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Abstract—We introduce Sparse Entropy Clustering (SEC)
which uses minimum entropy criterion to split high dimensional
binary vectors into groups. The idea is based on the analogy
between clustering and data compression: every group is reflected
by a single encoder which provides its optimal compression. Fol-
lowing the Minimum Description Length Principle the clustering
criterion function includes the cost of encoding the elements
within clusters as well as the cost of clusters identification.
Proposed model is adopted to the sparse structure of data
– instead of encoding all coordinates, only non-zero ones are
remembered which significantly reduces the computational cost
of data processing. Our theoretical and experimental analysis
proves that SEC works well with imbalance data, minimizes the
average entropy within clusters and is able to select the correct
number of clusters.

I. INTRODUCTION

Clustering is usually the first choice for analysis large
amount of high dimensional data when no prior knowledge
is given [1]. It is an unsupervised technique which discovers
meaningful groups based only on the internal structure of data
and assumed similarity criterion. Nevertheless, many typical
clustering approaches applied to high dimensional sparse
problems, which occur often, e.g., in cheminformatics [2] or
natural language processing (NLP) [3], fail due to the curse
of dimensionality which makes the distance between objects
to be less informative [4]. Moreover, their straightforward use
could lead to substantial increase of computational cost.

In this paper we introduce Sparse Entropy Clustering (SEC)
for grouping sparse binary vectors contained in high dimen-
sional space. This is an information-theoretic approach (based
on the entropy criterion function) which follows the analogy
between clustering and data compression. Its basic idea states
that data should be split into such clusters which could be
efficiently compressed by using separate encoder for each
group. Consequently, the elements with similar probability
distributions are grouped together. Following the Minimum
Description Length Principle (MDLP) [5], [6] our method also
takes into account the complexity of the model by introducing
the cost of clusters (encoders) identification (see Figure 2).
This regularization term allows to select the optimal number
of groups, see Theorem 3.1 and Figure 4 for details of our
theoretical analysis.

Fig. 1. Running times of a single iteration of SEC and k-way for clustering
of artificial data set with a constant number of non-zero bits in the entire set.
Both algorithms are optimized for processing sparse high dimensional data.

SEC adjusts the optimal compression model to the
sparse structure of data, i.e., instead of encoding all coor-
dinates, only non-zero positions are remembered (see Figure
3). This substantially reduces the statistical code-length for
describing data and the corresponding computational cost
for its processing (see Figure 1). The constructed clustering
criterion function, reflecting the cost of data compression by
applying multi-encoders model, can be practically optimized in
the k-means-like style using fast iterative Hartigan procedure
[7]. The running time of a single iteration is determined
by the total number of non-zero bits in the entire data set.
The influence of the number of instances and data dimension
is marginal (see Figure 1).

In the experimental study we demonstrate that our method
is able to discover true structure (probability distribution)
of data even for highly imbalanced sets (see Figure 6 and
7). Its verification on texts clustering shows that SEC gives
significantly higher compatibility with reference partition for
selected examples than baseline k-medoids and hierarchical
clustering techniques as well as k-way method implemented
in Cluto software (see Figure 8). In the case of real data set
of chemical compounds its performance is comparable to k-
way and better than the baseline (see Figure 10). Moreover,
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Fig. 2. Multi-encoders model.

SEC has a tendency to produce partitions with a relatively
low average entropy within clusters (see Figures 9 and 11) –
this criterion is often used in NLP.

The paper is organized as follows. A brief summary of
related work is presented in the next section. The third section
introduces SEC clustering model and contains our main
theoretical result concerning model simplification. Practical
realization of the algorithm is given in fourth section. The
experiments are included in fifth section, while the sixth part
contains a conclusion.

