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Basic concepts

Definitions
Time series - is a succession of quantitative observations
of a phenomena ordered in time.
There are some variations of time series:
� Panel data - consist of a time series for each observation
of a cross section.

� Pooled cross sections - combines cross sections from
different time periods.

Stochastic process - sequence of random variables that
are indexed in time.

Components of a time series
� Trend - is the long-term general movement of a series.
� Seasonal variations - are periodic oscillations that are
produced in a period equal or inferior to a year, and can
be easily identified on different years (usually are the re-
sult of climatology reasons).

� Cyclical variations - are periodic oscillations that are
produced in a period greater than a year (are the result
of the economic cycle).

� Residual variations - are movements that do not fol-
low a recognizable periodic oscillation (are the result of
eventual non-permanent phenomena that can affect the
studied variable in a given moment).

Type of time series models
� Static models - the relation between y and x’s is con-
temporary. Conceptually:

yt = β0 + β1xt + ut

� Distributed-lag models - the relation between y and
x’s is not contemporary. Conceptually:

yt = β0 + β1xt + β2xt−1 + · · ·+ βsxt−(s−1) + ut

The long term cumulative effect in y when ∆x is:
β1 + β2 + · · ·+ βs

� Dynamic models - a temporal drift of the dependent
variable is part of the independent variables (endogene-
ity). Conceptually:

yt = β0 + β1yt−1 + · · ·+ βsyt−s + ut

� Combinations of the above, like the rational distributed-
lag models (distributed-lag + dynamic).

Assumptions and properties

OLS model assumptions under time series
Under this assumptions, the OLS estimator will present
good properties. Gauss-Markov assumptions extended
applied to time series:
t1. Parameters linearity and weak dependence.

a. yt must be a linear function of the β’s.
b. The stochastic {(xt, yt) : t = 1, 2, . . . , T} is station-

ary and weakly dependent.
t2. No perfect collinearity.

� There are no independent variables that are constant:
Var(xj) ̸= 0, ∀j = 1, . . . , k.

� There is not an exact linear relation between inde-
pendent variables.

t3. Conditional mean zero and correlation zero.
a. There are no systematic errors: E(u | x1, . . . , xk) =

E(u) = 0 → strong exogeneity (a implies b).
b. There are no relevant variables left out of the model:

Cov(xj , u) = 0, ∀j = 1, . . . , k → weak exogene-
ity.

t4. Homoscedasticity. The variability of the residuals is
the same for any x: Var(u | x1, . . . , xk) = σ2

u

t5. No auto-correlation. Residuals do not contain infor-
mation about any other residuals:
Corr(ut, us | x1, . . . , xk) = 0, ∀t ̸= s.

t6. Normality. Residuals are independent and identically
distributed (i.i.d. so on): u ∼ N (0, σ2

u)
t7. Data size. The number of observations available must

be greater than (k + 1) parameters to estimate. (It is
already satisfied under asymptotic situations)

Asymptotic properties of OLS
Under the econometric model assumptions and the Central
Limit Theorem:
� Hold t1 to t3a: OLS is unbiased. E(β̂j) = βj

� Hold t1 to t3: OLS is consistent. plim(β̂j) = βj (to t3b
left out t3a, weak exogeneity, biased but consistent)

� Hold t1 to t5: asymptotic normality of OLS (then, t6
is necessarily satisfied): u ∼

a
N (0, σ2

u)

� Hold t1 to t5: unbiased estimate of σ2
u. E(σ̂

2
u) = σ2

u

� Hold t1 to t5: OLS is BLUE (Best Linear Unbiased Es-
timator) or efficient.

� Hold t1 to t6: hypothesis testing and confidence intervals
can be done reliably.

Trends and seasonality
Spurious regression - is when the relation between y and
x is due to factors that affect y and have correlation with
x, Corr(xj , u) ̸= 0. Is the non-fulfillment of t3.

Trends
Two time series can have the same (or contrary) trend, that
should lend to a high level of correlation. This, can provoke
a false appearance of causality, the problem is spurious
regression. Given the model:

yt = β0 + β1xt + ut

where:
yt = α0 + α1Trend + vt
xt = γ0 + γ1Trend + vt

Adding a trend to the model can solve the problem:
yt = β0 + β1xt + β2Trend + ut

The trend can be linear or non-linear (quadratic, cubic,
exponential, etc.)
Another way is make use of the Hodrick-Prescott filter
to extract the trend and the cyclical component.

Seasonality
A time series with can man-
ifest seasonality. That is,
the series is subject to a sea-
sonal variations or pattern,
usually related to climatol-
ogy conditions.
For example, GDP (black)
is usually higher in summer
and lower in winter. Season-
ally adjusted series (red) for
comparison.

y

t

� This problem is spurious regression. A seasonal ad-
justment can solve it.

