Package 'HEMDAG’

January 27, 2022
Title Hierarchical Ensemble Methods for Directed Acyclic Graphs
Version 2.7.4
Author Marco Notaro [aut, cre] (https://orcid.org/0000-0003-4309-2200), Alessandro Petrini [ctb] (https://orcid.org/0000-0002-0587-1484), Giorgio Valentini [aut] (https://orcid.org/0000-0002-5694-3919)

Maintainer Marco Notaro marco.notaro@unimi.it
Description An implementation of several Hierarchical Ensemble Methods (HEMs) for Directed Acyclic Graphs (DAGs). 'HEMDAG' package: 1) reconciles flat predictions with the topology of the ontology; 2) can enhance the predictions of virtually any flat learning methods by taking into account the hierarchical relationships between ontology classes; 3) provides biologically meaningful predictions that always obey the true-pathrule, the biological and logical rule that governs the internal coherence of biomedical ontologies; 4) is specifically designed for exploiting the hierarchical relationships of DAGstructured taxonomies, such as the Human Phenotype Ontology (HPO) or the Gene Ontology (GO), but can be safely applied to tree-structured taxonomies as well (as FunCat), since trees are DAGs; 5) scales nicely both in terms of the complexity of the taxonomy and in the cardinality of the examples; 6) provides several utility functions to process and analyze graphs; 7) provides several performance metrics to evaluate HEMs algorithms. (Marco Notaro, Max Schubach, Peter N. Robinson and Giorgio Valentini (2017) doi:10.1186/s12859-017-1854-y).

URL https://hemdag.readthedocs.io
https://github.com/marconotaro/hemdag
https://anaconda.org/bioconda/r-hemdag
BugReports https://github.com/marconotaro/hemdag/issues
Depends R (>=2.10)
License GPL (>= 3)
Encoding UTF-8
Repository CRAN
LazyLoad true
NeedsCompilation yes
Imports graph, RBGL, precrec, preprocessCore, methods, plyr, foreach, doParallel, parallel

Suggests Rgraphviz, testthat
 RoxygenNote 7.1.2
 R topics documented:

HEMDAG-package 3
adj.upper.tri 4
auprc 5
auroc 6
build.ancestors 8
build.children 9
build.consistent.graph 10
build.descendants 10
build.edges.from.hpo.obo 11
build.parents 12
build.scores.matrix 13
build.subgraph 14
build.submatrix 14
check.annotation.matrix.integrity 15
check.dag.integrity 16
compute.flipped.graph 16
constraints.matrix 17
create.stratified.fold.df 17
distances.from.leaves 18
example.datasets 19
find.best.f 20
find.leaves 21
fmax 22
full.annotation.matrix 23
gpav 24
gpav.holdout 25
gpav.over.examples 26
gpav.parallel 27
gpav.vanilla 28
graph.levels 29
hierarchical.checkers 30
htd 31
htd.holdout 32
htd.vanilla 33
lexicographical.topological.sort 33
multilabel.F.measure 34
normalize.max 35
obozinski.heuristic.methods 36
obozinski.holdout 37
obozinski.methods 38
pxr 39
read.graph 40
read.undirected.graph 41
root.node 41
scores.normalization 42
specific.annotation.list 43
specific.annotation.matrix 43
stratified.cross.validation 44
tpr.dag 45
tpr.dag.cv 49
tpr.dag.holdout 51
transitive.closure.annotations 54
tupla.matrix 55
unstratified.cv.data 56
weighted.adjacency.matrix 56
write.graph 57
Index 58
HEMDAG-package HEMDAG: Hierarchical Ensemble Methods for Directed Acyclic Graphs

Description

The HEMDAG package:

- provides an implementation of several Hierarchical Ensemble Methods (HEMs) for Directed Acyclic Graphs (DAGs);
- reconciles flat predictions with the topology of the ontology;
- can enhance predictions of virtually any flat learning methods by taking into account the hierarchical relationships between ontology classes;
- provides biologically meaningful predictions that obey the true-path-rule, the biological and logical rule that governs the internal coherence of biomedical ontologies;
- is specifically designed for exploiting the hierarchical relationships of DAG-structured taxonomies, such as the Human Phenotype Ontology (HPO) or the Gene Ontology (GO), but can be safely applied to tree-structured taxonomies as well (as FunCat), since trees are DAGs;
- scales nicely both in terms of the complexity of the taxonomy and in the cardinality of the examples;
- provides several utility functions to process and analyze graphs;
- provides several performance metrics to evaluate HEMs algorithms;

A comprehensive tutorial showing how to apply HEMDAG to real case bio-medical case studies is available at https://hemdag.readthedocs.io.

Details

The HEMDAG package implements the following Hierarchical Ensemble Methods for DAGs:

1. HTD-DAG: Hierarchical Top Down (htd);
2. GPAV-DAG: Generalized Pool-Adjacent Violators, Burdakov et al. (gpav);
3. TPR-DAG: True-Path Rule (tpr . dag);
4. DESCENS: Descendants Ensemble Classifier (tpr.dag);
5. ISO-TPR: Isotonic-True-Path Rule (tpr . dag);
6. Max, And, Or: Heuristic Methods, Obozinski et al. (obozinski .heuristic.methods);

Author(s)

Marco Notaro ${ }^{1}$ (https://orcid.org/0000-0003-4309-2200);
Alessandro Petrini ${ }^{1}$ (https://orcid.org/0000-0002-0587-1484);
Giorgio Valentini ${ }^{1}$ (https://orcid.org/0000-0002-5694-3919);

Maintainer: Marco Notaro marco.notaro@unimi.it
${ }^{1}$ AnacletoLab, Computational Biology and Bioinformatics Laboratory, Computer Science Department, University of Milan, Italy

References

Marco Notaro, Max Schubach, Peter N. Robinson and Giorgio Valentini, Prediction of Human Phenotype Ontology terms by means of Hierarchical Ensemble methods, BMC Bioinformatics 2017, 18(1):449, doi: 10.1186/s128590171854y

```
adj.upper.tri Binary upper triangular adjacency matrix
```


Description

Compute a binary square upper triangular matrix where rows and columns correspond to the nodes' name of the graph g.

Usage

adj.upper.tri(g)

Arguments

g
a graph of class graphNELL representing the hierarchy of the class.

Details

The nodes of the matrix are topologically sorted (by using the tsort function of the RBGL package). Let's denote with adj our adjacency matrix. Then adj represents a partial order data set in which the class j dominates the class i. In other words, $\operatorname{adj}[i, j]=1$ means that j dominates i; $\operatorname{adj}[i, j]=0$ means that there is no edge between the class i and the class j. Moreover the nodes of adj are ordered such that $\operatorname{adj}[i, j]=1$ implies $i<j$, i.e. adj is upper triangular.

Value

An adjacency matrix which is square, logical and upper triangular.

Examples

```
data(graph);
adj <- adj.upper.tri(g);
```

auprc AUPRC measures

Description

Compute the Area under the Precision Recall Curve (AUPRC) through precrec package.

Usage

auprc.single.class(labels, scores, folds = NULL, seed = NULL)
auprc.single.over.classes(target, predicted, folds $=$ NULL, seed $=$ NULL)

Arguments

labels vector of the true labels (0 negative, 1 positive examples).
scores a numeric vector of the values of the predicted labels (scores).
folds number of folds on which computing the AUPRC. If folds=NULL (def.), the AUPRC is computed one-shot, otherwise the AUPRC is computed averaged across folds.
seed initialization seed for the random generator to create folds. Set seed only if fold $s \neq N U L L$. If seed $=$ NULL and fold $; \neq$ NULL, the AUPRC averaged across folds is computed without seed initialization.
target matrix with the target multilabel: rows correspond to examples and columns to classes. $\operatorname{target}[i, j]=1$ if example i belongs to class $j, \operatorname{target}[i, j]=0$ otherwise.
predicted a numeric matrix with predicted values (scores): rows correspond to examples and columns to classes.

Details

The AUPRC (for a single class or for a set of classes) is computed either one-shot or averaged across stratified folds.
auprc.single.class computes the AUPRC just for a given class.
auprc.single.over.classes computes the AUPRC for a set of classes, returning also the averaged values across the classes.
For all those classes having zero annotations, the AUPRC is set to 0 . These classes are discarded in the computing of the AUPRC averaged across classes, both when the AUPRC is computed one-shot or averaged across stratified folds.

Names of rows and columns of labels and predicted matrix must be provided in the same order, otherwise a stop message is returned.

Value

auprc.single.class returns a numeric value corresponding to the AUPRC for the considered class; auprc.single.over.classes returns a list with two elements:

1. average: the average AUPRC across classes;
2. per.class: a named vector with AUPRC for each class. Names correspond to classes.

Examples

```
data(labels);
data(scores);
data(graph);
root <- root.node(g);
L <- L[,-which(colnames(L)==root)];
S <- S[,-which(colnames(S)==root)];
prc.single.class <- auprc.single.class(L[,3], S[,3], folds=5, seed=23);
prc.over.classes <- auprc.single.over.classes(L, S, folds=5, seed=23);
```


Description

Compute the Area under the ROC Curve (AUROC) through precrec package.

Usage

auroc.single.class(labels, scores, folds = NULL, seed = NULL)
auroc.single.over.classes(target, predicted, folds = NULL, seed = NULL)

Arguments

$\left.\begin{array}{ll}\text { labels } & \text { vector of the true labels (} 0 \text { negative, } 1 \text { positive examples). } \\ \text { scores } & \text { a numeric vector of the values of the predicted labels (scores). } \\ \text { folds } & \begin{array}{l}\text { number of folds on which computing the AUROC. If folds=NULL (def.), the } \\ \text { AUROC is computed one-shot, otherwise the AUROC is computed averaged } \\ \text { across folds. }\end{array} \\ \text { seed } & \begin{array}{l}\text { initialization seed for the random generator to create folds. Set seed only if } \\ \text { folds } \neq N U L L . ~ I f ~ s e e d=N U L L ~ a n d ~ f o l d s ~\end{array}=\text { NULL, the AUROC averaged across } \\ \text { folds is computed without seed initialization. }\end{array}\right]$ annotation matrix: rows correspond to examples and columns to classes. target $[i, j]=$

Details

The AUROC (for a single class or for a set of classes) is computed either one-shot or averaged across stratified folds.
auroc. single. class computes the AUROC just for a given class.
auroc.single.over.classes computes the AUROC for a set of classes, including their average values across all the classes.