II. RELATED WORK

Our method follows an information-theoretic approach and
is related with minimum entropy clustering introduced in
[8], [9] and further developed in [10], [11]. Contrary to
the classical entropy clustering which focuses on minimizing
the entropy within groups, SEC also includes the cost of
maintaining the model. This partially refers to MDLP [5] –
different realizations of this idea in the case of clustering
were considered in [12], [13]. However, in our setting we do
not take into account the entire complexity of the model, but
only its most meaningful part defining the cost of clusters
identification similarly to the cross-entropy clustering (CEC)
approach introduced in [6]. This regularization provides a
natural way to discover the optimal number of groups.

Most of entropy-based clustering methods were defined for
processing dense, either continuous or discrete data structures
[6], [11], [13]. The proposed model is adopted to work
efficiently with sparse binary vectors. This kind of data appears
very often in real life examples as text mining [3] or computer-
aided drug design [2]. Since binary attributes can be seen
as categories, our method can be compared not only with
techniques focusing on binary data type, but also with a
wide range of categorical data clustering techniques [14]. In
particular, one of the most powerful softwares for clustering
high dimensional sets is Cluto [15] which pays a particular
attention to the sparsity of data.

Due to the categorical nature of binary data, the standard
euclidean distance is not an optimal choice for comparing
objects. A brief summary of available similarity measures for
binary (and categorical) vectors is presented in [12], [16]. It is
worth to mention that typical clustering methods which rely on
pairwise similarity, as hierarchical approaches [17] or spectral
techniques [18], [19], can be directly used for this type of
data by providing an appropriate distance matrix. On the other
hand, to apply the popular k-means method [20] we have to
be able to calculate the mean of a cluster. Since the center
is not-well defined in non-euclidean space, the corresponding
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Fig. 3. Sparse data coding.

k-medoids method [21] or Wards approach [22], [23] are more
frequently used.

III. THEORETICAL MODEL

Minimum Description Length Principle (MDLP) states that
the best description of data is the one that leads to the best
compression rate. In this section we will present our theoretical
model of clustering high dimensional sparse binary vectors
which follows the concept of MDLP. We start with discussing
a basic sparse compression model which uses a single encoder
for the entire data set. The next part covers its extension to
the case of k-encoders which allows to split data into groups.
We also consider simplification of the model which allows to
select optimal number of clusters (see Theorem 3.1).

A. Sparse coding model

To describe our clustering model, let us assume that X is
a data set containing D-dimensional binary vectors, i.e., X ⊂
{0, 1}D. Observe that in the case of sparse representation it
is not profitable to remember the values at all positions since
most of places are occupied by zero bits. Instead of saving the
entire vector to the memory, it is more convenient to encode
only the numbers of coordinates with bit 1 (see Figure 3). This
strategy is commonly used in sparse vector structures.

Following the above motivation let us consider a distribution
p1, . . . , pD of non-zero bits at particular coordinates. In other
words, we ignore all empty bits and restrict the attention to the
positions holding non-zero values. Therefore, the probability
that j-th bit is non-zero equals:

pj =
P (xj = 1)∑D
l=1 P (xl = 1)

,

where x = (x1, . . . , xD) is a random vector representing a
data set element.

The Shannon theory states that the code-lengths in an
optimal prefix-free coding depend strictly on the associated
probability distribution. Given a distribution p1, . . . , pD of
positions with bit 1 it is possible to construct D codes,
each with the length1 − log pj . Observe that short codes
correspond to the most frequent symbols, while the longest
ones are related with rare objects. Given an arbitrary element

1in the limiting case



x = (x1, . . . , xD) we encode its non-zero coordinates and
obtain that the memory cost equals∑

j:xj=1

− log pj

bits. The average code-length per one symbol is given by the
Shannon entropy of p1, . . . , pD:

h(p1, . . . , pD) =

D∑
j=1

pj · (− log pj).

Although we built prefix-free codes for non-zero coordi-
nates, we have to be able to distinguish encoded represen-
tations of subsequent objects. It is realized by remembering
the number of non-zero positions in a vector. Let qt, for
t = 1, . . . , D, be a probability that exactly t positions contain
non-zero bits:

qt = P

 D∑
j=1

xj = t

 .

