///////////////////////// ankerl::unordered_dense::{map, set} ///////////////////////// // A fast & densely stored hashmap and hashset based on robin-hood backward shift deletion. // Version 1.1.0 // https://github.com/martinus/unordered_dense // // Licensed under the MIT License <http://opensource.org/licenses/MIT>. // SPDX-License-Identifier: MIT // Copyright (c) 2022 Martin Leitner-Ankerl <martin.ankerl@gmail.com> // // Permission is hereby granted, free of charge, to any person obtaining a copy // of this software and associated documentation files (the "Software"), to deal // in the Software without restriction, including without limitation the rights // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell // copies of the Software, and to permit persons to whom the Software is // furnished to do so, subject to the following conditions: // // The above copyright notice and this permission notice shall be included in all // copies or substantial portions of the Software. // // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE // SOFTWARE. #ifndef ANKERL_UNORDERED_DENSE_H #define ANKERL_UNORDERED_DENSE_H // see https://semver.org/spec/v2.0.0.html #define ANKERL_UNORDERED_DENSE_VERSION_MAJOR 1 // incompatible API changes #define ANKERL_UNORDERED_DENSE_VERSION_MINOR 1 // add functionality in a backwards compatible manner #define ANKERL_UNORDERED_DENSE_VERSION_PATCH 0 // backwards compatible bug fixes #if defined(_MSVC_LANG) # define ANKERL_UNORDERED_DENSE_CPP_VERSION _MSVC_LANG #else # define ANKERL_UNORDERED_DENSE_CPP_VERSION __cplusplus #endif #if defined(__GNUC__) # define ANKERL_UNORDERED_DENSE_PACK(decl) decl __attribute__((__packed__)) #elif defined(_MSC_VER) # define ANKERL_UNORDERED_DENSE_PACK(decl) __pragma(pack(push, 1)) decl __pragma(pack(pop)) #endif #if ANKERL_UNORDERED_DENSE_CPP_VERSION < 201703L # error ankerl::unordered_dense requires C++17 or higher #else # include <array> // for array # include <cstdint> // for uint64_t, uint32_t, uint8_t, UINT64_C # include <cstring> // for size_t, memcpy, memset # include <functional> // for equal_to, hash # include <initializer_list> // for initializer_list # include <iterator> // for pair, distance # include <limits> // for numeric_limits # include <memory> // for allocator, allocator_traits, shared_ptr # include <stdexcept> // for out_of_range # include <string> // for basic_string # include <string_view> // for basic_string_view, hash # include <tuple> // for forward_as_tuple # include <type_traits> // for enable_if_t, declval, conditional_t, ena... # include <utility> // for forward, exchange, pair, as_const, piece... # include <vector> // for vector # define ANKERL_UNORDERED_DENSE_PMR 0 # if defined(__has_include) # if __has_include(<memory_resource>) # undef ANKERL_UNORDERED_DENSE_PMR # define ANKERL_UNORDERED_DENSE_PMR 1 # include <memory_resource> // for polymorphic_allocator # endif # endif # if defined(_MSC_VER) && defined(_M_X64) # include <intrin.h> # pragma intrinsic(_umul128) # endif # if defined(__GNUC__) || defined(__INTEL_COMPILER) || defined(__clang__) # define ANKERL_UNORDERED_DENSE_LIKELY(x) __builtin_expect(x, 1) # define ANKERL_UNORDERED_DENSE_UNLIKELY(x) __builtin_expect(x, 0) # else # define ANKERL_UNORDERED_DENSE_LIKELY(x) (x) # define ANKERL_UNORDERED_DENSE_UNLIKELY(x) (x) # endif namespace ankerl::unordered_dense { // hash /////////////////////////////////////////////////////////////////////// // This is a stripped-down implementation of wyhash: https://github.com/wangyi-fudan/wyhash // No big-endian support (because different values on different machines don't matter), // hardcodes seed and the secret, reformattes the code, and clang-tidy fixes. namespace detail::wyhash { static inline void mum(uint64_t* a, uint64_t* b) { # if defined(__SIZEOF_INT128__) __uint128_t r = *a; r *= *b; *a = static_cast<uint64_t>(r); *b = static_cast<uint64_t>(r >> 64U); # elif defined(_MSC_VER) && defined(_M_X64) *a = _umul128(*a, *b, b); # else