For all those classes having zero annotations, the AUROC is set to 0.5 . These classes are included in the computing of the AUROC averaged across classes, both when the AUROC is computed one-shot or averaged across stratified folds.
The AUROC is set to 0.5 to all those classes having zero annotations. Names of rows and columns of labels and predicted must be provided in the same order, otherwise a stop message is returned.

Value

auroc.single.class returns a numeric value corresponding to the AUROC for the considered class; auprc.single.over.classes returns a list with two elements:

1. average: the average AUROC across classes;
2. per.class: a named vector with AUROC for each class. Names correspond to classes.

Examples

```
data(labels);
data(scores);
data(graph);
root <- root.node(g);
L <- L[,-which(colnames(L)==root)];
S <- S[,-which(colnames(S)==root)];
auc.single.class <- auroc.single.class(L[,3], S[,3], folds=5, seed=23);
auc.over.classes <- auroc.single.over.classes(L, S, folds=5, seed=23);
```

```
build.ancestors Build ancestors
```


Description

Build ancestors for each node of a graph.

Usage

build.ancestors(g)
build.ancestors.per.level(g, levels)
build.ancestors.bottom.up(g, levels)

Arguments

Abstract

g a graph of class graphNEL. It represents the hierarchy of the classes. levels a list of character vectors. Each component represents a graph level and the elements of any component correspond to nodes. The level 0 coincides with the root node.

Value

build. ancestos returns a named list of vectors. Each component corresponds to a node x of the graph and its vector is the set of its ancestors including also x.
build.ancestors.per. level returns a named list of vectors. Each component corresponds to a node x of the graph and its vector is the set of its ancestors including also x. The nodes are ordered from root (included) to leaves.
build. ancestors.bottom. up a named list of vectors. Each component corresponds to a node x of the graph and its vector is the set of its ancestors including also x. The nodes are ordered from leaves to root (included).

Examples

```
data(graph);
root <- root.node(g);
anc <- build.ancestors(g);
lev <- graph.levels(g, root=root);
anc.tod <-build.ancestors.per.level(g,lev);
anc.bup <- build.ancestors.bottom.up(g,lev);
```


Build children

Description

Build children for each node of a graph.

Usage

build.children(g)
build.children.top.down(g, levels)
build.children.bottom.up(g, levels)

Arguments

$$
\begin{array}{ll}
\text { g } & \text { a graph of class graphNEL. It represents the hierarchy of the classes. } \\
\text { levels } & \text { a list of character vectors. Each component represents a graph level and the } \\
\text { elements of any component correspond to nodes. The level } 0 \text { coincides with the } \\
\text { root node. }
\end{array}
$$

Value

build.children returns a named list of vectors. Each component corresponds to a node x of the graph and its vector is the set of its children.
build.children. top. down returns a named list of character vectors. Each component corresponds to a node x of the graph (i.e. parent node) and its vector is the set of its children. The nodes are ordered from root (included) to leaves.
build.children.bottom. up returns a named list of character vectors. Each component corresponds to a node x of the graph (i.e. parent node) and its vector is the set of its children. The nodes are ordered from leaves (included) to root.

Examples

```
data(graph);
root <- root.node(g);
children <- build.children(g);
lev <- graph.levels(g, root=root);
children.tod <- build.children.top.down(g,lev);
children.bup <- build.children.bottom.up(g,lev);
```

```
build.consistent.graph
```

 Build consistent graph

Description

Build a graph in which all nodes are reachable from root.

Usage

build.consistent.graph ($\mathrm{g}=\mathrm{g}$, root $=" 00 "$)

Arguments

```
    g an object of class graphNEL.
    root name of the class that is on the top-level of the hierarchy (def. root="00").
```


Details

All nodes not accessible from root (if any) are removed from the graph and printed on stdout.

Value

A graph (as an object of class graphNEL) in which all nodes are accessible from root.

Examples

```
data(graph);
root <- root.node(g);
G <- graph::addNode(c("X","Y","Z"), g);
G <- graph::addEdge(c("X","Y","Z"), c("HP:0011844","HP:0009810","HP:0012385"), G);
G <- build.consistent.graph(G, root=root);
```

build.descendants

Build descendants

Description

Build descendants for each node of a graph.

Usage

build.descendants(g)
build.descendants.per.level(g, levels)
build.descendants.bottom.up(g, levels)

Arguments

$$
\begin{array}{ll}
\text { g } & \text { a graph of class graphNEL. It represents the hierarchy of the classes. } \\
\text { levels } & \text { a list of character vectors. Each component represents a graph level and the } \\
\text { elements of any component correspond to nodes. The level } 0 \text { coincides with the } \\
\text { root node. }
\end{array}
$$

Value

build. descendants returns a named list of vectors. Each component corresponds to a node x of the graph, and its vector is the set of its descendants including also x.
build.descendants.per. level returns a named list of vectors. Each component corresponds to a node x of the graph and its vector is the set of its descendants including also x. The nodes are ordered from root (included) to leaves.
build. descendants.bottom. up returns a named list of vectors. Each component corresponds to a node x of the graph and its vector is the set of its descendants including also x. The nodes are ordered from leaves to root (included).

Examples

```
data(graph);
root <- root.node(g);
desc <- build.descendants(g);
lev <- graph.levels(g, root=root);
desc.tod <- build.descendants.per.level(g,lev);
desc.bup <- build.descendants.bottom.up(g,lev);
```

build.edges.from.hpo.obo

```
Parse an HPO obo file
```


Description

Read an HPO obo file (HPO) and write the edges of the dag on a plain text file. The format of the file is a sequence of rows and each row corresponds to an edge represented through a pair of vertexes separated by blank.

Usage

build.edges.from.hpo.obo(obofile = "hp.obo", file = "edge.file")

Arguments

obofile an HPO obo file. The extension of the obofile can be plain (".txt") or compressed (".gz").
file name of the file of the edges to be written. The extension of the file can be plain (".txt") or compressed (".gz").

Details

A faster and more flexible parser to handle obo file can be found here.

Value

A text file representing the edges in the format: source destination (i.e. one row for each edge).

Examples

\#\# Not run:
hpobo <- "http://purl.obolibrary.org/obo/hp.obo";
build.edges.from.hpo.obo(obofile=hpobo, file="hp.edge");
\#\# End(Not run)
build.parents Build parents

Description

Build parents for each node of a graph.

Usage

build.parents(g, root = "00")
build.parents.top.down(g, levels, root = "00")
build.parents.bottom.up(g, levels, root = "00")
build.parents.topological.sorting(g, root = "00")

Arguments

g a graph of class graphNEL. It represents the hierarchy of the classes.
root name of the class that it is on the top-level of the hierarchy (def. root="00").
levels a list of character vectors. Each component represents a graph level and the elements of any component correspond to nodes. The level 0 represents the root node.

Value

build. parents returns a named list of character vectors. Each component corresponds to a node x of the graph (i.e. child node) and its vector is the set of its parents (the root node is not included).
build.parents.top. down returns a named list of character vectors. Each component corresponds to a node x of the graph (i.e. child node) and its vector is the set of its parents. The order of nodes follows the levels of the graph from root (excluded) to leaves.
build.parents.bottom. up returns a named list of character vectors. Each component corresponds to a node x of the graph (i.e. child node) and its vector is the set of its parents. The nodes are ordered from leaves to root (excluded).
build. parents. topological. sorting a named list of character vectors. Each component corresponds to a node x of the graph (i.e. child node) and its vector is the set of its parents. The nodes are ordered according to a topological sorting, i.e. parents node come before children node.

Examples

```
data(graph);
root <- root.node(g)
parents <- build.parents(g, root=root);
lev <- graph.levels(g, root=root);
parents.tod <- build.parents.top.down(g, lev, root=root);
parents.bup <- build.parents.bottom.up(g, lev, root=root);
parents.tsort <- build.parents.topological.sorting(g, root=root);
```


build.scores.matrix Build score matrix

Description

Build a score matrix from file

Usage

build.scores.matrix.from.list(file = "scores.list.txt", split = "[(\t,|)]")
build.scores.matrix.from.tupla(file = "scores.tupla.txt")

Arguments

file name of the text file to be read. The matrix of the input file can be either a list (e.g in the form example nodeX|score), or a tupla (i.e. in the form example nodeX score).The file extension can be plain (".txt") or compressed (".gz").
split character vector containing a regular expression use for splitting.

Value

A named score matrix.

Examples

```
file.list <- system.file("extdata/scores.list.txt.gz", package="HEMDAG");
file.tupla <- system.file("extdata/scores.tupla.txt.gz", package="HEMDAG");
S <- build.scores.matrix.from.list(file.list, split="[(\t,|)]");
S <- build.scores.matrix.from.tupla(file.tupla);
```


Description

Build a subgraph with only the supplied nodes and any edges between them.

Usage

build.subgraph(nd, g, edgemode = "directed")

Arguments

nd a vector with the nodes for which the subgraph must be built.
$g \quad a \operatorname{graph}$ of class graphNEL. It represents the hierarchy of the classes.
edgemode can be "directed" or "undirected".

Value

A subgraph with only the supplied nodes.

Examples

```
data(graph);
anc <- build.ancestors(g);
nd <- anc[["HP:0001371"]];
subg <- build.subgraph(nd, g, edgemode="directed");
```

build.submatrix

Build submatrix

Description

Terms having less than n annotations are pruned. Terms having exactly n annotations are discarded as well.

Usage

build.submatrix(ann, n)

Arguments

ann
n
the annotation matrix ($0 / 1$). Rows are examples and columns are functional terms.
an integer number representing the number of annotations to be pruned.

Value

An annotation matrix having only those terms with more than n annotations.

Examples

data(labels);
subm <- build.submatrix (L, 5);

```
check.annotation.matrix.integrity
```

Annotation matrix checker

Description

Assess the integrity of an annotation matrix where a transitive closure of annotations was performed.

Usage

check.annotation.matrix.integrity(anc, ann.spec, ann)

Arguments

anc the ancestor list.
ann.spec the annotation matrix of the most specific annotations ($0 / 1$): rows are genes and columns are terms.
ann the full annotation matrix (0/1), i.e. the matrix where the transitive closure of the annotation was performed. Rows are examples and columns are terms.

Value

If the transitive closure of the annotations is performed correctly, OK is returned, otherwise an error message is printed on the stdout.

Examples

```
data(graph);
data(labels);
anc <- build.ancestors(g);
tca <- transitive.closure.annotations(L, anc);
check.annotation.matrix.integrity(anc, L, tca);
```

```
check.dag.integrity DAG checker
```


Description

Check the integrity of a dag.

Usage

check.dag.integrity (g, root $=" 00 ")$

Arguments

g
root \quad a graph of class graphNEL. It represents the hierarchy of the classes.
name of the class that is on the top-level of the hierarchy (def. root="00").