We can also create prefix-free codes for a distribution
q1, . . . , qD. Therefore, if x contains t non-zero bits then its
total code-length equals:

− log qt +
∑
j:xj=1

− log pj .

B. Clustering model

Real data sets are usually very complex and diverse. Since
they are often generated by multiple sources, it might be
inefficient to use a single encoder for the optimal description.
It is more profitable to construct multiple encoders, each
designed for one homogeneous part of data. Such an approach,
which lies in the heart of our idea of clustering, leads to a
natural division of a data set into groups.

As shown in the previous section the form of encoder
depends strictly on the distribution of a data set. Since we
aim at the minimization of statistical code-length, an optimal
multi-encoder scheme should split data into groups, where
each one contains instances described by the same simple
probability distribution. Then, it would be possible to select
specialized algorithm for each group which provides relatively
short expected code-length. To obtain this goal, we partially
follow MDLP and CEC approaches [5], [6].

Let us assume that X1, . . . , Xk is a partition of X into
pairwise disjoint sets. Every subset Xi is described by its own
optimal coding algorithm. Observe that to encode an instance
x ∈ Xi one should remember a group identifier and the code
of x defined by i-th encoder, i.e.,

code(x) = [code(Xi), codei(x)]. (1)

Such a strategy enables the unique decoding because a re-
trieved coding algorithm allows subsequently for discovering
an instance2 (see also Figure 2). The compression procedure

2For a complete compression scheme we should also remember the header
holding all codebooks. It can be discarded for very large data sets.

should find a division of X and design k-coding algorithms
which minimize the expected length of code given by (1).

To design the optimal codes for i-th algorithm, we consider
the probability distribution pi1, . . . , p

i
D of non-zero bits in Xi,

i.e.,

pij =
P (xj = 1|x ∈ Xi)∑D
j=1 P (xj = 1|x ∈ Xi)

and the probabilities qit, for t = 1, . . . , D, that an arbitrary
element of Xi contains exactly t non-zero bits:

qit = P

 D∑
j=1

xj = t|x ∈ Xi

 .

Let Li denote the mean number of non-zero bits of a vector
contained in Xi:

Li =

D∑
t=1

tqit. (2)

Then, the average cost of encoding a vector by i-th algorithm
is given by:∑D

t=1 q
i
t(− log qit) + Li ·

∑D
j=1 p

i
j · (− log pij) =

h(qi1, . . . , q
i
D) + Lih(pi1, . . . , p

i
D),

(3)

To remember groups identifiers we optimize the code-
lengths in a similar manner. Given a probability of generating
an instance from a cluster Xi (the prior probability):

pi = P (x ∈ Xi),

the optimal code-length of i-th identifier is given by

− log pi. (4)

This term is a regularization factor and allows to keep the
model as simple as possible. Since an introduction of any
new cluster increases the total code-length, it might occur that
maintaining less number of groups is more profitable. In other
words, we penalize the model for its complexity.

The SEC clustering cost function gathers the formulas (3)
and (4) and averages them over all clusters which represents
the statistical cost of encoding a symbol in the multi-encoder
sparse model.

SEC optimization problem. Let X = {0, 1}D be a data set
of D-dimensional binary vectors. SEC aims at finding a
partition of X into pairwise disjoint sets X1, . . . , Xk which
minimizes the average code-length using k encoders given
by:

k∑
i=1

pi · (− log pi + h(qi1, . . . , q
i
D) + Lih(pi1, . . . , p

i
D)), (5)

where Li is defined by (2).

As mentioned, the regularization term in the SEC cost func-
tion allows for determining an optimal, from a compression
point of view, number of clusters. In a basic data model
generated from the mixture of two sources, we present an



analytical criterion when it is more profitable to use two
encoders instead of a single one. This result, even in its
simplified form, is important, as it shows that (contrary to most
clustering methods) in some cases it is profitable to reduce the
number of groups.