uint64_t ha = *a >> 32U; uint64_t hb = *b >> 32U; uint64_t la = static_cast<uint32_t>(*a); uint64_t lb = static_cast<uint32_t>(*b); uint64_t hi{}; uint64_t lo{}; uint64_t rh = ha * hb; uint64_t rm0 = ha * lb; uint64_t rm1 = hb * la; uint64_t rl = la * lb; uint64_t t = rl + (rm0 << 32U); auto c = static_cast<uint64_t>(t < rl); lo = t + (rm1 << 32U); c += static_cast<uint64_t>(lo < t); hi = rh + (rm0 >> 32U) + (rm1 >> 32U) + c; *a = lo; *b = hi; # endif } // multiply and xor mix function, aka MUM [[nodiscard]] static inline auto mix(uint64_t a, uint64_t b) -> uint64_t { mum(&a, &b); return a ^ b; } // read functions. WARNING: we don't care about endianness, so results are different on big endian! [[nodiscard]] static inline auto r8(const uint8_t* p) -> uint64_t { uint64_t v{}; std::memcpy(&v, p, 8); return v; } [[nodiscard]] static inline auto r4(const uint8_t* p) -> uint64_t { uint32_t v{}; std::memcpy(&v, p, 4); return v; } // reads 1, 2, or 3 bytes [[nodiscard]] static inline auto r3(const uint8_t* p, size_t k) -> uint64_t { return (static_cast<uint64_t>(p[0]) << 16U) | (static_cast<uint64_t>(p[k >> 1U]) << 8U) | p[k - 1]; } [[nodiscard]] static inline auto hash(void const* key, size_t len) -> uint64_t { static constexpr auto secret = std::array{UINT64_C(0xa0761d6478bd642f), UINT64_C(0xe7037ed1a0b428db), UINT64_C(0x8ebc6af09c88c6e3), UINT64_C(0x589965cc75374cc3)}; auto const* p = static_cast<uint8_t const*>(key); uint64_t seed = secret[0]; uint64_t a{}; uint64_t b{}; if (ANKERL_UNORDERED_DENSE_LIKELY(len <= 16)) { if (ANKERL_UNORDERED_DENSE_LIKELY(len >= 4)) { a = (r4(p) << 32U) | r4(p + ((len >> 3U) << 2U)); b = (r4(p + len - 4) << 32U) | r4(p + len - 4 - ((len >> 3U) << 2U)); } else if (ANKERL_UNORDERED_DENSE_LIKELY(len > 0)) { a = r3(p, len); b = 0; } else { a = 0; b = 0; } } else { size_t i = len; if (ANKERL_UNORDERED_DENSE_UNLIKELY(i > 48)) { uint64_t see1 = seed; uint64_t see2 = seed; do { seed = mix(r8(p) ^ secret[1], r8(p + 8) ^ seed); see1 = mix(r8(p + 16) ^ secret[2], r8(p + 24) ^ see1); see2 = mix(r8(p + 32) ^ secret[3], r8(p + 40) ^ see2); p += 48; i -= 48; } while (ANKERL_UNORDERED_DENSE_LIKELY(i > 48)); seed ^= see1 ^ see2; } while (ANKERL_UNORDERED_DENSE_UNLIKELY(i > 16)) { seed = mix(r8(p) ^ secret[1], r8(p + 8) ^ seed); i -= 16; p += 16; } a = r8(p + i - 16); b = r8(p + i - 8); } return mix(secret[1] ^ len, mix(a ^ secret[1], b ^ seed)); } [[nodiscard]] static inline auto hash(uint64_t x) -> uint64_t { return detail::wyhash::mix(x, UINT64_C(0x9E3779B97F4A7C15)); } } // namespace detail::wyhash template <typename T, typename Enable = void> struct hash : public std::hash<T> { using is_avalanching = void; auto operator()(T const& obj) const noexcept(noexcept(std::declval<std::hash<T>>().operator()(std::declval<T const&>()))) -> size_t { return static_cast<size_t>(detail::wyhash::hash(std::hash<T>::operator()(obj))); } }; template <typename CharT> struct hash<std::basic_string<CharT>> { using is_avalanching = void; auto operator()(std::basic_string<CharT> const& str) const noexcept -> size_t { return static_cast<size_t>(detail::wyhash::hash(str.data(), sizeof(CharT) * str.size())); } }; template <typename CharT> struct hash<std::basic_string_view<CharT>> { using is_avalanching = void; auto operator()(std::basic_string_view<CharT> const& sv) const noexcept -> size_t { return static_cast<size_t>(detail::wyhash::hash(sv.data(), sizeof(CharT) * sv.size())); } }; template <class T> struct hash<T*> { using is_avalanching = void; auto operator()(T* ptr) const noexcept -> size_t { return static_cast<size_t>(detail::wyhash::hash(reinterpret_cast<uintptr_t>(ptr))); } }; template <class T> struct hash<std::unique_ptr<T>> { using is_avalanching = void; auto operator()(std::unique_ptr<T> const& ptr) const noexcept -> size_t { return static_cast<size_t>(detail::wyhash::hash(reinterpret_cast<uintptr_t>(ptr.get()))); } }; template <class T> struct hash<std::shared_ptr<T>> { using is_avalanching = void; auto operator()(std::shared_ptr<T> const& ptr) const noexcept -> size_t { return static_cast<size_t>(detail::wyhash::hash(reinterpret_cast<uintptr_t>(ptr.get()))); } }; template <typename Enum> struct hash<Enum, typename std::enable_if<std::is_enum<Enum>::value>::type> { using is_avalanching = void; auto operator()(Enum e) const noexcept -> size_t { using Underlying = typename std::underlying_type_t<Enum>; return static_cast<size_t>(detail::wyhash::hash(static_cast<Underlying>(e))); } }; # define ANKERL_UNORDERED_DENSE_HASH_STATICCAST(T) \ template <> \ struct hash<T> { \ using is_avalanching = void; \ auto operator()(T const& obj) const noexcept -> size_t { \ return static_cast<size_t>(detail::wyhash::hash(static_cast<uint64_t>(obj))); \ } \ } # if defined(__GNUC__) && !defined(__clang__) # pragma GCC diagnostic push # pragma GCC diagnostic ignored "-Wuseless-cast" # endif // see https://en.cppreference.com/w/cpp/utility/hash ANKERL_UNORDERED_DENSE_HASH_STATICCAST(bool); ANKERL_UNORDERED_DENSE_HASH_STATICCAST(char); ANKERL_UNORDERED_DENSE_HASH_STATICCAST(signed char); ANKERL_UNORDERED_DENSE_HASH_STATICCAST(unsigned char); # if ANKERL_UNORDERED_DENSE_CPP_VERSION >= 202002L ANKERL_UNORDERED_DENSE_HASH_STATICCAST(char8_t); # endif ANKERL_UNORDERED_DENSE_HASH_STATICCAST(char16_t); ANKERL_UNORDERED_DENSE_HASH_STATICCAST(char32_t); ANKERL_UNORDERED_DENSE_HASH_STATICCAST(wchar_t); ANKERL_UNORDERED_DENSE_HASH_STATICCAST(short); ANKERL_UNORDERED_DENSE_HASH_STATICCAST(unsigned short); ANKERL_UNORDERED_DENSE_HASH_STATICCAST(int); ANKERL_UNORDERED_DENSE_HASH_STATICCAST(unsigned int); ANKERL_UNORDERED_DENSE_HASH_STATICCAST(long); ANKERL_UNORDERED_DENSE_HASH_STATICCAST(long long); ANKERL_UNORDERED_DENSE_HASH_STATICCAST(unsigned long); ANKERL_UNORDERED_DENSE_HASH_STATICCAST(unsigned long long); # if defined(__GNUC__) && !defined(__clang__) # pragma GCC diagnostic pop # endif // bucket_type ////////////////////////////////////////////////////////// namespace bucket_type { struct standard { static constexpr uint32_t DIST_INC = 1U << 8U; // skip 1 byte fingerprint static constexpr uint32_t FINGERPRINT_MASK = DIST_INC - 1; // mask for 1 byte of fingerprint uint32_t dist_and_fingerprint; // upper 3 byte: distance to original bucket. lower byte: fingerprint from hash uint32_t value_idx; // index into the m_values vector. }; ANKERL_UNORDERED_DENSE_PACK(struct big { static constexpr uint32_t DIST_INC = 1U << 8U; // skip 1 byte fingerprint static constexpr uint32_t FINGERPRINT_MASK = DIST_INC - 1; // mask for 1 byte of fingerprint uint32_t dist_and_fingerprint; // upper 3 byte: distance to original bucket. lower byte: fingerprint from hash size_t value_idx; // index into the m_values vector. }); } // namespace bucket_type namespace detail { struct nonesuch {}; template <class Default, class AlwaysVoid, template <class...> class Op, class... Args> struct detector { using value_t = std::false_type; using type = Default; }; template <class Default, template <class...> class Op, class... Args> struct detector<Default, std::void_t<Op<Args...>>, Op, Args...> { using value_t = std::true_type; using type = Op<Args...>; }; template <template <class...> class Op, class... Args> using is_detected = typename detail::detector<detail::nonesuch, void, Op, Args...>::value_t; template <template <class...> class Op, class... Args> constexpr bool is_detected_v = is_detected<Op, Args...