Value

If all the nodes are accessible from the root "dag is ok" is printed, otherwise a message error and the list of the not accessible nodes is printed on the stdout.

Examples

```
data(graph);
root <- root.node(g);
check.dag.integrity(g, root=root);
```

```
compute.flipped.graph Flip graph
```


Description

Compute a directed graph with edges in the opposite direction.

Usage

compute.flipped.graph(g)

Arguments

g
a graphNEL directed graph

Value

A graph (as an object of class graphNEL) with edges in the opposite direction w.r.t. g.

Examples

```
data(graph);
g.flipped <- compute.flipped.graph(g);
```

```
constraints.matrix Constraints matrix
```


Description

Return a matrix with two columns and as many rows as there are edges. The entries of the first columns are the index of the node the edge comes from (i.e. children nodes), the entries of the second columns indicate the index of node the edge is to (i.e. parents nodes). Referring to a dag this matrix defines a partial order.

Usage

constraints.matrix(g)

Arguments

g a graph of class graphNELL. It represents the hierarchy of the classes.

Value

A constraints matrix w.r.t the graph g.

Examples

```
data(graph);
m <- constraints.matrix(g);
```

create.stratified.fold.df

DataFrame for stratified cross validation

Description

Create a data frame for stratified cross-validation.

Usage

create.stratified.fold.df(labels, scores, folds = 5, seed = 23)

Arguments

labels vector of the true labels (0 negative, 1 positive).
scores a numeric vector of the values of the predicted labels.
folds number of folds of the cross validation (def. folds=5).
seed initialization seed for the random generator to create folds (def. seed=23). If seed=NULL, the stratified folds are generated without seed initialization.

Details

Folds are stratified, i.e. contain the same amount of positive and negative examples.

Value

A data frame with three columns:

- scores: contains the predicted scores;
- labels: contains the labels as pos or neg;
- folds: contains the index of the fold in which the example falls. The index can range from 1 to the number of folds.

Examples

data(labels);
data(scores);
df <- create.stratified.fold.df(L[,3], S[,3], folds=5, seed=23);

distances.from.leaves Distances from leaves

Description

Compute the minimum distance of each node from one of the leaves of the graph.

Usage

distances.from.leaves(g)

Arguments

g
a graph of class graphNEL. It represents the hierarchy of the classes.

Value

A named vector. The names are the names of the nodes of the graph g , and their values represent the distance from the leaves. A value equal to 0 is assigned to the leaves, 1 to nodes with distance 1 from a leaf and so on.

Examples

```
data(graph);
dist.leaves <- distances.from.leaves(g);
```

example.datasets Small real example datasets

Description

Collection of real sub-datasets used in the examples of the HEMDAG package

Usage

data(graph)
data(labels)
data(scores)
data(wadj)
data(test.index)

Details

The DAG g contained in graph data is an object of class graphNEL. The graph g has 23 nodes and 30 edges and represents the "ancestors view" of the HPO term Camptodactyly of finger ("HP:0100490").
The matrix L contained in the labels data is a 100 X 23 matrix, whose rows correspond to genes (Entrez GeneID) and columns to HPO classes. $L[i, j]=1$ means that the gene i belong to class j, $L[i, j]=0$ means that the gene i does not belong to class j. The classes of the matrix L correspond to the nodes of the graph g.
The matrix S contained in the scores data is a named 100 X 23 flat scores matrix, representing the likelihood that a given gene belongs to a given class: higher the value higher the likelihood. The classes of the matrix S correspond to the nodes of the graph g.
The matrix W contained in the wadj data is a named 100 X 100 symmetric weighted adjacency matrix, whose rows and columns correspond to genes.The genes names (Entrez GeneID) of the adjacency matrix W correspond to the genes names of the flat scores matrix S and to genes names of the target multilabel matrix L.
The vector of integer numbers test. index contained in the test. index data refers to the index of the examples of the scores matrix S to be used in the test set. It is useful only in holdout experiments.

Note

Some examples of full data sets for the prediction of HPO terms are available at the following link. Note that the processing of the full datasets should be done similarly to the processing of the small data examples provided directly in this package. Please read the README clicking the link above to know more details about the available full datasets.

Description

Select the best hierarchical F-score by choosing an appropriate threshold in the scores.

Usage

```
    find.best.f(
        target,
        predicted,
        n.round = 3,
        verbose = TRUE,
        b.per.example = FALSE
    )
```


Arguments

target matrix with the target multilabel: rows correspond to examples and columns to classes. $\operatorname{target}[i, j]=1$ if example i belongs to class $j, \operatorname{target}[i, j]=0$ otherwise.
predicted a numeric matrix with continuous predicted values (scores): rows correspond to examples and columns to classes.
n . round number of rounding digits to be applied to predicted (default=3).
verbose a boolean value. If TRUE (def.) the number of iterations are printed on stdout.
b. per.example a boolean value.

- TRUE: results are returned for each example;
- FALSE: only the average results are returned;

Details

All the examples having no positive annotations are discarded. The predicted score matrix (predicted) is rounded according to parameter n. round and all the values of predicted are divided by max (predicted). Then all the thresholds corresponding to all the different values included in predicted are attempted, and the threshold leading to the maximum F-measure is selected.
Names of rows and columns of target and predicted matrix must be provided in the same order, otherwise a stop message is returned.

Value

Two different outputs respect to the input parameter b. per.example:

- b. per . example==FALSE: a list with a single element average. A named vector with 7 elements relative to the best result in terms of the F.measure: Precision (P), Recall (R), Specificity (S), F.measure (F), av.F.measure (av.F), Accuracy (A) and the best selected Threshold (T). F is the F-measure computed as the harmonic mean between the average precision and recall; av.F is the F-measure computed as the average across examples and T is the best selected threshold;
- b.per.example==FALSE: a list with two elements:

1. average: a named vector with with 7 elements relative to the best result in terms of the F.measure: Precision (P), Recall (R), Specificity (S), F.measure (F), av.F.measure (av.F), Accuracy (A) and the best selected Threshold (T);
2. per.example: a named matrix with the Precision (P), Recall (R), Specificity (S), Accuracy (A), F-measure (F), av.F-measure (av.F) and the best selected Threshold (T) for each example. Row names correspond to examples, column names correspond respectively to Precision (P), Recall (R), Specificity (S), Accuracy (A), F-measure (F), av.F-measure (av.F) and the best selected Threshold (T);

Examples

```
    data(graph);
    data(labels);
    data(scores);
    root <- root.node(g);
    L <- L[,-which(colnames(L)==root)];
    S <- S[,-which(colnames(S)==root)];
    fscore <- find.best.f(L, S, n.round=3, verbose=TRUE, b.per.example=TRUE);
```

find.leaves Leaves

Description

Find leaves of a directed graph.

Usage

find.leaves(g)

Arguments

g a graph of class graphNEL. It represents the hierarchy of the classes.

Value

A vector with the names of the leaves of g.

Examples

data(graph);
leaves <- find.leaves(g);

```
fmax Compute Fmax
```


Description

Compute the best hierarchical Fmax either one-shot or averaged across folds

Usage

```
    compute.fmax(
        target,
        predicted,
        n.round = 3,
        verbose = TRUE,
        b.per.example = FALSE,
        folds = NULL,
        seed = NULL
    )
```


Arguments

target matrix with the target multilabel: rows correspond to examples and columns to classes. $\operatorname{target}[i, j]=1$ if example i belongs to class $j, \operatorname{target}[i, j]=0$ otherwise.
predicted a numeric matrix with predicted values (scores): rows correspond to examples and columns to classes.
n. round number of rounding digits to be applied to predicted (default=3).
verbose a boolean value. If TRUE (def.) the number of iterations are printed on stdout.
b. per .example a boolean value.

- TRUE: results are returned for each example;
- FALSE: only the average results are returned;
folds number of folds on which computing the Fmax If folds=NULL (def.), the Fmax is computed one-shot, otherwise the Fmax is computed averaged across folds.
seed initialization seed for the random generator to create folds. Set seed only if folds \neq NULL. If seed $=$ NULL and folds \neq NULL, the Fmax averaged across folds is computed without seed initialization.

Details

Names of rows and columns of target and predicted matrix must be provided in the same order, otherwise a stop message is returned.

Value

Two different outputs respect to the input parameter b. per. example:

- b.per. example==FALSE: a list with a single element average. A named vector with 7 elements relative to the best result in terms of the F.measure: Precision (P), Recall (R), Specificity (S), F.measure (F), av.F.measure (av.F), Accuracy (A) and the best selected Threshold (T). F is the F-measure computed as the harmonic mean between the average precision and recall; av.F is the F-measure computed as the average across examples and T is the best selected threshold;
- b.per. example==FALSE: a list with two elements:

1. average: a named vector with with 7 elements relative to the best result in terms of the F.measure: Precision (P), Recall (R), Specificity (S), F.measure (F), av.F.measure (av.F), Accuracy (A) and the best selected Threshold (T);
2. per.example: a named matrix with the Precision (P), Recall (R), Specificity (S), Accuracy (A), F-measure (F), av.F-measure (av.F) and the best selected Threshold (T) for each example. Row names correspond to examples, column names correspond respectively to Precision (P), Recall (R), Specificity (S), Accuracy (A), F-measure (F), av.F-measure (av.F) and the best selected Threshold (T);

Examples

```
data(graph);
data(labels);
data(scores);
root <- root.node(g);
L <- L[,-which(colnames(L)==root)];
S <- S[,-which(colnames(S)==root)];
fmax <- compute.fmax(L, S, n.round=3, verbose=TRUE, b.per.example=TRUE, folds=5, seed=23);
```

full.annotation.matrix

Full annotation matrix

Description

Build a full annotations matrix using the ancestor list and the most specific annotations matrix w.r.t. a given weighted adjacency matrix (wadj). The rows of the full annotation matrix correspond to all the examples of the given weighted adjacency matrix and the columns to the class/terms. The transitive closure of the annotations is performed.

Usage

full.annotation.matrix(W, anc, ann.spec)

Arguments

W
a symmetric adjacency weighted matrix of the graph.
anc the ancestor list.
ann.spec the annotation matrix of the most specific annotations ($0 / 1$): rows are genes and columns are terms.

Details

The examples present in the annotation matrix (ann.spec) but not in the adjacency weighted matrix (W) are purged.

Value

A full annotation table T, that is a matrix where the transitive closure of annotations is performed. Rows correspond to genes of the weighted adjacency matrix and columns to terms. $T[i, j]=1$ means that gene i is annotated for the term $j, T[i, j]=0$ means that gene i is not annotated for the term j.