A simple seasonal adjustment could be creating station-
ary binary variables and adding them to the model. For
example, for quarterly series (Qqt are binary variables):
yt = β0+β1Q2t+β2Q3t+β3Q4t+β4x1t+ · · ·+βkxkt+ut

Another way is to seasonally adjust (sa) the variables, and
then, do the regression with the adjusted variables:
zt = β0 + β1Q2t + β2Q3t + β3Q4t + vt → v̂t + E(zt) = ẑsat

ŷsat = β0 + β1x̂
sa
1t + · · ·+ βkx̂

sa
kt + ut

There are much better and complex methods to seasonally
adjust a time series, like the X-13ARIMA-SEATS.
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Auto-correlation
The residual of any observation, ut, is correlated with the
residual of any other observation. The observations are not
independent. Is the non-fulfillment of t5.

Corr(ut, us | x1, . . . , xk) = Corr(ut, us) ̸= 0, ∀t ̸= s

Consequences
� OLS estimators still are unbiased.
� OLS estimators still are consistent.
� OLS is not efficient anymore, but still a LUE (Linear
Unbiased Estimator).

� Variance estimations of the estimators are biased:
the construction of confidence intervals and the hypoth-
esis testing is not reliable.

Detection
� Scatter plots - look for scatter patterns on ut−1 vs.
ut.
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ut−1

ut
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ut−1

ut
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ut−1

ut

� Correlogram - composed
of the auto-correlation
function (ACF) and the
partial ACF (PACF).

– Y axis: correlation [-1, 1].
– X axis: lag number.
– Blue lines: ±1.96/T 0.5
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Conclusions differ between auto-correlation processes.

– MA(q) process. ACF: only the first q coefficients
are significant, the remaining are abruptly canceled.
PACF: attenuated exponential fast decay or sine
waves.

– AR(p) process. ACF: attenuated exponential fast
decay or sine waves. PACF: only the first p coeffi-
cients are significant, the remaining are abruptly can-
celed.

– ARMA(p, q) process. ACF and PACF: the coef-
ficients are not abruptly canceled and presents a fast
decay.

If the ACF coefficients do not decay rapidly, there is
a clear indicator of lack of stationarity in mean, which
would lead to take first differences in the original series.

� Formal tests - Generally, H0: No auto-correlation.
Supposing that ut follows an AR(1) process:

ut = ρ1ut−1 + εt
where εt is white noise.
– AR(1) t test (exogenous regressors):

t = ρ̂1

se(ρ̂1)
∼ tT−k−1,α/2

* H1: Auto-correlation of order one, AR(1).
– Durbin-Watson statistic (exogenous regressors and

residual normality):

d =
∑n

t=2(ût−ût−1)
2∑n

t=1 û2
t

≈ 2 · (1− ρ̂1), 0 ≤ d ≤ 4

* H1: Auto-correlation of order one, AR(1).
d = 0 2 4
ρ ≈ 1 0 -1
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– Durbin’s h (endogenous regressors):

h = ρ̂ ·
√

T
1−T ·υ

where υ is the estimated variance of the coefficient as-
sociated to the endogenous variable.
* H1: Auto-correlation of order one, AR(1).

– Breusch-Godfrey test (endogenous regressors): it
can detect MA(q) and AR(p) processes (εt is w. noise):
* MA(q): ut = εt −m1ut−1 − · · · −mqut−q

* AR(p): ut = ρ1ut−1 + · · ·+ ρput−p + εt

Under H0: No auto-correlation:
T ·R2

ût
∼
a
χ2
q or T ·R2

ût
∼
a
χ2
p

* H1: Auto-correlation of order q (or p).
– Ljung-Box Q test:

* H1: There is auto-correlation.

Correction
� Use OLS with a variance-covariance matrix estima-
tor that is robust to heterocedasticity and auto-
correlation (HAC), for example, the one proposed by
Newey-West.

� Use Generalized Least Squares (GLS). Supposing
yt = β0 + β1xt + ut, with ut = ρut−1 + εt, where |ρ| < 1
and εt is white noise.
– If ρ is known, use a quasi-differentiated model:

yt − ρyt−1 = β0(1− ρ) + β1(xt − ρxt−1) + ut − ρut−1

y∗t = β∗
0 + β′

1x
∗
t + εt

where β′
1 = β1; and estimate it by OLS.

– If ρ is not known, estimate it by -for example-
the Cochrane-Orcutt iterative method (Prais-
Winsten method is also good):
1. Obtain ût from the original model.
2. Estimate ût = ρût−1 + εt and obtain ρ̂.
3. Create a quasi-differentiated model:

yt− ρ̂yt−1 = β0(1− ρ̂)+β1(xt− ρ̂xt−1)+ut− ρ̂ut−1

y∗t = β∗
0 + β′

1x
∗
t + εt

where β′
1 = β1; and estimate it by OLS.

4. Obtain û∗
t = yt − (β̂∗

0 + β̂′
1xt) ̸= yt − (β̂∗

0 + β̂′
1x

∗
t ).

5. Repeat from step 2. The algorithm ends when the
estimated parameters vary very little between iter-
ations.

� If not solved, look for high dependence in the series.

Stationarity and weak dependence
Stationarity means stability of the joint distributions of a
process as time progresses. It allows to correctly identify
the relations –that stay unchange with time– between vari-
ables.