Let us denote by P (p, α, d), for p, α ∈ [0, 1] and d ∈
{0, . . . , D}, a distribution which generates bit 1 at j-th po-
sition with probability:

pj =

{
pα, j = 1, . . . , d,
p(1− α), j = d+ 1, . . . , D.

(6)

Then our theoretical result is as follows:
Theorem 3.1: Let X ⊂ {0, 1}D be a data set generated from

the mixture of two probability distributions:
1

2
P (p, α, d) +

1

2
P (p, 1− α, d). (7)

where p, α ∈ [0, 1] and d = D
2 . Then it is more profitable to

use two encoders determined by initial components instead of
a single one, if and only if the following inequality holds:

−α logα− (1− α) log(1− α) < 1− 1

pd
. (8)

Before we formally prove the above statement, let us first
give its interpretation. To visualize the situation we can arrange
a data set in a matrix, where the rows correspond to the
mixture components (instances), while the columns are related
with their attributes:(

pα
p(1− α)︸ ︷︷ ︸

d

p(1− α)
pα︸ ︷︷ ︸
d

)
The matrix entries show the probability of generating bit 1

at a given coordinate belonging to one of four matrix regions.
The parameter α determines how similar are the instances

generated from underlying distributions. For α = 1
2 both

components are identical, while for α ∈ {0, 1} we get its
perfect distinction. Observe that L = pd is an average number
of non-zero bits in a vector. Therefore, the decision of using
one or two encoders (8) depends on the similarity level α
and the average number of coordinates occupied by non-zero-
bits. For instance, one can inspect that for small number of
non-zero positions, e.g., L = 5 we use two encoders when
α ∈ [0.25, 0.75], while for more dense data, e.g., L = 50
this interval is reduced to [0.41, 0.59]. Figure 4 illustrates this
relation.

Proof: (of Theorem 3.1) To derive the inequality (8) we
have to compare two cost functions for one and two clusters.

Let us observe that the probability that a vector contains
t non-zero coordinates is identical in both models. Conse-
quently, the average number of non-zero bits is also the same
and equals:

pdα+ pd(1− α) = pd.

The distribution of non-zero bits in the case of one cluster
is given by:

1
2 (pα+ p(1− α))

1
22d(pα+ p(1− α))

=
1

2d
.

Fig. 4. Illustration of Theorem 3.1. Given a data set described by (7), it is
more profitable to use two encoders instead of one in the blue area of graph.
This region is determined by the relation between mixing level α and the
mean number of non zero bits L = pd in a vector.

On the other hand, the corresponding quantity for a distribution
P (p, α, d) is given by:{

pα
pdα+pd(1−α) = α

d , for j = 1, . . . , d,
p(1−α)

pdα+pd(1−α) = 1−α
d , for j = d+ 1, . . . , 2d.

The analogue formulas hold for a model generated from
P (p, a− α, d).

Comparing the cost functions of underlying models, it is
more efficient to use two encoders instead of a single one if:

(pd) · 2d · 1
2d (− log 1

2d ) >
2 · 12

(
− log 1

2 − (pd)dαd log α
d − (pd)d 1−α

d log 1−α
d

)
,

which is equivalent to

pd(1 + log d) > 1− pdα log
α

d
− pd(1− α) log

1− α
d

.

Elementary calculations lead to the inequality:

pd > 1− pd(α logα+ (1− α) log(1− α)),

which completes the proof.

IV. PRACTICAL REALIZATION

In this section we show how to estimate the probabilities
occurring in the SEC cost function (5) and present numerically
efficient algorithm for its optimization.

We assume that a data set X is split into k clusters
X1, . . . , Xk. Let us denote the number of elements in Xi with
j-th position occupied by bit 1:

nij =
∑
x∈Xi

xj , where x = (x1, . . . , xD) ∈ X

and a total number of non-zero positions within Xi:

si =

d∑
j=1

nij .