Examples

```
data(wadj);
data(graph);
data(labels);
anc <- build.ancestors(g);
full.ann <- full.annotation.matrix(W, anc, L);
```

gpav Generalized Pool-Adjacent Violators (GPAV)

Description

Implementation of GPAV (Generalized Pool-Adjacent Violators) algorithm. (Burdakov et al., In: Di Pillo G, Roma M, editors. An O(n2) Algorithm for Isotonic Regression. Boston, MA: Springer US; 2006. p. 25-33. Available from: doi: 10.1007/0387300651_3

Usage

$\operatorname{gpav}(\mathrm{Y}, \mathrm{W}=\mathrm{NULL}, \operatorname{adj})$

Arguments

Y vector of scores relative to a single example. Y must be a numeric named vector, where names correspond to classes' names, i.e. nodes of the graph g (root node included).

W
vector of weight relative to a single example. If $\mathrm{W}=\mathrm{NULL}$ (def.) it is assumed that W is a unitary vector of the same length of the columns' number of the matrix S (root node included).
adjacency matrix of the graph which must be sparse, logical and upper triangular. Number of columns of adj must be equal to the length of Y and W.

Details

Given the constraints adjacency matrix of the graph, a vector of scores $\hat{y} \in R^{n}$ and a vector of strictly positive weights $w \in R^{n}$, the GPAV algorithm returns a vector \bar{y} which is as close as possible, in the least-squares sense, to the response vector \hat{y} and whose components are partially ordered in accordance with the constraints matrix adj. In other words, GPAV solves the following problem:

$$
\bar{y}=\left\{\begin{array}{l}
\min \sum_{i \in V}\left(\hat{y}_{i}-\bar{y}_{i}\right)^{2} \\
\forall i, \quad j \in \operatorname{par}(i) \Rightarrow \bar{y}_{j} \geq \bar{y}_{i}
\end{array}\right.
$$

where V are the number of vertexes of the graph.

Value

A list of 3 elements:

- YFit: a named vector with the scores of the classes corrected according to the GPAV algorithm.
- blocks: list of vectors, containing the partitioning of nodes (represented with an integer number) into blocks;
- W: vector of weights.

Examples

```
data(graph);
data(scores);
Y <- S[3,];
adj <- adj.upper.tri(g);
Y.gpav <- gpav(Y,W=NULL,adj);
```

```
gpav.holdout
```

GPAV holdout

Description

Correct the computed scores in a hierarchy according to the GPAV algorithm by applying a classical holdout procedure.

Usage

```
gpav.holdout(
    S,
    g,
    testIndex,
    W = NULL,
    parallel = FALSE,
    ncores = 1,
    norm = TRUE,
    norm.type = NULL
)
```


Arguments

S	a named flat score matrix with examples on rows and classes on columns (root node included).
g	a graph of class graphNEL. It represents the hierarchy of the classes.
testIndex	a vector of integer numbers corresponding to the indexes of the elements (rows) of the score matrix S to be used in the test set.
W	vector of weight relative to a single example. If W=NULL (def.) it is assumed that W is a unitary vector of the same length of the columns' number of the matrix S (root node included).
parallel	a boolean value. Should the parallel version GPAV be run? - TRUE: execute the parallel implementation of GPAV (gpav. parallel); - FALSE (def.): execute the sequential implementation of GPAV (gpav. over . examples);
ncores	number of cores to use for parallel execution. Set ncores=1 if parallel=FALSE, otherwise set ncores to the desired number of cores.
norm	a boolean value. Should the flat score matrix be normalized? By default norm=FALSE. If norm=TRUE the matrix S is normalized according to the normalization type selected in norm. type.
norm. type	a string character. It can be one of the following values:
	1. NULL (def.): none normalization is applied (norm=FALSE)
	2. maxnorm: each score is divided for the maximum value of each class;
	3. qnorm: quantile normalization. preprocessCore package is used;

Value

A named matrix with the scores of the classes corrected according to the GPAV algorithm. Rows of the matrix are shrunk to testIndex.

Examples

data(graph);
data(scores);
data(test.index);
S.gpav <- gpav.holdout(S, g, testIndex=test.index, norm=FALSE, norm.type=NULL);

```
gpav.over.examples GPAV over examples
```


Description

Compute GPAV across all the examples.

Usage

gpav.over.examples(S, g, W = NULL)

Arguments

S a named flat score matrix with examples on rows and classes on columns (root node included).
g
a graph of class graphNEL. It represents the hierarchy of the classes.
W vector of weight relative to a single example. If W=NULL (def.) it is assumed that W is a unitary vector of the same length of the columns' number of the matrix S (root node included).

Value

A named matrix with the scores of the classes corrected according to the GPAV algorithm.

See Also

gpav.parallel

Examples

```
data(graph);
data(scores);
S.gpav <- gpav.over.examples(S,W=NULL,g);
```

gpav. parallel GPAV over examples - parallel implementation

Description

Compute GPAV across all the examples (parallel implementation).

Usage

gpav.parallel(S, g, $\mathrm{W}=\mathrm{NULL}$, ncores $=8$)

Arguments

S a named flat score matrix with examples on rows and classes on columns (root node included).
g a graph of class graphNEL. It represents the hierarchy of the classes.
W vector of weight relative to a single example. If W=NULL (def.) it is assumed that W is a unitary vector of the same length of the columns' number of the matrix S (root node included).
ncores number of cores to use for parallel execution (def. 8). If ncores=0, the maximum number of cores minus one are used.

Value

A named matrix with the scores of the classes corrected according to the GPAV algorithm.

Examples

```
    data(graph);
    data(scores);
    if(Sys.info()['sysname']!="Windows"){
        S.gpav <- gpav.parallel(S,W=NULL,g,ncores=2);
    }
```

```
gpav.vanilla
```

GPAV vanilla

Description

Correct the computed scores in a hierarchy according to the GPAV algorithm.

Usage

```
gpav.vanilla(
    S,
    g,
    W = NULL,
    parallel = FALSE,
    ncores = 1,
    norm = FALSE,
    norm.type = NULL
)
```


Arguments

S
g
W
parallel
ncores
norm a boolean value. Should the flat score matrix be normalized? By default norm=FALSE. If norm=TRUE the matrix S is normalized according to the normalization type selected in norm. type.
norm. type a string character. It can be one of the following values:

1. NULL (def.): none normalization is applied (norm=FALSE)
2. maxnorm: each score is divided for the maximum value of each class;
3. qnorm: quantile normalization. preprocessCore package is used;

Value

A named matrix with the scores of the classes corrected according to the GPAV algorithm.

Examples

```
data(graph);
data(scores);
S.gpav <- gpav.vanilla(S, g, W=NULL, parallel=FALSE, ncores=1, norm=FALSE, norm.type=NULL);
```

 graph.levels Build graph levels

Description

Group a set of nodes in according to their maximum depth in the graph. Firstly, it inverts the weights of the graph and then it applies the Bellman Ford algorithm to find the shortest path, achieving in this way the longest path.

Usage

graph.levels(g, root = "00")

Arguments

g
an object of class graphNEL.
root name of the class that it is on the top-level of the hierarchy (def. root="00").

Value

A list of the nodes grouped w.r.t. the distance from the root: the first element of the list corresponds to the root node (level 0), the second to nodes at maximum distance 1 (level 1), the third to the node at maximum distance 3 (level 2) and so on.

Examples

```
data(graph);
root <- root.node(g);
lev <- graph.levels(g, root=root);
```

hierarchical.checkers Hierarchical constraints checker

Description

Check if the true path rule is violated or not. In other words this function checks if the score of a parent or an ancestor node is always larger or equal than that of its children or descendants nodes.

Usage

check.hierarchy.single.sample(y.hier, g, root = "00")
check.hierarchy(S.hier, g, root = "00")

Arguments

y.hier vector of scores relative to a single example. It must be a named numeric vector (names are functional classes).
g a graph of class graphNEL. It represents the hierarchy of the classes.
root name of the class that is on the top-level of the hierarchy (def. root="00").
S.hier the matrix with the scores of the classes corrected in according to hierarchy. It must be a named matrix: rows are examples and columns are functional classes.

Value

A list of 3 elements:

- status:
- OK if none hierarchical constraints have bee broken;
- NOTOK if there is at least one hierarchical constraints broken;
- hierarchy_constraints_broken:
- TRUE: example did not respect the hierarchical constraints;
- FALSE: example broke the hierarchical constraints;
- hierarchy_constraints_satisfied: how many terms satisfied the hierarchical constraint;

Examples

```
data(graph);
data(scores);
root <- root.node(g);
S.hier <- htd(S,g,root);
S.hier.single.example <- S.hier[sample(ncol(S.hier),1),];
check.hierarchy.single.sample(S.hier.single.example, g, root=root);
check.hierarchy(S.hier, g, root);
```

```
htd HTD-DAG
```


Description

Implementation of the top-down procedure to correct the scores of the hierarchy according to the constraints that the score of a node cannot be greater than a score of its parents.

Usage

htd(S, g, root = "00")

Arguments

S	a named flat score matrix with examples on rows and classes on columns.
g	a graph of class graphNEL. It represents the hierarchy of the classes.
root	name of the class that it is the top-level of the hierarchy (def:00).

Details

The HTD-DAG algorithm modifies the flat scores according to the hierarchy of a DAG G through a unique run across the nodes of the graph. For a given example x, the flat predictions $f(x)=\hat{y}$ are hierarchically corrected to \bar{y}, by per-level visiting the nodes of the DAG from top to bottom according to the following simple rule:

$$
\bar{y}_{i}:= \begin{cases}\hat{y}_{i} & \text { if } i \in \operatorname{root}(G) \\ \min _{j \in \operatorname{par}(i)} \bar{y}_{j} & \text { if } \min _{j \in \operatorname{par}(i)} \bar{y}_{j}<\hat{y}_{i} \\ \hat{y}_{i} & \text { otherwise }\end{cases}
$$

The node levels correspond to their maximum path length from the root.

Value

A matrix with the scores of the classes corrected according to the HTD-DAG algorithm.

Examples

```
data(graph);
data(scores);
root <- root.node(g);
S.htd <- htd(S,g,root);
```


Description

Correct the computed scores in a hierarchy according to the HTD-DAG algorithm applying a classical holdout procedure.

