
Parallax Mapping with Offset Limiting: A Per-Pixel
Approximation of Uneven Surfaces

Terry Welsh
terry@infiscape.com
Infiscape Corporation

January 18, 2004
Revision 0.3

Abstract
This paper describes parallax mapping and an enhancement that makes it more practical
for general use. Parallax mapping is a method for approximating the correct appearance of
uneven surfaces by modifying the texture coordinate for each pixel. Parallax is exhibited
when areas of a surface appear to move relative to one another as the view position
changes. This can be observed on any surface that is not flat. Parallax can be simulated
well by constructing a complete geometric model of a surface, but it can be computationally
expensive to draw all the necessary polygons. The method presented here requires no extra
polygons and approximates surface parallax using surface height data.

1 Introduction
The reader is assumed to have an understanding of computer graphics concepts and
experience using a graphics language such as OpenGL.

Modern graphics hardware allows us to replace traditional vertex transformations and
lighting equations with custom programs, known as “vertex programs” and “fragment
programs.” A vertex program acts upon vertex data, transforming vertices from Cartesian
coordinates to screen coordinates. Not only can vertex programs perform these necessary
transformations, they can also modify and output vertex positions, colors, normals, texture
coordinates, and other attributes. These outputs are interpolated across the surface of a
triangle defined by three such vertices to provide input for fragment programs. A fragment
program is executed once for every pixel that is drawn, receiving inputs in the form of
interpolated vertex data, texture data, and possibly other values. All this information is
used to compute the final color of each pixel.

Using vertex and fragment programs, it is possible to replace the traditional vertex

projection and lighting equation used by real-time computer graphics hardware. The
method presented in this paper applies these capabilities to achieve an approximation of
the parallax that can be observed on pitted or uneven surfaces.

The following text presents pieces of vertex and fragment programs that use the syntax of
OpenGL’s ARB_vertex_program version 1.0 and ARB_fragment_program version 1.0.

2 Related Work
2.1 Parallax Mapping
This technique approximates the parallax that can be observed on uneven surfaces.
Parallax mapping [3] alone will only approximate parallax and will not simulate occlusions,
silhouettes, or self shadowing. It is a 2D process, so no extra polygons are required. It will
be explained in detail in Section 4.1.

2.2 Displacement Mapping
The most straightforward way to achieve parallax effects when simulating a complex
complex surface is to build a detailed model of the surface. Displacement mapping [2] is a
technique that subdivides a surface into a large number of small triangles. The vertices of
these triangles are then displaced perpendicularly to the surface normal according to some
height function. The vertices can also be assigned new normals to accurately simulate the
surface lighting.

2.3 Relief Texture Mapping
Relief texture mapping (RTM) [4] is very similar to parallax mapping in that it attempts to
simulate parallax with an image warping technique. Relief textures are pre-warped
through a software process before being sent to the graphics hardware. Using many relief
textures in a single application is likely to prevent the application from achieving real-time
frame rates. However, RTM gives high quality results. It correctly handles self-occlusions
and produces texel-accurate silhouettes.

2.4 View-Dependent Displacement Mapping
View-dependent displacement mapping (VDM) [5] is a per-pixel rendering technique
capable of self-shadowing, occlusions, and silhouettes. It stores a many-dimensional
surface description in several texture maps, which are pre-computed from a height map.
Although it requires a large amount of memory for textures, VDM produces convincing
images at high frame rates. A good parallax effect is achieved because VDM textures store
the relation ship between texels along many viewing directions.

3 Background
The concept of tangent space is probably the most important piece of background
information required to understand parallax mapping. Tangent space is a coordinate
system that is oriented relative to a given surface. It is defined by three axes, the tangent,
binormal, and normal. The tangent and binormal lie in the plane of the surface, while the
normal is perpendicular to the plane of the surface. If a surface is curved, then tangent
space rotates as you move along that surface.

To apply bump mapping [1] with a normal map, it is necessary to compute the dot product
of a vector pointing toward the light with a normal for each pixel. Because the normal map
is mapped to the surface, it already lies flat in tangent space. To compute the necessary dot
products, the light vectors must lie in the same coordinate system, so they are transformed
into tangent space as well. Parallax mapping uses the concept of tangent space in the same
manner.

