
can be done reliably.

Ordinary Least Squares

Objective - minimize the Sum of Squared Residuals (SSR):
min

∑n
i=1 û

2
i , where ûi = yi − ŷi

Simple regression model
y

x

β0

β1

Equation:
yi = β0 + β1xi + ui

Estimation:
ŷi = β̂0 + β̂1xi

where:
β̂0 = y − β̂1x

β̂1 = Cov(y,x)
Var(x)

Multiple regression model

x2

y

x1

β0

Equation:
yi = β0 + β1x1i + · · ·+ βkxki + ui

Estimation:
ŷi = β̂0 + β̂1x1i + · · ·+ β̂kxki

where:
β̂0 = y − β̂1x1 − · · · − β̂kxk

β̂j =
Cov(y,resid xj)
Var(resid xj)

Matrix: β̂ = (XTX)−1(XTy)

Interpretation of coefficients
Model Dependent Independent β1 interpretation

Level-level y x ∆y = β1∆x
Level-log y log(x) ∆y ≈ (β1/100)(%∆x)
Log-level log(y) x %∆y ≈ (100β1)∆x
Log-log log(y) log(x) %∆y ≈ β1(%∆x)

Quadratic y x+ x2 ∆y = (β1 + 2β2x)∆x

Error measurements
Sum of Sq. Residuals: SSR =

∑n
i=1 û

2
i =

∑n
i=1(yi − ŷi)

2

Explained Sum of Squares: SSE =
∑n

i=1(ŷi − y)2

Total Sum of Sq.: SST = SSE + SSR =
∑n

i=1(yi − y)2

Standard Error of the Regression: σ̂u =
√

SSR
n−k−1

Standard Error of the β̂’s: se(β̂) =
√

σ̂2
u · (XTX)−1

Root Mean Squared Error: RMSE =

√∑n
i=1(yi−ŷi)2

n

Absolute Mean Error: AME =
∑n

i=1|yi−ŷi|
n

Mean Percentage Error: MPE =
∑n

i=1|ûi/yi|
n · 100
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R-squared
Is a measure of the goodness of the fit, how the regression
fits to the data:

R2 = SSE
SST = 1− SSR

SST
� Measures the percentage of variation of y that is lin-
early explained by the variations of x’s.

� Takes values between 0 (no linear explanation of the
variations of y) and 1 (total explanation of the varia-
tions of y).

When the number of regressors increment, the value of the
R-squared increments as well, whatever the new variables
are relevant or not. To solve this problem, there is an ad-
justed R-squared by degrees of freedom (or corrected R-
squared):

R
2
= 1− n−1

n−k−1 · SSR
SST = 1− n−1

n−k−1 · (1−R2)

For big sample sizes: R
2 ≈ R2

Hypothesis testing

Definitions
An hypothesis test is a rule designed to explain from a sam-
ple, if exist evidence or not to reject an hypothesis
that is made about one or more population parameters.
Elements of an hypothesis test:
� Null hypothesis (H0) - is the hypothesis to be tested.
� Alternative hypothesis (H1) - is the hypothesis that
cannot be rejected when the null hypothesis is rejected.

� Test statistic - is a random variable whose probability
distribution is known under the null hypothesis.

� Critic value - is the value against which the test statistic
is compared to determine if the null hypothesis is rejected
or not. Is the value that makes the frontier between the
regions of acceptance and rejection of the null hypothesis.

� Significance level (α) - is the probability of rejecting
the null hypothesis being true (Type I Error). Is chosen
by who conduct the test. Commonly is 0.10, 0.05 or 0.01.

� p-value - is the highest level of significance by which the
null hypothesis cannot be rejected (H0).

The rule is: if the p-value is less than α, there is evidence
to reject the null hypothesis at that given α (there is
evidence to accept the alternative hypothesis).