1: INPUT:
2: X ⊂ {0, 1}D - data set
3: k ≥ 2 - initial number of clusters
4: OUTPUT:
5: Final partition (X1, . . . , Xk) of X
6: INITIALIZATION:
7: (X1, . . . , Xk)← initial partition of X
8: ITERATION:
9: while NOT Done do

10: Done← True
11: for all x ∈ X do
12: Xnew ← argmax

Y ∈(X1,...,Xk)

∆E(x, Y )

13: // membership minimizing the cost
14: if Xnew 6= x.cluster then
15: Done← False
16: Reassign(x,Xnew, Xold)
17: // reassign x from Xold to Xnew

18: UpdateParams((Xnew), (Xold), x)
19: // recalculate clusters parameters
20: end if
21: end for
22: end while

Fig. 5. Pseudocode of SEC.

This allows to estimate the distribution of non-zero places in
i-th group:

p̂ij =
nij
si

and the probability that exactly t positions contain bit 1:

q̂it =
|{x ∈ Xi :

∑d
l=1 xl = t}|

|Xi|
Consequently, the mean amount of non-zero coordinates in Xi

equals:

L̂i =
si

|Xi|
.

Finally, the prior probability of a group Xi can be approxi-
mated by the relative number of instances belonging to Xi:

p̂i =
|Xi|
|X|

.

After plugging these estimators into the SEC cost function,
we get:

log |X|+ 1

|X|
∑
i

(
h(L̂i1, . . . , L̂

i
d) + si log si + h(ni1, . . . , n

i
d)
)
.

(9)
To obtain an optimal division of X , the SEC cost function

has to be minimized. Since it is not practically feasible to
calculate its global minimum (see explanations given for k-
means [24]), one can use some iterative algorithms to find one
of its local minima. In the present paper we use a modified
version of Hartigan procedure, which is commonly applied in
an on-line version of k-means [7].

The minimization procedure consists of two steps: initializa-
tion and iteration. In the initialization stage, k ≥ 2 nonempty
groups are formed in an arbitrary manner. In the simplest
case, it could be a random initialization, but to obtain better
results one can also apply k-means++ seeding or use a partition
returned by some fast and simple algorithm. In the iteration
step the elements are reassigned between clusters in order to
minimize the value of criterion function. A pseudocode of
SEC is shown in Figure 5.

An efficient implementation of this algorithm requires fast
recalculation of SEC cost function (9) after switching the
element between clusters (line 18). Observe that a vector
ni = (ni1, . . . , n

i
D) can be updated after assigning a given

element x to Xi by passing through its non-zero bits. This
operation takes linear time with respect to the number of its
non-zero coordinates for the sparse data structures. Similar ar-
gument holds for the recalculation of other clusters parameters,
i.e., si, |Xi| and corresponding entropies. In consequence, the
computational complexity of one iteration of SEC (lines 11–
21) can be approximated by the product of the total number of
non-zero bits in the entire data set and the number of clusters.

V. EXPERIMENTAL RESULTS

In this section we demonstrate practical capabilities of SEC
model and present a short evaluation study. The experiments
were carried out on artificial examples, texts corpora and real
data set of chemical compounds. We compared our technique
with related methods commonly used in the case of binary
data sets: k-medoids and hierarchical clustering with Jaccard
distance function 3, and k-way method, the default algorithm
implemented in Cluto software [15].

A. Artificial data sets

In the first experiment we examined the algorithms’ sensitiv-
ity to data imbalance. For this purpose a data set X ⊂ {0, 1}D,
where D = 100, was generated from the mixture of two binary
sources:

ωP (p, α, d) + (1− ω)P (p, 1− α, d), (10)

where p = 0.1, α = 0.05, d = D/2 are fixed and ω changes
from 0 to 1 (see (6) for the definition of distribution P ). In
other words, the probability of producing non-zero bit at any
of d first positions equals α ·p = 0.005 for the first component
and (1−α) ·p = 0.095 for the second. The converse situation
holds for coordinates greater than d. Roughly speaking, the
factor α controls the probability of generating bit 1 at the
same position by both components – its low value makes the
sources very different.