4 Parallax Mapping
4.1 The basics
When a texture map
representing an uneven
surface is applied to a flat
polygon, the surface
appears to get flattened.
In Figure 1 you can see
that when viewing the
polygon along the
depicted eye vector, you
will see point A of the
surface. However, if you
were viewing the actual surface instead of a texture mapped polygon, you would see point
B. If the texture coordinate corresponding to point A could be corrected, then you could
view point B instead. By offsetting all the texture coordinates individually, high areas of
the surface would shift away from the eye and low areas of the surface would shift toward
the eye. Thus parallax would be achieved for the simulated surface. The process of
parallax mapping requires that, for each pixel drawn, a texture coordinate, used to index
one or more texture maps, be corrected by some displacement. This technique
approximates the parallax seen when moving the eye relative to an uneven surface.

Three components are
required to compute an
offset texture coordinate
for a pixel: a starting
texture coordinate, a
value of the surface
height, and a tangent
space vector pointing
from the pixel to the eye
point. In Figure 2 you
can see how it is possible
to modulate the eye
vector by the surface height to obtain a texture coordinate offset.

A standard height map is used to represent the varying height of the surface. The height
map correlates to the surface's regular texture map and stores one height value per texel.
These values are in the range {0.0, 1.0}.

Since any parallax effect depends on point of view, a vector from a point on the surface to
the eye is required. The original texture coordinate and height values are already
represented in tangent space, so the eye vector must be as well. The eye vector can be
created in global coordinates by subtracting a surface position from the eye position and
transforming the resulting vector into tangent space. An application programmer must
supply a tangent, binormal, and normal at each vertex. These can be used to create a
rotation matrix at every point on the surface which will transform vectors from the global
coordinate system to tangent space.

To compute a texture coordinate offset at a point P, the eye vector must first be normalized
to produce a normalized eye vector V. The height h at the original texture coordinate To is
read from the height map. The height is scaled by a scale factor s and biased by a bias b in
order to map the height from the range {0.0, 1.0} to a range that better represents the

A

P

T
n

T
o

eye
vector

offset

polygon

height map

Figure 2. Calculating the offset.

Figure 1. The observed texel is incorrect because the texture map has been
flattened onto the polygon.

B

A

T(corrected)T(actual)

eye
vectorpolygon

real surface

physical properties of the surface being simulated. For example, a brick wall texture might
cover a 2x2 meter area. Also imagine the surface of the bricks and the recessed grout give
the surface a thickness of 0.02m. The correct scale factor for this material would be 0.02 /
2 = 0.01. Coupling this with a bias of 0.0 would then remap the height field to a range of
{0.0, 0.01}. Using a bias of -0.01 would remap the range to {-0.99, 0.0}. The average of
these two extremes is probably best for most textures.

b = s · -0.5

A bias that excludes 0.0 from the range would be impractical since that assumes that the
surface being simulated does not intersect the polygon that represents it. The new scaled
and biased height hsb is given by

hsb = h · s + b

An offset is then computed by tracing a vector parallel to the polygon from the point on the
surface directly above P to the eye vector. This new vector is the offset and can be added to
To to produce the new texture coordinate Tn.

Tn = To + (hsb · V{x, y} / V{z})

The new texture coordinate is used to index a regular texture map and any other maps
applied to the surface.

4.2 Implementation
Now to implement this on some fast graphics hardware. Since vector data can be
interpolated between connected vertices by graphics hardware, the simplest solution is to
calculate a vector from each vertex to the eye point within a vertex program. In the
language of ARB_vertex_program, these vectors can be calculated with the following code.

input data
PARAM mvit[4] = {state.matrix.modelview.invtrans};
ATTRIB tangent = vertex.texcoord[1];
ATTRIB binormal = vertex.texcoord[2];
ATTRIB normal = vertex.normal;

vector pointing to eye
SUB eyevec, mvit[3], vertex.position;

transform eye vector into tangent space (DO NOT NORMALIZE)
DP3 result.texcoord[3].x, eyevec, tangent;
DP3 result.texcoord[3].y, eyevec, binormal;
DP3 result.texcoord[3].z, eyevec, normal;
MOV result.texcoord[3].w, 1.0;

The tangent, binormal, and normal attributes represent the coordinate axes of the tangent
space surrounding each vertex. The eye vector is stored in texcoord[3], which is a
parameter that will be interpolated across the surface so that each pixel drawn will receive
a unique eye vector.

The remainder of the computation is performed on a per-pixel basis in a fragment program.