Usage

htd.holdout(S, g, testIndex, norm = FALSE, norm.type = NULL)

Arguments

S	a named flat score matrix with examples on rows and classes on columns.
g	a graph of class graphNEL. It represents the hierarchy of the classes.
testIndex	a vector of integer numbers corresponding to the indexes of the elements (rows) of the score matrix S to be used in the test set.
norm	a boolean value. Should the flat score matrix be normalized? By default norm=FALSE. If norm=TRUE the matrix S is normalized according to the normalization type se- lected in norm. type.
norm. type	a string character. It can be one of the following values:
1. NULL (def.): none normalization is applied (norm=FALSE) 2. maxnorm: each score is divided for the maximum value of each class; 3. qnorm: quantile normalization. preprocessCore package is used;	

Value
A matrix with the scores of the classes corrected according to the HTD-DAG algorithm. Rows of the matrix are shrunk to testIndex.

Examples

```
data(graph);
data(scores);
data(test.index);
S.htd <- htd.holdout(S, g, testIndex=test.index, norm=FALSE, norm.type=NULL);
```

htd.vanilla HTD-DAG vanilla

Description

Correct the computed scores in a hierarchy according to the HTD-DAG algorithm.

Usage

htd.vanilla(S, g, norm = FALSE, norm.type = NULL)

Arguments

S
$g \quad a \operatorname{graph}$ of class graphNEL. It represents the hierarchy of the classes.
norm a boolean value. Should the flat score matrix be normalized? By default norm=FALSE. If norm=TRUE the matrix S is normalized according to the normalization type selected in norm. type.
norm. type a string character. It can be one of the following values:

1. NULL (def.): none normalization is applied (norm=FALSE)
2. maxnorm: each score is divided for the maximum value of each class;
3. qnorm: quantile normalization. preprocessCore package is used;

Value

A matrix with the scores of the classes corrected according to the HTD-DAG algorithm.

Examples

data(graph);
data(scores);
S.htd <- htd.vanilla(S, g, norm=FALSE, norm.type=NULL);
lexicographical.topological.sort Lexicographical topological sorting

Description

Nodes of a graph are sorted according to a lexicographical topological ordering.

Usage

lexicographical.topological.sort(g)

Arguments

g an object of class graphNEL.

Details

A topological sorting is a linear ordering of the nodes such that given an edge from u to v, the node u comes before node v in the ordering. Topological sorting is not possible if the graph g contains self-loop. To implement the topological sorting algorithm we applied the Kahn's algorithm.

Value

A vector in which the nodes of the graph g are sorted according to a lexicographical topological order.

Examples

```
data(graph);
T <- lexicographical.topological.sort(g);
```

```
multilabel.F.measure multilabel F-measure
```


Description

Method for computing Precision, Recall, Specificity, Accuracy and F-measure for multiclass and multilabel classification.

Usage

F.measure.multilabel(target, predicted, b.per.example = FALSE)
\#\# S4 method for signature 'matrix,matrix'
F.measure.multilabel(target, predicted, b.per.example = FALSE)

Arguments

target matrix with the target multilabel: rows correspond to examples and columns to classes. $\operatorname{target}[i, j]=1$ if example i belongs to class $j, \operatorname{target}[i, j]=0$ otherwise.
predicted a numeric matrix with discrete predicted values: rows correspond to examples and columns to classes. predicted $[i, j]=1$ if example i is predicted belonging to class j, $\operatorname{target}[i, j]=0$ otherwise.
b.per.example a boolean value.

- TRUE: results are returned for each example;
- FALSE: only the average results are returned;

Details

Names of rows and columns of target and predicted matrix must be provided in the same order, otherwise a stop message is returned.

Value

Two different outputs respect to the input parameter b. per.example:

- b.per. example==FALSE: a list with a single element average. A named vector with average precision (P), recall (R), specificity (S), F-measure (F), average F-measure (avF) and Accuracy (A) across examples. F is the F-measure computed as the harmonic mean between the average precision and recall; av.F is the F-measure computed as average across examples;
- b.per.example==FALSE: a list with two elements:

1. average: a named vector with average precision (P), recall (R), specificity (S), F-measure (F), average F-measure (avF) and Accuracy (A) across examples;
2. per.example: a named matrix with the Precision (P), Recall (R), Specificity (S), Accuracy (A), F-measure (F) and av.F-measure (av.F) for each example. Row names correspond to examples, column names correspond respectively to Precision (P), Recall (R), Specificity (S), Accuracy (A), F-measure (F) and av.F-measure (av.F);

Examples

```
data(labels);
data(scores);
data(graph);
root <- root.node(g);
L <- L[,-which(colnames(L)==root)];
S <- S[,-which(colnames(S)==root)];
S[S>0.7] <- 1;
S[S<0.7] <- 0;
fscore <- F.measure.multilabel(L,S);
```

```
normalize.max Max normalization
```


Description

Normalize the scores of a score matrix by dividing the score values of each class for the maximum score of the class.

Usage

normalize.max(S)

Arguments

S
a score matrix. Rows are examples and columns are classes.

Value

A score matrix with the scores normalized.

Examples

```
data(scores);
maxnorm <- normalize.max(S);
```

obozinski.heuristic.methods

Obozinski heuristic methods

Description

Implementation of the Obozinski's heuristic methods Max, And, Or (Obozinski et al., Genome Biology, 2008, doi: 10.1186/gb20089s1s6).

Usage

obozinski.max(S, g, root = "00")
obozinski.and(S, g, root = "00")
obozinski.or(S, g, root = "00")

Arguments

S
g
root
a named flat score matrix with examples on rows and classes on columns.
a graph of class graphNEL. It represents the hierarchy of the classes. name of the class that it is the top-level of the hierarchy (def:00).

Details

Obozinski's heuristic methods:

1. Max: reports the largest logistic regression (LR) value of self and all descendants: $p_{i}=$ $\max _{j \in \text { descendants(i) }}^{p_{j}}$;
2. And: reports the product of LR values of all ancestors and self. This is equivalent to computing the probability that all ancestral terms are "on" assuming that, conditional on the data, all predictions are independent: $p_{i}=\prod_{j \in \text { ancestors (i) }} \hat{p}$;
3. Or: computes the probability that at least one of the descendant terms is "on" assuming again that, conditional on the data, all predictions are independent: $1-p_{i}=\prod_{j \in \operatorname{descendants}(i)}(1-$ $\hat{p_{j}}$);

Value

A matrix with the scores of the classes corrected according to the chosen Obozinski's heuristic algorithm.

Examples

```
data(graph);
data(scores);
root <- root.node(g);
S.max <- obozinski.max(S,g,root);
S.and <- obozinski.and(S,g,root);
S.or <- obozinski.or(S,g,root);
```

obozinski.holdout Obozinski's heuristic methods - holdout

Description

Compute the Obozinski's heuristic methods Max, And, Or (Obozinski et al., Genome Biology, 2008) applying a classical holdout procedure.

Usage

obozinski.holdout(
S,
g,
testIndex,
heuristic = "and",
norm = FALSE,
norm.type $=$ NULL
)

Arguments

norm a boolean value. Should the flat score matrix be normalized? By default norm=FALSE.

S
g
testIndex
heuristic
norm.type
a named flat score matrix with examples on rows and classes on columns.
a graph of class graphNEL. It represents the hierarchy of the classes.
a vector of integer numbers corresponding to the indexes of the elements (rows) of the score matrix S to be used in the test set.
a string character. It can be one of the following three values:

1. "max": run the method heuristic.max;
2. "and": run the method heuristic.and;
3. "or": run the method heuristic.or; If norm=TRUE the matrix S is normalized according to the normalization type selected in norm. type.
a string character. It can be one of the following values:
4. NULL (def.): none normalization is applied (norm=FALSE)
5. maxnorm: each score is divided for the maximum value of each class;
6. qnorm: quantile normalization. preprocessCore package is used;

Value
A matrix with the scores of the classes corrected according to the chosen heuristic algorithm. Rows of the matrix are shrunk to testIndex.

Examples

```
data(graph);
data(scores);
data(test.index);
S.and <- obozinski.holdout(S, g, testIndex=test.index, heuristic="and", norm=FALSE, norm.type=NULL);
```

```
obozinski.methods Obozinski's heuristic methods calling
```


Description

Compute the Obozinski's heuristic methods Max, And, Or (Obozinski et al., Genome Biology, 2008).

Usage

obozinski.methods(S, g, heuristic = "and", norm = FALSE, norm.type = NULL)

Arguments

S	a named flat score matrix with examples on rows and classes on columns.
g	a graph of class graphNEL. It represents the hierarchy of the classes.
heuristic	a string character. It can be one of the following three values:
1. "max": run the method obozinski.max;	
norm	2. "and": run the method obozinski. and;
3. "or": run the method obozinski .or;	
a boolean value. Should the flat score matrix be normalized? By default norm=FALSE.	
norm. type norm=TRUE the matrix S is normalized according to the normalization type se-	
	lected in norm. type. a string character. It can be one of the following values:
1. NULL (def.): none normalization is applied (norm=FALSE) 2. maxnorm: each score is divided for the maximum value of each class;	
3. qnorm: quantile normalization. preprocessCore package is used;	

Value

A matrix with the scores of the classes corrected according to the chosen heuristic algorithm.

Examples

```
data(graph);
data(scores);
S.and <- obozinski.methods(S, g, heuristic="and", norm=TRUE, norm.type="maxnorm");
```

```
pxr Precision-Recall curves
```


Description

Compute the Precision-Recall (PxR) values through precrec package.

Usage

```
    precision.at.all.recall.levels.single.class(labels, scores)
    precision.at.given.recall.levels.over.classes(
    target,
    predicted,
    folds = NULL,
    seed = NULL,
    recall.levels = seq(from = 0.1, to = 1, by = 0.1)
)
```


Arguments

labels \quad vector of the true labels (0 negative, 1 positive examples).
scores a numeric vector of the values of the predicted labels (scores).
target matrix with the target multilabel: rows correspond to examples and columns to classes. $\operatorname{target}[i, j]=1$ if example i belongs to class j, $\operatorname{target}[i, j]=0$ otherwise.
predicted a numeric matrix with predicted values (scores): rows correspond to examples and columns to classes.
folds number of folds on which computing the PXR. If folds=NULL (def.), the PXR is computed one-shot, otherwise the PXR is computed averaged across folds.
seed initialization seed for the random generator to create folds. Set seed only if folds \neq NULL. If seed $=$ NULL and folds \neq NULL, the PXR averaged across folds is computed without seed initialization.
recall.levels a vector with the desired recall levels (def: from:0.1, to:0.9, by:0.1).

Details

precision.at.all.recall.levels.single.class computes the precision at all recall levels just for a single class.
precision.at.given.recall.levels.over.classes computes the precision at fixed recall levels over classes.