Individual tests
Tests if a parameter is significantly different from a given
value, ϑ.
� H0 : βj = ϑ
� H1 : βj ̸= ϑ

Under H0: t =
β̂j−ϑ

se(β̂j)
∼ tn−k−1,α/2

If |t| > |tn−k−1,α/2|, there is evidence to reject H0.
Individual significance test - tests if a parameter is sig-
nificantly different from zero.
� H0 : βj = 0
� H1 : βj ̸= 0

Under H0: t =
β̂j

se(β̂j)
∼ tn−k−1,α/2

If |t| > |tn−k−1,α/2|, there is evidence to reject H0.

The F test
Simultaneously tests multiple (linear) hypothesis about the
parameters. It makes use of a non restricted model and a
restricted model:
� Non restricted model - is the model on which we want
to test the hypothesis.

� Restricted model - is the model on which the hypoth-
esis that we want to test have been imposed.

Then, looking at the errors, there are:
� SSRUR - is the SSR of the non restricted model.
� SSRR - is the SSR of the restricted model.

Under H0: F = SSRR−SSRUR

SSRUR
· n−k−1

q ∼ Fq,n−k−1

where k is the number of parameters of the non restricted
model and q is the number of linear hypothesis tested.
If Fq,n−k−1 < F , there is evidence to reject H0.
Global significance test - tests if all the parameters as-
sociated to x’s are simultaneously equal to zero.
� H0 : β1 = β2 = · · · = βk = 0
� H1 : β1 ̸= 0 and/or β2 ̸= 0 . . . and/or βk ̸= 0
In this case, we can simplify the formula for the F statistic.

Under H0: F = R2

1−R2 · n−k−1
k ∼ Fk,n−k−1

If Fk,n−k−1 < F , there is evidence to reject H0.

Confidence intervals

The confidence intervals at (1− α) confidence level can be
calculated:

β̂j ∓ tn−k−1,α/2 · se(β̂j)

Dummy variables

Dummy (or binary) variables are used for qualitative infor-
mation like sex, civil state, country, etc.
� Takes the value 1 in a given category and 0 in the rest.
� Are used to analyze and modeling structural changes
in the model parameters.

If a qualitative variable have m categories, we only have to
include (m− 1) dummy variables.

Structural change
Structural change refers to changes in the values of the pa-
rameters of the econometric model produced by the effect
of different sub-populations. Structural change can be in-
cluded in the model through dummy variables.
The location of the dummy variables (D) matters:
� On the intercept (additive effect) - represents the mean
difference between the values produced by the structural
change.

y = β0 + δ1D + β1x1 + u
� On the slope (multiplicative effect) - represents the ef-
fect (slope) difference between the values produced by
the structural change.

y = β0 + β1x1 + δ1D · x1 + u
Chow’s structural test - is used when we want to analyze
the existence of structural changes in all the model param-
eters, it’s a particular expression of the F test, where the
null hypothesis is: H0: No structural change (all δ = 0).

Changes of scale
Changes in the measurement units of the variables:
� In the endogenous variable, y∗ = y ·λ - affects all model
parameters, β∗

j = βj · λ, ∀j = 1, . . . , k
� In an exogenous variable, x∗

j = xj · λ - only affect the
parameter linked to said exogenous variable, β∗

j = βj · λ
� Same scale change on endogenous and exogenous - only
affects the intercept, β∗

0 = β0 · λ

Changes of origin

Changes in the measurement origin of the variables (en-
dogenous or exogenous), y∗ = y + λ - only affects the
model’s intercept, β∗

0 = β0 + λ
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Multicollinearity
� Perfect multicollinearity - there are independent vari-
ables that are constant and/or there is an exact linear
relation between independent variables. Is the breaking
of the third (3) econometric model assumption.

� Approximate multicollinearity - there are indepen-
dent variables that are approximately constant and/or
there is an approximately linear relation between inde-
pendent variables. It does not break any economet-
ric model assumption, but has an effect on OLS.

Consequences
� Perfect multicollinearity - the equation system of
OLS cannot be solved due to infinite solutions.

� Approximate multicollinearity
– Small sample variations can induce to big variations in

the OLS estimations.
– The variance of the OLS estimators of the x’s that are

collinear, increments, thus the inference of the param-
eter is affected. The estimation of the parameter is
very imprecise (big confidence interval).