TEMP height, eyevects, newtexcoord, temp;

normalize tangent space eye vector
DP3 temp, fragment.texcoord[3], fragment.texcoord[3];
RSQ temp, temp.x;

MUL eyevects, fragment.texcoord[3], temp;

calculate offset and new texture coordinate
TEX height, fragment.texcoord[0], texture[2], 2D;
MAD height, height, 0.04, -0.02; # scale and bias
RCP temp, eyevects.z;
MUL height, height, temp;
MAD newtexcoord, height, eyevects, fragment.texcoord[0];

The variable newtexcoord stores the shifted texture coordinate, which is used to index
other texture maps.

4.3 Offset Limiting
So far this paper has described a 2D approximation with a significant flaw. The
computation presented in Section 4.1 assumes that the point at Tn has the same height as
the point at To, which is rarely true. Any surface that exhibits parallax will have varying
heights.

At steep viewing angles, texture coordinate offsets tend to be small. A small offset means
that the height at Tn is likely to be very close to the height at To. Consequently, the offset
will be nearly correct. As the viewing angle becomes more shallow, offset values approach
infinity. When offset values become significantly large, the odds of Tn indexing a similar
height to that of To fade away to random chance. This problem can reduce surfaces with
complex height patterns to a shimmering mess of pixels that don’t look anything like the
original texture map.

A simple solution to this
problem is to limit the
offsets so that they never
grow longer than hsb.
Since parallax mapping is
an approximation, any
limiting value could be
chosen, but this one
works well enough and it
reduces the code in the
fragment program by two
instructions. The new
equation is

Tn = To + (hsb · V{x, y})

Figure 3 shows that the texture coordinate offset will be no longer that the height at To.
And the simplified fragment code is

TEMP height, eyevects, newtexcoord;

normalize tangent space eye vector
DP3 temp, fragment.texcoord[3], fragment.texcoord[3];
RSQ temp, temp.x;
MUL eyevects, fragment.texcoord[3], temp;

calculate offset and new texture coordinate
TEX height, fragment.texcoord[0], texture[2], 2D;
MAD height, height, 0.04, -0.02; # scale and bias
MAD newtexcoord, height, eyevects, fragment.texcoord[0];

P

Figure 3. Calculating the offset with limiting.

 T
n

 T
o

eye vector

offset

polygon

height map

This simplification keeps textures looking good at shallow angles, but it also reduces the
parallax effect, which isn’t as bad as it sounds. Parallax effects are best viewed close up,
but surfaces viewed at shallow angles tend to be relatively far away from the eye point. As
surfaces recede into the distance they become smaller, losing detail to minification and
texture filtering.

5 Applying Parallax Mapping
Parallax mapping is a computationally inexpensive, approximate 2D effect that. All that it
does is modify texture coordinates in order to warp a texture mapped image. Because of its
ease of implementation, it can be used in conjunction with other types of mapping. The
new texture coordinates can be used to index regular texture maps for coloring a surface,
normal maps for bump mapping and computing reflection vectors, shininess maps for
computing reflectivity, and probably any other standard type of texture data that your
application may use.

The modified texture coordinates are not perfect, though, so care must be taken in
producing height maps and specifying scale and bias values. Because of the faulty
assumption that height values are the same from one texture coordinate to the next, height
maps with wildly varying heights tend to cause problems. Parallax mapping is incapable of
detecting areas of a surface that occlude other areas, which is common on a surface with
steep angles. This technique will produce the most attractive results when using height
maps with gradual gradations and shallow angles. The opposite extreme of height map can
result in distracting artifacts when a surface is viewed at shallow angles.

6 References
1. James F. Blinn. “Simulation of Wrinkled Surfaces,” Computer Graphics (SIGGRAPH ' 78

Proceedings), volume 12, pages 286-292, August 1978.

Figure 4. Comparison of various rendering techniques. Notice the artifacts caused by steep angles in the height
map. Subtle height changes like those in the lower-right yield the best results.

Texture map

Texture map
and bump
mapping

No parallax mapping Parallax mapping

2. Robert Cook. “Shade trees”, Computer Graphics (SIGGRAPH ' 84 Proceedings) 13(3),
223-231, 1984.

3. Tomomichi Kaneko, et al. “Detailed Shape Representation with Parallax Mapping,”
ICAT, 2001.

4. Oliveira M., Bishop G., and McAllister D. “Relief Texture Mapping,” Computer Graphics
(SIGGRAPH ' 00 Proceedings), 359-368, 2000.

5. Lifeng Wang, et al. “View-Dependent Displacement Mapping,” ACM Transactions on
Graphics, Volume 22, Issue 3, July 2003.