Value

precision.at.all.recall.levels.single.class returns a two-columns matrix, representing a pair of precision and recall values. The first column is the precision, the second the recall; precision.at.given.recall.levels.over.classes returns a list with two elements:

1. average: a vector with the average precision at different recall levels across classes;
2. fixed.recall: a matrix with the precision at different recall levels: rows are classes, columns precision at different recall levels;

Examples

```
data(labels);
data(scores);
data(graph);
root <- root.node(g);
L <- L[,-which(colnames(L)==root)];
S <- S[,-which(colnames(S)==root)];
labels <- L[,1];
scores <- S[,1];
rec.levels <- seq(from=0.25, to=1, by=0.25);
pxr.single <- precision.at.all.recall.levels.single.class(labels, scores);
pxr <- precision.at.given.recall.levels.over.classes(L, S, folds=5, seed=23,
        recall.levels=rec.levels);
```

read.graph Read a directed graph from a file

Description

Read a directed graph from a file and build a graphNEL object.

Usage

read.graph(file = "graph.txt.gz")

Arguments

file name of the file to be read. The format of the file is a sequence of rows and each row corresponds to an edge represented through a pair of vertexes separated by blanks. The extension of the file can be plain (".txt") or compressed (".gz").

Value

An object of class graphNEL.

Examples

```
ed <- system.file("extdata/graph.edges.txt.gz", package= "HEMDAG");
g <- read.graph(file=ed);
```

read. undirected.graph Read an undirected graph from a file

Description

Read a graph from a file and build a graphNEL object. The format of the input file is a sequence of rows. Each row corresponds to an edge represented through a pair of vertexes (blank separated) and the weight of the edge.

Usage

read.undirected.graph(file = "graph.txt.gz")

Arguments

file name of the file to be read. The extension of the file can be plain (".txt") or compressed (".gz").

Value

A graph of class graphNEL.

Examples

```
edges <- system.file("extdata/edges.txt.gz", package="HEMDAG");
g <- read.undirected.graph(file=edges);
```

```
root.node Root node
```


Description

Find the root node of a directed graph.

Usage

```
root.node(g)
```


Arguments

g
a graph of class graphNEL. It represents the hierarchy of the classes.

Value

Name of the root node.

Examples

```
data(graph);
root <- root.node(g);
```

 scores.normalization Scores normalization function

Description

Normalize a score matrix w.r.t. max normalization (maxnorm) or quantile normalization (qnorm)

Usage

scores.normalization(norm.type = "maxnorm", S)

Arguments

norm. type can be one of the following two values:

- maxnorm (def.): each score is divided w.r.t. the max of each class;
- qnorm: a quantile normalization is applied. Package preprocessCore is used;

S A named flat score matrix with examples on rows and classes on columns.

Details

To apply the quantile normalization the preprocessCore package must be properly installed.

Value

The matrix of the scores flat normalized w.r.t. maxnorm or qnorm.

Examples

```
data(scores);
norm.types <- c("maxnorm","qnorm");
for(norm.type in norm.types){
    scores.normalization(norm.type=norm.type, S=S);
}
```

```
specific.annotation.list
    Specific annotations list
```


Description

Build the annotation list starting from the matrix of the most specific annotations.

Usage

specific.annotation.list(ann)

Arguments

ann an annotation matrix (0/1). Rows are examples and columns are the most specific functional terms. It must be a named matrix.

Value

A named list, where names of each component correspond to examples (genes) and elements of each component are the associated functional terms.

Examples

data(labels);
spec.list <- specific.annotation.list(L);

```
specific.annotation.matrix
Specific annotation matrix
```


Description

Build the annotation matrix of the most specific functional terms.

Usage

specific.annotation.matrix(file = "gene2pheno.txt.gz")

Arguments

file text file representing the associations gene-ontology terms. The file must be written as sequence of rows. Each row represents a gene/protein and all its associations with an ontology term (pipe separated), i.e. in the form e.g.: genel lobollobo2l...loboN.

Details

The input plain text file (representing the associations gene-ontology terms) can be obtained by cloning the GitHub repository obogaf-parser, a perl5 module specifically designed to handle HPO and GO obo files and their gene annotation files (gaf file).

Value

The annotation matrix of the most specific annotations $(0 / 1)$: rows are genes and columns are functional terms (such as GO or HPO). Let's denote M the labels matrix. If $M[i, j]=1$, means that the gene i is annotated with the class j, otherwise $M[i, j]=0$.

Examples

```
gene2pheno <- system.file("extdata/gene2pheno.txt.gz", package="HEMDAG");
```

spec.ann <- specific.annotation.matrix(file=gene2pheno);

```
stratified.cross.validation
```

 Stratified cross validation

Description

Generate data for the stratified cross-validation.

Usage

stratified.cv.data.single.class(examples, positives, kk $=5$, seed $=$ NULL)
stratified.cv.data.over.classes(labels, examples, $k k=5$, seed $=$ NULL)

Arguments

examples indices or names of the examples. Can be either a vector of integers or a vector of names.
positives vector of integers or vector of names. The indices (or names) refer to the indices (or names) of 'positive' examples.
kk number of folds (def. kk=5).
seed seed of the random generator (def. seed=NULL). If is set to NULL no initialization is performed.
labels labels matrix. Rows are genes and columns are classes. Let's denote M the labels matrix. If $M[i, j]=1$, means that the gene i is annotated with the class j, otherwise $M[i, j]=0$.

Details

Folds are stratified, i.e. contain the same amount of positive and negative examples.

Value

stratified.cv.data.single.class returns a list with 2 two component:

- fold.non.positives: a list with k components. Each component is a vector with the indices (or names) of the non-positive elements. Indexes (or names) refer to row numbers (or names) of a data matrix;
- fold.positives: a list with k components. Each component is a vector with the indices (or names) of the positive elements. Indexes (or names) refer to row numbers (or names) of a data matrix;
stratified.cv.data.over.classes returns a list with n components, where n is the number of classes of the labels matrix. Each component n is in turn a list with k elements, where k is the number of folds. Each fold contains an equal amount of positives and negatives examples.

Examples

```
data(labels);
examples.index <- 1:nrow(L);
examples.name <- rownames(L);
positives <- which(L[,3]==1);
x <- stratified.cv.data.single.class(examples.index, positives, kk=5, seed=23);
y <- stratified.cv.data.single.class(examples.name, positives, kk=5, seed=23);
z <- stratified.cv.data.over.classes(L, examples.index, kk=5, seed=23);
k <- stratified.cv.data.over.classes(L, examples.name, kk=5, seed=23);
```

```
tpr.dag TPR-DAG ensemble variants
```


Description

Collection of the true-path-rule-based hierarchical learning ensemble algorithms and its variants.
TPR-DAG is a family of algorithms on the basis of the choice of the bottom-up step adopted for the selection of positive children (or descendants) and of the top-down step adopted to assure ontology-based predictions. Indeed, in their more general form the TPR-DAG algorithms adopt a two step learning strategy:

1. in the first step they compute a per-level bottom-up visit from leaves to root to propagate positive predictions across the hierarchy;
2. in the second step they guarantee the consistency of the predictions.

Usage

tpr.dag(
S,
g,
root = "00",
positive = "children",

```
    bottomup = "threshold.free",
    topdown = "gpav",
    t = 0,
    w = 0,
    W = NULL,
    parallel = FALSE,
    ncores = 1
)
```


Arguments

S
g
root
positive
bottomup
topdown
t
w

W
parallel
bottomup

parall
a named flat score matrix with examples on rows and classes on columns.
a graph of class graphNEL. It represents the hierarchy of the classes.
name of the class that it is on the top-level of the hierarchy (def. root="00").
choice of the positive nodes to be considered in the bottom-up strategy. Can be one of the following values:

- children (def.): positive children are are considered for each node;
- descendants: positive descendants are are considered for each node;
strategy to enhance the flat predictions by propagating the positive predictions from leaves to root. It can be one of the following values:
- threshold.free (def.): positive nodes are selected on the basis of the threshold. free strategy;
- threshold: positive nodes are selected on the basis of the threshold strategy;
- weighted. threshold.free: positive nodes are selected on the basis of the weighted. threshold.free strategy;
- weighted. threshold: positive nodes are selected on the basis of the weighted. threshold strategy;
- tau: positive nodes are selected on the basis of the tau strategy. NOTE: tau is only a DESCENS variant. If you select tau strategy you must set positive=descendants;
strategy to make scores "hierarchy-aware". It can be one of the following values:
- htd: HTD-DAG strategy is applied (htd);
- gpav (def.): GPAV strategy is applied (gpav);
threshold for the choice of positive nodes (def. $t=0$). Set t only for the variants requiring a threshold for the selection of the positive nodes, otherwise set $\mathrm{t}=0$.
weight to balance between the contribution of the node i and that of its positive nodes. Set w only for the weighted variants, otherwise set $\mathrm{w}=0$.
vector of weight relative to a single example. If W=NULL (def.) it is assumed that W is a unitary vector of the same length of the columns' number of the matrix S (root node included). Set W only if topdown=gpav.
a boolean value:
- TRUE: execute the parallel implementation of GPAV (gpav. parallel);
- FALSE (def.): execute the sequential implementation of GPAV (gpav. over . examples);

Use parallel only if topdown=GPAV; otherwise set parallel=FALSE.
ncores number of cores to use for parallel execution. Set ncores=1 if parallel=FALSE, otherwise set ncores to the desired number of cores. Set ncores if and only if topdown=GPAV; otherwise set ncores=1.

Details

The vanilla TPR-DAG adopts a per-level bottom-up traversal of the DAG to correct the flat predictions \hat{y}_{i} according to the following formula:

$$
\bar{y}_{i}:=\frac{1}{1+\left|\phi_{i}\right|}\left(\hat{y}_{i}+\sum_{j \in \phi_{i}} \bar{y}_{j}\right)
$$

where ϕ_{i} are the positive children of i. Different strategies to select the positive children ϕ_{i} can be applied:

1. threshold-free strategy: the positive nodes are those children that can increment the score of the node i, that is those nodes that achieve a score higher than that of their parents:

$$
\phi_{i}:=\left\{j \in \operatorname{child}(i) \mid \bar{y}_{j}>\hat{y}_{i}\right\}
$$

2. threshold strategy: the positive children are selected on the basis of a threshold that can be selected in two different ways:
(a) for each node a constant threshold \bar{t} is a priori selected:

$$
\phi_{i}:=\left\{j \in \operatorname{child}(i) \mid \bar{y}_{j}>\bar{t}\right\}
$$

For instance if the predictions represent probabilities it could be meaningful to a priori select $\bar{t}=0.5$.
(b) the threshold is selected to maximize some performance metric \mathcal{M} estimated on the training data, as for instance the Fmax or the AUPRC. In other words the threshold is selected to maximize some measure of accuracy of the predictions $\mathcal{M}(j, t)$ on the training data for the class j with respect to the threshold t. The corresponding set of positives $\forall i \in V$ is:

$$
\phi_{i}:=\left\{j \in \operatorname{child}(i) \mid \bar{y}_{j}>t_{j}^{*}, t_{j}^{*}=\arg \max _{t} \mathcal{M}(j, t)\right\}
$$

For instance t_{j}^{*} can be selected from a set of $t \in(0,1)$ through internal cross-validation techniques.