Detection
� Correlation analysis - look for high correlations be-
tween independent variables, |r| > 0.7.

� Variance Inflation Factor (VIF) - indicates the in-

crement of Var(β̂j) because of the multicollinearity.

VIF(β̂j) =
1

1−R2
j

where R2
j denotes the R-squared from a regression be-

tween xj and all the other x’s.
– Values between 4 to 10 suggest that it is advisable to

analyze in more depth if there might be multicollinear-
ity problems.

– Values bigger than 10 indicates that there are multi-
collinearity problems.

One typical characteristic of multicollinearity is that the
regression coefficients of the model aren’t individually dif-
ferent from zero (due to high variances), but jointly they
are different from zero.

Correction
� Delete one of the collinear variables.
� Perform factorial analysis (or any other dimension reduc-
tion technique) on the collinear variables.

� Interpret coefficients with multicollinearity jointly.

Heteroscedasticity
The residuals ui of the population regression function do
not have the same variance σ2

u:
Var(u | x1, . . . , xk) = Var(u) ̸= σ2

u

Is the breaking of the fifth (5) econometric model as-
sumption.

Consequences
� OLS estimators still are unbiased.
� OLS estimators still are consistent.
� OLS is not efficient anymore, but still a LUE (Linear
Unbiased Estimator).

� Variance estimations of the estimators are biased:
the construction of confidence intervals and the hypoth-
esis testing is not reliable.

Detection
� Graphs - look
for scatter pat-
terns on x vs. u
or x vs. y plots. x

u y

x

� Formal tests - White, Bartlett, Breusch-Pagan, etc.
Commonly, the null hypothesis: H0: Homoscedasticity.

Correction
� Use OLS with a variance-covariance matrix estimator ro-
bust to heteroscedasticity (HC), for example, the one pro-
posed by White.

� If the variance structure is known, make use of Weighted
Least Squares (WLS) or Generalized Least Squares
(GLS):
– Supposing that Var(u) = σ2

u ·xi, divide the model vari-
ables by the square root of xi and apply OLS.

– Supposing that Var(u) = σ2
u · x2

i , divide the model
variables by xi (the square root of x

2
i ) and apply OLS.

� If the variance structure is not known, make use of Fea-
sible Weighted Least Squared (FWLS), that estimates a
possible variance, divides the model variables by it and
then apply OLS.

� Make a new model specification, for example, logarithmic
transformation (lower variance).

Auto-correlation
The residual of any observation, ut, is correlated with the
residual of any other observation. The observations are not
independent.

Corr(ut, us | x1, . . . , xk) = Corr(ut, us) ̸= 0, ∀t ̸= s
The “natural” context of this phenomena is time series. Is
the breaking of the sixth (6) econometric model as-
sumption.

Consequences
� OLS estimators still are unbiased.
� OLS estimators still are consistent.
� OLS is not efficient anymore, but still a LUE (Linear
Unbiased Estimator).

� Variance estimations of the estimators are biased:
the construction of confidence intervals and the hypoth-
esis testing is not reliable.

Detection
� Graphs - look for scatter patterns on ut−1 vs. ut or
make use of a correlogram.

Ac.

ut−1

ut
Ac.(+)

ut−1

ut

Ac.(-)

ut−1

ut

� Formal tests - Durbin-Watson, Breusch-Godfrey, etc.
Commonly, the null hypothesis: H0: No auto-correlation.

Correction
� Use OLS with a variance-covariance matrix estimator ro-
bust to heterocedasticity and auto-correlation (HAC), for
example, the one proposed by Newey-West.

� Use Generalized Least Squares. Supposing yt = β0 +
β1xt + ut, with ut = ρut−1 + εt, where |ρ| < 1 and εt is
white noise.
– If ρ is known, create a quasi-differentiated model where

ut is white noise and estimate it by OLS.
– If ρ is not known, estimate it by -for example- the

Cochrane-Orcutt method, create a quasi-differentiated
model where ut is white noise and estimate it by OLS.
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