7 Appendix
A vertex program for computing bump mapping and parallax mapping:

!!ARBvp1.0

PARAM mvi[4] = {state.matrix.modelview.inverse};
PARAM mvit[4] = {state.matrix.modelview.invtrans};
PARAM mvp[4] = {state.matrix.mvp};

ATTRIB tangent = vertex.texcoord[1];
ATTRIB binormal = vertex.texcoord[2];
ATTRIB normal = vertex.normal;

TEMP light0pos, light0vec;
TEMP light1pos, light1vec;
TEMP eyevec, eyevects;
TEMP temp;

vector pointing to light0
DP4 light0pos.x, mvi[0], state.light[0].position;
DP4 light0pos.y, mvi[1], state.light[0].position;
DP4 light0pos.z, mvi[2], state.light[0].position;
DP4 light0pos.w, mvi[3], state.light[0].position;
SUB light0vec, light0pos, vertex.position;

transform light0 vector into tangent space (DO NOT NORMALIZE)
DP3 result.texcoord[1].x, light0vec, tangent;
DP3 result.texcoord[1].y, light0vec, binormal;
DP3 result.texcoord[1].z, light0vec, normal;
MOV result.texcoord[1].w, 1.0;

vector pointing to light1
DP4 light1pos.x, mvi[0], state.light[1].position;
DP4 light1pos.y, mvi[1], state.light[1].position;
DP4 light1pos.z, mvi[2], state.light[1].position;
DP4 light1pos.w, mvi[3], state.light[1].position;
SUB light1vec, light1pos, vertex.position;

transform light1 vector into tangent space (DO NOT NORMALIZE)
DP3 result.texcoord[2].x, light1vec, tangent;
DP3 result.texcoord[2].y, light1vec, binormal;
DP3 result.texcoord[2].z, light1vec, normal;
MOV result.texcoord[2].w, 1.0;

vector pointing to eye
SUB eyevec, mvit[3], vertex.position;

transform eye vector into tangent space (DO NOT NORMALIZE)
DP3 result.texcoord[3].x, eyevec, tangent;
DP3 result.texcoord[3].y, eyevec, binormal;

DP3 result.texcoord[3].z, eyevec, normal;
MOV result.texcoord[3].w, 1.0;

regular output
DP4 result.position.x, mvp[0], vertex.position;
DP4 result.position.y, mvp[1], vertex.position;
DP4 result.position.z, mvp[2], vertex.position;
DP4 result.position.w, mvp[3], vertex.position;
MOV result.color, vertex.color;
MOV result.texcoord[0], vertex.texcoord[0];

END

A fragment program for computing parallax mapping and bump mapping:

!!ARBfp1.0

PARAM light0color = state.light[0].diffuse;
PARAM light1color = state.light[1].diffuse;
PARAM ambient = state.lightmodel.ambient;

TEMP eyevects;
TEMP rgb, normal, height, temp, bump, total;
TEMP light0tsvec, light1tsvec;
TEMP newtexcoord;

normalize tangent space eye vector
DP3 temp, fragment.texcoord[3], fragment.texcoord[3];
RSQ temp, temp.x;
MUL eyevects, fragment.texcoord[3], temp;

calculate offset and new texture coordinate
TEX height, fragment.texcoord[0], texture[2], 2D;
MAD height, height, 0.04, -0.02; # scale and bias
MAD newtexcoord, height, eyevects, fragment.texcoord[0];

get texture data
TEX rgb, newtexcoord, texture[0], 2D;
TEX normal, newtexcoord, texture[1], 2D;

remove scale and bias from the normal map
MAD normal, normal, 2.0, -1.0;

normalize the normal map
DP3 temp, normal, normal;
RSQ temp, temp.r;
MUL normal, normal, temp;

normalize the light0 vector
DP3 temp, fragment.texcoord[1], fragment.texcoord[1];
RSQ temp, temp.x;
MUL light0tsvec, fragment.texcoord[1], temp;

normal dot lightdir
DP3 bump, normal, light0tsvec;

add light0 color
MUL_SAT total, bump, light0color;

normalize the light1 vector
DP3 temp, fragment.texcoord[2], fragment.texcoord[2];
RSQ temp, temp.x;
MUL light1tsvec, fragment.texcoord[2], temp;

normal dot lightdir
DP3 bump, normal, light1tsvec;

add light1 color
MUL_SAT bump, bump, light1color;
ADD_SAT total, total, bump;

add ambient lighting
ADD_SAT total, total, ambient;

multiply by regular texture map color
MUL_SAT result.color, rgb, total;

END