The weighted TPR-DAG version can be designed by adding a weight $w \in[0,1]$ to balance between the contribution of the node i and that of its positive children ϕ, through their convex combination:

$$
\bar{y}_{i}:=w \hat{y}_{i}+\frac{(1-w)}{\left|\phi_{i}\right|} \sum_{j \in \phi_{i}} \bar{y}_{j}
$$

If $w=1$ no weight is attributed to the children and the TPR-DAG reduces to the HTD-DAG algorithm, since in this way only the prediction for node i is used in the bottom-up step of the algorithm. If $w=0$ only the predictors associated to the children nodes vote to predict node i. In the intermediate cases we attribute more importance to the predictor for the node i or to its children depending on
the values of w. By combining the weighted and the threshold variant, we design the weightedthreshold variant.

Since the contribution of the descendants of a given node decays exponentially with their distance from the node itself, to enhance the contribution of the most specific nodes to the overall decision of the ensemble we design the ensemble variant DESCENS. The novelty of DESCENS consists in strongly considering the contribution of all the descendants of each node instead of only that of its children. Therefore DESCENS predictions are more influenced by the information embedded in the leaves nodes, that are the classes containing the most informative and meaningful information from a biological and medical standpoint. For the choice of the "positive" descendants we use the same strategies adopted for the selection of the "positive" children shown above. Furthermore, we designed a variant specific only for DESCENS, that we named DESCENS $-\tau$. The DESCENS- τ variant balances the contribution between the "positives" children of a node i and that of its "positives" descendants excluding its children by adding a weight $\tau \in[0,1]$:

$$
\bar{y}_{i}:=\frac{\tau}{1+\left|\phi_{i}\right|}\left(\hat{y}_{i}+\sum_{j \in \phi_{i}} \bar{y}_{j}\right)+\frac{1-\tau}{1+\left|\delta_{i}\right|}\left(\hat{y}_{i}+\sum_{j \in \delta_{i}} \bar{y}_{j}\right)
$$

where ϕ_{i} are the "positive" children of i and $\delta_{i}=\Delta_{i} \backslash \phi_{i}$ the descendants of i without its children. If $\tau=1$ we consider only the contribution of the "positive" children of i; if $\tau=0$ only the descendants that are not children contribute to the score, while for intermediate values of τ we can balance the contribution of ϕ_{i} and δ_{i} positive nodes.

Simply by replacing the HTD-DAG top-down step (htd) with the GPAV approach (gpav) we design the ISO-TPR variant. The most important feature of ISO-TPR is that it maintains the hierarchical constraints by construction and it selects the closest solution (in the least square sense) to the bottom-up predictions that obeys the True Path Rule.

Value

A named matrix with the scores of the classes corrected according to the chosen TPR-DAG ensemble algorithm.

See Also

```
gpav, htd
```


Examples

```
data(graph);
data(scores);
data(labels);
root <- root.node(g);
S.tpr <- tpr.dag(S, g, root, positive="children", bottomup="threshold.free",
topdown="gpav", t=0, w=0, W=NULL, parallel=FALSE, ncores=1);
```

```
tpr.dag.cv
```

TPR-DAG cross-validation experiments

Description

Correct the computed scores in a hierarchy according to the a TPR-DAG ensemble variant.

```
Usage
    tpr.dag.cv(
        S,
        g,
        ann,
        norm = FALSE,
        norm.type = NULL,
        positive = "children",
        bottomup = "threshold",
        topdown = "gpav",
        W = NULL,
        parallel = FALSE,
        ncores = 1,
        threshold = seq(from = 0.1, to = 0.9, by = 0.1),
        weight = 0,
        kk = 5,
        seed = 23,
        metric = "auprc",
        n.round = NULL
    )
```


Arguments

S
g
ann
norm
norm. type
a named flat score matrix with examples on rows and classes on columns.
a graph of class graphNEL. It represents the hierarchy of the classes.
an annotation matrix: rows correspond to examples and columns to classes. $\operatorname{ann}[i, j]=1$ if example i belongs to class j, ann $[i, j]=0$ otherwise. ann matrix is necessary to maximize the hyper-parameter(s) of the chosen parametric TPR-DAG ensemble variant respect to the metric selected in metric. For the parametric-free ensemble variant set ann=NULL.
a boolean value. Should the flat score matrix be normalized? By default norm=FALSE.
If norm=TRUE the matrix S is normalized according to the normalization type selected in norm. type.
a string character. It can be one of the following values:

1. NULL (def.): none normalization is applied (norm=FALSE)
2. maxnorm: each score is divided for the maximum value of each class (scores.normalization);
3. qnorm: quantile normalization. preprocessCore package is used (scores.normalization);
positive choice of the positive nodes to be considered in the bottom-up strategy. Can be one of the following values:

- children (def.): positive children are are considered for each node;
- descendants: positive descendants are are considered for each node;
bottomup strategy to enhance the flat predictions by propagating the positive predictions from leaves to root. It can be one of the following values:
- threshold. free: positive nodes are selected on the basis of the threshold. free strategy;
- threshold (def.): positive nodes are selected on the basis of the threshold strategy;
- weighted. threshold.free: positive nodes are selected on the basis of the weighted. threshold.free strategy;
- weighted. threshold: positive nodes are selected on the basis of the weighted. threshold strategy;
- tau: positive nodes are selected on the basis of the tau strategy. NOTE: tau is only a DESCENS variant. If you select tau strategy you must set positive=descendants;
topdown strategy to make the scores hierarchy-consistent. It can be one of the following values:
- htd: HTD-DAG strategy is applied (htd);
- gpav (def.): GPAV strategy is applied (gpav);
vector of weight relative to a single example. If $W=$ NULL (def.) it is assumed that W is a unitary vector of the same length of the columns' number of the matrix S (root node included). Set W only if topdown=gpav.
parallel a boolean value:
- TRUE: execute the parallel implementation of GPAV (gpav. parallel);
- FALSE (def.): execute the sequential implementation of GPAV (gpav . over . examples);

Use parallel only if topdown=gpav; otherwise set parallel=FALSE.
ncores number of cores to use for parallel execution. Set ncores=1 if parallel=FALSE, otherwise set ncores to the desired number of cores. Set ncores if topdown=gpav, otherwise set ncores=1.
threshold range of threshold values to be tested in order to find the best threshold (def: from:0.1, to:0.9, by:0.1). The denser the range is, the higher the probability to find the best threshold is, but the execution time will be higher. For the threshold-free variants, set threshold=0.
weight range of weight values to be tested in order to find the best weight (def: from: 0.1, to:0.9, by:0.1). The denser the range is, the higher the probability to find the best threshold is, but the execution time will be higher. For the weight-free variants, set weight $=0$.
kk number of folds of the cross validation (def: $k \mathrm{k}=5$) on which tuning the parameters threshold, weight and tau of the parametric ensemble variants. For the parametric-free variants (i.e. if bottomup = threshold.free), set kk=NULL.

Details

The parametric hierarchical ensemble variants are cross-validated maximizing the parameter on the metric selected in metric.

Value

A named matrix with the scores of the functional terms corrected according to the chosen TPR-DAG ensemble algorithm.

Examples

```
data(graph);
data(scores);
data(labels);
S.tpr <- tpr.dag.cv(S, g, ann=NULL, norm=FALSE, norm.type=NULL, positive="children",
bottomup="threshold.free", topdown="gpav", W=NULL, parallel=FALSE, ncores=1,
threshold=0, weight=0, kk=NULL, seed=NULL, metric=NULL, n.round=NULL);
```

tpr.dag.holdout TPR-DAG holdout experiments

Description

Correct the computed scores in a hierarchy according to the selected TPR-DAG ensemble variant by applying a classical holdout procedure.

```
Usage
    tpr.dag.holdout(
        S,
        g,
        ann,
        testIndex,
        norm = FALSE,
        norm.type = NULL,
        W = NULL,
        parallel = FALSE,
        ncores = 1,
        positive = "children",
    bottomup = "threshold",
    topdown = "htd",
    threshold = seq(from = 0.1, to = 0.9, by = 0.1),
    weight = seq(from = 0.1, to = 0.9, by = 0.1),
    kk = 5,
    seed = 23,
    metric = "auprc",
    n.round = NULL
)
```


Arguments

S
g
ann an annotation matrix: rows correspond to examples and columns to classes. $\operatorname{ann}[i, j]=1$ if example i belongs to class $j, \operatorname{ann}[i, j]=0$ otherwise. ann
matrix is necessary to maximize the hyper-parameter(s) of the chosen parametric ann $[i, j]=1$ if example i belongs to class $j, \operatorname{ann}[i, j]=0$ otherwise. ann
matrix is necessary to maximize the hyper-parameter(s) of the chosen parametric TPR-DAG ensemble variant respect to the metric selected in metric. For the parametric-free ensemble variant set ann=NULL.
a named flat score matrix with examples on rows and classes on columns.
a graph of class graphNEL. It represents the hierarchy of the classes.
testIndex a vector of integer numbers corresponding to the indexes of the elements (rows) of the score matrix S to be used in the test set.
norm a boolean value. Should the flat score matrix be normalized? By default norm=FALSE. If norm=TRUE the matrix S is normalized according to the normalization type selected in norm. type.
norm.type a string character. It can be one of the following values:

1. NULL (def.): none normalization is applied (norm=FALSE)
2. maxnorm: each score is divided for the maximum value of each class;
3. qnorm: quantile normalization. preprocessCore package is used;

W
parallel
vector of weight relative to a single example. If $W=$ NULL (def.) it is assumed that W is a unitary vector of the same length of the columns' number of the matrix S (root node included). Set W only if topdown=gpav.
a boolean value:

- TRUE: execute the parallel implementation of GPAV (gpav. parallel);