The mixing parameter ω specifies the number of instances
produced by a particular probability distribution. One would
expect that the clustering would reveal objects generated by
particular component. Observe that for ω close to 0 or 1 the
groups become extremely imbalanced which might be hard
to discover by the algorithms. To verify the above hypothesis

3implemented in R package cluster



Fig. 6. Imbalanced data. The ratio of clusters sizes for a data set generated
from the mixture of two binary sources (10). The number of instances
produced by each component is controlled by the parameter ω. The optimal
curve should be a linear function y = 1− ω.

we ran each method with two groups and reported resulting
clusters sizes, Figure 6. The optimal curve preserving the
original components equals y = 1− ω.

It is evident that k-medoids is not completely able to detect
the natural structure of data. Other algorithms gave satisfactory
results for ω ∈ [0.1, 0.9]. Out of this range k-way began
to create groups of similar sizes. Slightly better results were
produced by hierarchical clustering method, but the negative
effect caused by the data imbalance appeared for ω < 0.05
and ω > 0.95. The SEC was the most stable and robust on
the change of parameter ω.

In the second experiment we considered a data set sampled
from the mixture of sources given by:

1

2
P (p, α, d) +

1

2
P (p, 1− α,D − d), (11)

where p = 0.1, α = 0.05, D = 100 are constants and d ranges
form 0 to D. When d < D

2 then the second source is identified
by the smaller number of bits than the first one. Therefore, by
changing the value of parameter d we scale the number of
features characteristic for components.

The optimal clustering should be invariant with respect to
the shift of dimension bound d. Since the number of instances
produced by every distribution is constant then the clusters
should remain equally-sized. Each algorithm was run with two
clusters and the ratio of returned clusters sizes was marked in
the Figure 7. The full invariance corresponds to the constant
curve y = 1

2 .
The results produced by SEC and k-way for d

D ∈ [0.2, 0.8]
are very similar. Nevertheless, outside of this range k-way
began gradually assigning more objects to one cluster. This
negative effect was not so evident in the case of SEC,
which preserved the natural proportions of clusters sizes. Both
baseline methods gave very inaccurate results which confirms
that they are very sensitive to such data structure.

B. Texts corpora

Set-of-words is the simplest vector representation a text.
Given a dictionary of words, a sentence is represented as

Fig. 7. Imbalanced features. The ratio of clusters sizes for data generated
from the mixture of two binary sources (11). The number of features
characteristic for each component is controlled by the parameter d. The
optimal curve should be a constant function y = 1

2
.

a binary vector, where coordinates indicate the presence or
absence of words from a dictionary in a sentence. We utilized
set-of-words representation in tests including four text data
sets which are summarized in Table I (first four rows) [25],
[26].

As an external clustering criterion the Adjusted Rand In-
dex (ARI) was utilized which is the well-known measure
of compatibility of a constructed grouping with a reference
partition [27]. For a perfect clustering (partition identical with
a reference grouping) ARI equals 1, while for a random
partition ARI takes value 0. To conduct statistical tests we ran
each clustering method 10 times on 60% of randomly selected
instances from each data set. In Figure 8 we reported the mean
ARI values calculated over all 10 runs.

One can observe that for questions and sentiment sets
no algorithm was able to construct a partition close to the
reference one. It could be caused by an extreme sparsity of
data, where only 4 and 7 coordinates, respectively, were non-
zero on average. On the other hand, SEC outperformed all
algorithms on the remaining two sets. For 20newsgroups it
achieved very high ARI (close to 0.6), while for farm-ads it
was the only method which was able to produce partition a
little bit similar to the reference one. The Wicoxon signed
ranked test proved that at 0.01 significance level there was no
evidence to reject the hypothesis that SEC gives higher ARI
than other algorithms.

