{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Vaex - Out of core dataframes\n", " * vaex\n", " * https://github.com/maartenbreddels/vaex\n", " * http://vaex.io\n", "\n", "Install from conda:\n", "\n", "```\n", "$ conda install -c conda-forge vaex\n", "```\n", "\n", "or pip\n", "```\n", "$ pip install --pre vaex\n", "```\n", "\n", "Get some data at: https://docs.vaex.io/en/latest/datasets.html\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "import vaex" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "ds = vaex.open('/Users/maartenbreddels/datasets/nytaxi/nyc_taxi2015.hdf5')\n", "ds" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "ds.plot_widget(ds.pickup_longitude, ds.pickup_latitude, f='log', backend='ipyleaflet', shape=400)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "ds = vaex.open(\"/Users/maartenbreddels/datasets/aquarius/Aq-A-2-999-shuffled.hdf5\")\n", "ds.set_active_fraction(0.1)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "ds.plot_widget(ds.x, ds.y, f='log1p')" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "scrolled": false }, "outputs": [], "source": [ "ds.plot_widget(ds.x, ds.y, ds.z, backend='ipyvolume', f='log1p', shape=128, \n", " smooth_post=1)" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.6.4" } }, "nbformat": 4, "nbformat_minor": 2 }