Stationary and non-stationary processes
� Stationary process (strong stationarity) - is the one
in that the probability distributions are stable in time:
if any collection of random variables is taken, and
then, shifted h periods, the joint probability distribution
should stay unchanged. It’s easier to analyze and model.
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� Non-stationary process - is, for example, a series with
trend, where at least the mean changes with time.

� Covariance stationary process - is a weaker form of
stationarity:
– E(xt) is constant.
– Var(xt) is constant.
– For any t, h ≥ 1, the Cov(xt, xt+h) depends only of h,

not of t.

Weakly dependent time series
It is important because it replaces the random sampling
assumption, giving for granted the validity of the Central
Limit Theorem (requires stationarity and a form of weak
dependence). Weakly dependent processes are also known
as integrated of order zero, I(0).
� Weakly dependent - restricts how close the relation-
ship between xt and xt+h can be as the time distance
between the series increases (h).

An stationary time process {xt : t = 1, 2, . . . , T} is
weakly dependent when xt and xt+h are almost indepen-
dent as h increases without a limit.
A covariance stationary time process is weakly depen-
dent if the correlation between xt and xt+h tends to 0 fast
enough when h → ∞ (they are not asymptotically corre-
lated).
Some examples of stationary and weakly dependent time
series are:
� Moving average - {xt} is a moving average of order one
MA(q):

xt = et +m1et−1 + · · ·+mqet−q

where {et : t = 0, 1, . . . , T} is an i.i.d. sequence with zero
mean and σ2

e variance.
� Auto-regressive process - {xt} is an auto-regressive
process of order one AR(p):

xt = ρ1xt−1 + · · ·+ ρpxt−p + et
where {et : t = 1, 2, . . . , T} is an i.i.d. sequence with zero
mean and σ2

e variance.
If |ρ1| < 1, then {xt} is an AR(1) stable process that
is weakly dependent. It is stationary in covariance,
Corr(xt, xt−1) = ρ1.

� ARMA process - is a combination of the two above.
{xt} is an ARMA(p, q):
xt = et +m1et−1 + · · ·+mqet−q + ρ1xt−1 + · · ·+ ρpxt−p

A series with a trend cannot be stationary, but can
be weakly dependent (and stationary if the series is de-
trended).

Strongly dependent time series
Most of the time, economics series are strongly dependent
(or high persistent in time). Some special cases of unit
root processes, I(1):
� Random walk - an AR(1) process with ρ1 = 1.

yt = yt−1 + et
where {et : t = 1, 2, . . . , T} is an i.i.d. sequence with zero
mean and σ2

e variance.
� Random walk with a drift - an AR(1) process with
ρ1 = 1 and a constant.

yt = β0 + yt−1 + et
where {et : t = 1, 2, . . . , T} is an i.i.d. sequence with zero
mean and σ2

e variance.

I(1) detection
� Augmented Dickey-Fuller (ADF) test - where H0:
the process is unit root, I(1).

� Kwiatkowski–Phillips–Schmidt–Shin (KPSS) test -
where H0: the process have no unit root, I(0).

� Phillips-Perron (PP) test - whereH0: the process have
no unit root, I(0).

Transforming unit root to weak dependent
Unit root processes are integrated of order one, I(1).
This means that the first difference of the process is
weakly dependent or I(0) (and usually, stationary). For
example, a random walk:

∆yt = yt − yt−1 = et
where {et} = {∆yt} is i.i.d.

Getting the first difference
of a series also deletes its
trend.

For example, a series with a
trend (black), and it’s first
difference (red).

y,∆y

t

When an I(1) series is strictly positive, it is usually con-
verted to logarithms before taking the first difference. That
is, to obtain the (approx.) percentage change of the series:

∆ log(yt) = log(yt)− log(yt−1) ≈
yt − yt−1

yt−1

Cointegration

When two series are I(1), but a linear combination of
them is I(0). If the case, the regression of one series over
the other is not spurious, but expresses something about
the long term relation. Variables are called cointegrated if
they have a common stochastic trend.
For example: {xt} and {yt} are I(1), but yt − βxt = ut

where {ut} is I(0). (β get the name of cointegration pa-
rameter).

Heterocedasticity on time series
The assumption affected is t4, which leads OLS to be
not efficient.
Some tests that work could be the Breusch-Pagan or
White’s, where H0: No heterocedasticity. It is important
for the tests to work that there is no auto-correlation (so
first, it is imperative to test for it).

ARCH
An auto-regressive conditional heterocedasticity (ARCH),
is a model to analyze a form of dynamic heterocedasticity,
where the error variance follows an AR(p) process.
Given the model: yt = β0+β1zt+ut where, there is AR(1)
and heterocedasticity:

E(u2
t | ut−1) = α0 + α1u

2
t−1

GARCH
A general auto-regressive conditional heterocedasticity
(GARCH), is a model similar to ARCH, but in this case,
the error variance follows an ARMA(p, q) process.

Exponential smoothing

ft = αyt + (1− α)ft−1

where 0 < α < 1 is the smoothing parameter.

Predictions
Two types of prediction:
� Of the mean value of y for a specific value of x.
� Of an individual value of y for a specific value of x.
If the values of the variables (x) approximate to the mean
values (x), the confidence interval amplitude of the predic-
tion will be shorter.
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