In NLP the perplexity is one of the most popular internal
measures for comparing clustering algorithms [28]. It is deter-
mined by the entropy of n-gram language model constructed
on a given set, for n ≥ 2. Since the frequency of bigrams
or trigrams usually is independent from set-of-words repre-
sentation, it will not be reasonable to apply such a measure
for comparing obtained results. Therefore, the goodness of a
partition was measured by calculating the average entropy per
word within clusters X1, . . . , Xk, i.e.,

p(X1)h(p11, . . . , p
1
D) + . . .+ p(Xk)h(pk1 , . . . , p

k
D),



TABLE I
SUMMARY OF DATA SETS USED IN EXPERIMENTS.

Data set Size Dimensions Avg. number of
non-zero bits

Classes

20newsgroups 6997 26411 99.49 7
farm-ads 4143 54877 197.23 2
questions 5452 3029 4.04 6
sentiment 1000 2750 7.50 2
Klekota-Roth 3696 4860 64.28 28
Extended 3696 1024 366.97 28

Fig. 8. Adjusted Rand Index for a texts data clustering.

where p(Xi) and pij are defined in Section IV. A partition was
considered to be better if it had lower entropy value.

The results illustrated in Figure 9 indicate that SEC gave
the lowest entropy value for all sets in a statistically significant
way. This is probably caused by the fact that SEC partially
uses entropy in its clustering criterion function. The worst
results were produced by hierarchical clustering, while the
performance of k-way was slightly better than k-medoids.

C. Chemical compounds

Chemical compounds are usually represented as finger-
prints, i.e., high dimensional bit sequences which encode
the presence or absence of various chemical patterns. Since
different chemical features can be taken into account there
were constructed many kinds of fingerprints. Their lengths
range from 79 bits (Estate FP) to 4860 bits (Klekota-Roth FP)
[29]. This representation is similar to set-of-words employed
in text analysis.

In the experiment we considered a real data set containing
compounds which are active with respect to 5-HT1A receptor
– one of the proteins responsible for regulation of central
nervous system. This data set was manually clustered by
the expert into 28 chemical classes based on their structural
features [30]. Two fingerprints were utilized for compounds
representations: Klekota-Roth FP and Extended FP which
were proven to be the most informative ones (see last two
rows of Table I) [31].

To evaluate the algorithms we measured the similarities of
constructed partitions with aforementioned reference grouping

Fig. 9. Average entropy per word within clusters for texts data clustering.

quantified by ARI. Making use of the analogy between set-
of-words and fingerprint representations, we also calculated
the average entropy per feature within clusters. All algorithms
were run 10 times on 60% randomly selected instances with
28 clusters and obtained average ARI and entropy values were
reported in Figures 10 and 11.

One can observe that the difference between algorithms
performances is slight. Nevertheless, SEC and k-way gave
the highest ARI for both fingerprints on an average. The com-
patibility of the partition constructed by k-way with reference
grouping was higher in the case of Klekota-Roth FP, while
SEC returned more accurate results in the case of Extended
FP. At 0.01 significance level there was no statistical evidence
to reject these hypotheses.

On the other hand, SEC gave the lowest entropy for
Klekota-Roth, while the k-medoids was better for Extended
FP. This behavior of SEC might be explained by the fact that
in some sense it tries to find a true probability distribution of
data assuming its sparse representation. The average number of
non-zero bits for a compound representing by Klekota-Roth FP
equals 64 out of 4860 bits and 366 out of 1024 for Extended
FP. Therefore, the sparse representation is more suitable in the
case of Klekota-Roth.

VI. CONCLUSION

In this paper we introduced SEC model for clustering
of sparse high dimensional binary data. The strength of the
method is that:

• It aims at finding true probability distribution of data
assuming its sparse representation.

• It follows the MDLP approach and therefore can be
implemented as a compression algorithm.

• The model is able to select the optimal number of groups
by adding the cost of clusters identification.

• Its criterion function can be optimized with use the itera-
tive Hartigan algorithm which allows for fast reassigning
the elements between clusters.

• The complexity of a single iteration of the algorithm
is determined by a total number of non-zero coordi-



Fig. 10. Adjusted Rand Index for a chemical data clustering.

nates, while the influence of the number of instances is
marginal.
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