	- FALSE (def.): execute the sequential implementation of GPAV (gpav . over . examples); Use parallel only if topdown=gpav; otherwise set parallel=FALSE.
ncores	number of cores to use for parallel execution. Set ncores=1 if parallel=FALSE, otherwise set ncores to the desired number of cores. Set ncores if and only if topdown=gpav; otherwise set ncores=1.
positive	choice of the positive nodes to be considered in the bottom-up strategy. Can be one of the following values: - children (def.): positive children are are considered for each node; - descendants: positive descendants are are considered for each node;
bottomup	strategy to enhance the flat predictions by propagating the positive predictions from leaves to root. It can be one of the following values: - threshold.free: positive nodes are selected on the basis of the threshold.free strategy (def.); - threshold (def.): positive nodes are selected on the basis of the threshold strategy; - weighted. threshold. free: positive nodes are selected on the basis of the weighted. threshold. free strategy; - weighted. threshold: positive nodes are selected on the basis of the weighted. threshold strategy; - tau: positive nodes are selected on the basis of the tau strategy. NOTE: tau is only a DESCENS variant. If you select tau strategy you must set positive=descendants;
topdown	strategy to make the scores hierarchy-consistent. It can be one of the following values: - htd: HTD-DAG strategy is applied (htd); - gpav (def.): GPAV strategy is applied (gpav);
threshold	range of threshold values to be tested in order to find the best threshold (def: from: 0.1 , to: 0.9 , by:0.1). The denser the range is, the higher the probability to find the best threshold is, but the execution time will be higher. For the threshold-free variants, set threshold=0.
weight	range of weight values to be tested in order to find the best weight (def: from: 0.1 , to: 0.9 , by:0.1). The denser the range is, the higher the probability to find the best threshold is, but the execution time will be higher. For the weight-free variants, set weight $=0$.
kk	number of folds of the cross validation (def: $k k=5$) on which tuning the parameters threshold, weight and tau of the parametric ensemble variants. For the parametric-free variants (i.e. if bottomup = threshold.free), set kk=NULL.
seed	initialization seed for the random generator to create folds (def. 23). If seed=NULL folds are generated without seed initialization. If bottomup=threshold.free, set seed=NULL.
metric	a string character specifying the performance metric on which maximizing the parametric ensemble variant. It can be one of the following values: 1. auprc (def.): the parametric ensemble variant is maximized on the basis of AUPRC (auprc);

2. fmax: the parametric ensemble variant is maximized on the basis of Fmax (multilabel.F.measure);
3. NULL: threshold.free variant is parameter-free, so none optimization is needed.
n. round number of rounding digits (def. 3) to be applied to the hierarchical score matrix for choosing the best threshold on the basis of the best Fmax. If bottomup==threshold. free or metric="auprc", set n. round=NULL.

Details

The parametric hierarchical ensemble variants are cross-validated maximizing the parameter on the metric selected in metric,

Value

A named matrix with the scores of the classes corrected according to the chosen TPR-DAG ensemble algorithm. Rows of the matrix are shrunk to testIndex.

Examples

```
data(graph);
data(scores);
data(labels);
data(test.index);
S.tpr <- tpr.dag.holdout(S, g, ann=NULL, testIndex=test.index, norm=FALSE, norm.type=NULL,
positive="children", bottomup="threshold.free", topdown="gpav", W=NULL, parallel=FALSE,
ncores=1, threshold=0, weight=0, kk=NULL, seed=NULL, metric=NULL, n.round=NULL);
```

```
transitive.closure.annotations
```


Transitive closure of annotations

Description

Perform the transitive closure of the annotations using ancestors and the most specific annotation matrix. The annotations are propagated from bottom to top, enriching the most specific annotations table. Rows correspond to genes and columns to functional terms.

Usage

transitive.closure.annotations(ann.spec, anc)

Arguments

ann.spec the annotation matrix of the most specific annotations ($0 / 1$): rows are genes and columns are functional terms.
anc
the ancestor list.

Value

The annotation table T: rows correspond to genes and columns to ontology terms. $T[i, j]=1$ means that gene i is annotated for the term $j, T[i, j]=0$ means that gene i is not annotated for the term j.

Examples

```
data(graph);
data(labels);
anc <- build.ancestors(g);
tca <- transitive.closure.annotations(L, anc);
```

```
tupla.matrix Tupla matrix
```


Description

Transform a named score matrix in a tupla, i.e. in the form nodeX nodeY score.

Usage

tupla.matrix(m, output.file = "net.file.gz", digits = 3)

Arguments

m
a named score matrix. It can be either a $m \times n$ matrix (where m are example and n are functional terms, e.g. GO terms) or it can be a square named matrix $\mathrm{m} \times \mathrm{m}$, where m are examples.
output.file name of the file on which the matrix must be written.
digits number of digits to be used to save scores of m (def. digits=3). The extension of the file can be plain (".txt") or compressed (".gz").

Details

Only the non-zero interactions are kept, while the zero interactions are discarded.

Value

A tupla score matrix stored in output.file.

Examples

```
data(wadj);
file <- tempfile();
tupla.matrix(W, output.file=file, digits=3);
```


Description

This function splits a dataset in k-fold in an unstratified way, i.e. a fold does not contain an equal amount of positive and negative examples. This function is used to perform k-fold cross-validation experiments in a hierarchical correction contest where splitting dataset in a stratified way is not needed.

Usage

unstratified.cv.data(S, kk = 5, seed = NULL)

Arguments

S matrix of the flat scores. It must be a named matrix, where rows are example (e.g. genes) and columns are classes/terms (e.g. GO terms).
kk number of folds in which to split the dataset (def. k=5).
seed seed for random generator. If NULL (def.) no initialization is performed.

Value

A list with $k=k k$ components (folds). Each component of the list is a character vector contains the index of the examples, i.e. the index of the rows of the matrix S.

Examples

data(scores);
foldIndex <- unstratified.cv.data(S, kk=5, seed=23);
weighted.adjacency.matrix
Weighted adjacency matrix

Description

Build a symmetric weighted adjacency matrix (wadj matrix) of a graph.

Usage

weighted.adjacency.matrix(file = "edges.txt")

Arguments

file name of the plain text file to be read (def. edges). The format of the file is a sequence of rows. Each row corresponds to an edge represented through a pair of vertexes (blank separated) and the weight of the edges. For instance: nodeX node Y score. The file extension can be plain (".txt") or compressed (".gz").

Value

A named symmetric weighted adjacency matrix of the graph.

Examples

```
edges <- system.file("extdata/edges.txt.gz", package="HEMDAG");
W <- weighted.adjacency.matrix(file=edges);
```

write.graph Write a directed graph on file

Description

Read an object of class graphNEL and write the graph as sequence of rows on a plain text file.

Usage

write.graph(g, file = "graph.txt.gz")

Arguments

$$
\begin{array}{ll}
\text { g } & \text { a graph of class graphNEL. } \\
\text { file } & \text { name of the file to be written. The extension of the file can be plain (".txt") or } \\
\text { compressed (".gz"). }
\end{array}
$$

Value

A plain text file representing the graph. Each row corresponds to an edge represented through a pair of vertexes separated by blank.

Examples

```
data(graph);
file <- tempfile();
write.graph(g, file=file);
```


Index

```
* package
    HEMDAG-package, 3
adj.upper.tri,4
auprc, 5, 51, 53
auroc, }
build.ancestors,8
build.children,9
build.consistent.graph,10
build.descendants,10
build.edges.from.hpo.obo, 11
build.parents,12
build.scores.matrix, 13
build.subgraph,}1
build.submatrix,14
check.annotation.matrix.integrity,15
check.dag.integrity, 16
check.hierarchy
    (hierarchical.checkers), 30
compute.flipped.graph, 16
compute.fmax (fmax), 22
constraints.matrix, 17
create.stratified.fold.df, 17
distances.from.leaves,18
example.datasets,19
F.measure.multilabel
    (multilabel.F.measure), 34
F.measure.multilabel,matrix,matrix-method
    (multilabel.F.measure), 34
find.best.f, 20
find.leaves, }2
fmax, 22
full.annotation.matrix, 23
g (example.datasets),19
gpav, 4, 24, 46, 48, 50, 53
* package
HEMDAG-package, 3
adj.upper.tri, 4
auprc, 5, 51, 53
auroc, 6
build.ancestors, 8
build.children, 9
build.consistent.graph, 10
build.descendants, 10
build.edges.from.hpo.obo, 11
build.parents, 12
build.subgraph, 14
build.submatrix, 14
check.annotation.matrix.integrity, 15
check.dag.integrity, 16
check.hierarchy
(hierarchical.checkers), 30
compute.flipped.graph, 16
compute.fmax (fmax), 22
constraints.matrix, 17
create.stratified.fold.df, 17
distances.from.leaves, 18
example.datasets, 19
F.measure.multilabel
(multilabel.F.measure), 34
F.measure.multilabel, matrix, matrix-method (multilabel.F.measure), 34
find.best.f, 20
find. leaves, 21
fmax, 22
full. annotation.matrix, 23
g (example.datasets), 19
gpav, 4, 24, 46, 48, 50, 53
```

gpav.holdout, 25
gpav.over. examples, 26, 26, 28, 46, 50, 53
gpav.parallel, 26, 27, 27, 28, 46, 50, 52
gpav.vanilla, 28
graph.levels, 29
HEMDAG (HEMDAG-package), 3
HEMDAG-package, 3
hierarchical.checkers, 30
htd, 4, 31, 46, 48, 50, 53
htd.holdout, 32
htd.vanilla, 33
L (example.datasets), 19
lexicographical.topological.sort, 33
multilabel.F.measure, 34, 51, 54
normalize.max, 35
obozinski.and
(obozinski.heuristic.methods), 36
obozinski.heuristic.methods, 4, 36
obozinski.holdout, 37
obozinski.max
(obozinski.heuristic.methods), 36
obozinski.methods, 38
obozinski.or (obozinski.heuristic.methods), 36
precision.at.all.recall.levels.single.class (pxr), 39
precision.at.given.recall.levels.over.classes (pxr), 39
pxr, 39
read.graph, 40
read.undirected.graph, 41

```
root.node,41
S (example.datasets),19
scores.normalization, 42,49
specific.annotation.list,43
specific.annotation.matrix, 43
stratified.cross.validation,44
stratified.cv.data.over.classes
    (stratified.cross.validation),
    44
stratified.cv.data.single.class
    (stratified.cross.validation),
    44
```

test.index (example.datasets), 19
tpr.dag, 4, 45
tpr.dag.cv, 49
tpr.dag.holdout, 51
transitive.closure.annotations, 54
tupla.matrix, 55
unstratified.cv.data, 56
W (example.datasets), 19
weighted.adjacency.matrix, 56
write.graph, 57