>::value; template <typename T> using detect_avalanching = typename T::is_avalanching; template <typename T> using detect_is_transparent = typename T::is_transparent; template <typename H, typename KE> using is_transparent = std::enable_if_t<is_detected_v<detect_is_transparent, H> && is_detected_v<detect_is_transparent, KE>, bool>; // This is it, the table. Doubles as map and set, and uses `void` for T when its used as a set. template <class Key, class T, // when void, treat it as a set. class Hash, class KeyEqual, class Allocator, class Bucket> class table { using ValueContainer = typename std::vector<typename std::conditional_t<std::is_void_v<T>, Key, std::pair<Key, T>>, Allocator>; using BucketAlloc = typename std::allocator_traits<Allocator>::template rebind_alloc<Bucket>; using BucketAllocTraits = std::allocator_traits<BucketAlloc>; static constexpr uint8_t INITIAL_SHIFTS = 64 - 3; // 2^(64-m_shift) number of buckets static constexpr float DEFAULT_MAX_LOAD_FACTOR = 0.8F; public: using key_type = Key; using mapped_type = T; using value_container_type = ValueContainer; using value_type = typename value_container_type::value_type; using size_type = typename value_container_type::size_type; using difference_type = typename value_container_type::difference_type; using hasher = Hash; using key_equal = KeyEqual; using allocator_type = typename value_container_type::allocator_type; using reference = typename value_container_type::reference; using const_reference = typename value_container_type::const_reference; using pointer = typename value_container_type::pointer; using const_pointer = typename value_container_type::const_pointer; using iterator = typename value_container_type::iterator; using const_iterator = typename value_container_type::const_iterator; using bucket_type = Bucket; private: using value_idx_type = decltype(Bucket::value_idx); using dist_and_fingerprint_type = decltype(Bucket::dist_and_fingerprint); static_assert(std::is_trivially_destructible_v<Bucket>, "assert there's no need to call destructor / std::destroy"); static_assert(std::is_trivially_copyable_v<Bucket>, "assert we can just memset / memcpy"); value_container_type m_values{}; // Contains all the key-value pairs in one densely stored container. No holes. Bucket* m_buckets = nullptr; size_t m_num_buckets = 0; value_idx_type m_max_bucket_capacity = 0; float m_max_load_factor = DEFAULT_MAX_LOAD_FACTOR; Hash m_hash{}; KeyEqual m_equal{}; uint8_t m_shifts = INITIAL_SHIFTS; [[nodiscard]] auto next(size_t bucket_idx) const -> size_t { return ANKERL_UNORDERED_DENSE_UNLIKELY(bucket_idx + 1 == m_num_buckets) ? 0 : bucket_idx + 1; } template <typename K> [[nodiscard]] constexpr auto mixed_hash(K const& key) const -> uint64_t { if constexpr (is_detected_v<detect_avalanching, Hash>) { return m_hash(key); } else { return wyhash::hash(m_hash(key)); } } [[nodiscard]] constexpr auto dist_and_fingerprint_from_hash(uint64_t hash) const -> dist_and_fingerprint_type { return Bucket::DIST_INC | (static_cast<dist_and_fingerprint_type>(hash) & Bucket::FINGERPRINT_MASK); } [[nodiscard]] constexpr auto bucket_idx_from_hash(uint64_t hash) const -> size_t { return static_cast<size_t>(hash >> m_shifts); } [[nodiscard]] static constexpr auto get_key(value_type const& vt) -> key_type const& { if constexpr (std::is_void_v<T>) { return vt; } else { return vt.first; } } template <typename K> [[nodiscard]] auto next_while_less(K const& key) const -> std::pair<dist_and_fingerprint_type, size_t> { auto hash = mixed_hash(key); auto dist_and_fingerprint = dist_and_fingerprint_from_hash(hash); auto bucket_idx = bucket_idx_from_hash(hash); while (dist_and_fingerprint < m_buckets[bucket_idx].dist_and_fingerprint) { dist_and_fingerprint += Bucket::DIST_INC; bucket_idx = next(bucket_idx); } return {dist_and_fingerprint, bucket_idx}; } void place_and_shift_up(Bucket bucket, size_t place) { while (0 != m_buckets[place].dist_and_fingerprint) { bucket = std::exchange(m_buckets[place], bucket); bucket.dist_and_fingerprint += Bucket::DIST_INC; place = next(place); } m_buckets[place] = bucket; } [[nodiscard]] static constexpr auto calc_num_buckets(uint8_t shifts) -> size_t { return size_t{1} << (64U - shifts); } [[nodiscard]] constexpr auto calc_shifts_for_size(size_t s) const -> uint8_t { auto shifts = INITIAL_SHIFTS; while (shifts > 0 && static_cast<size_t>(static_cast<float>(calc_num_buckets(shifts)) * max_load_factor()) < s) { --shifts; } return shifts; } // assumes m_values has data, m_buckets=m_buckets_end=nullptr, m_shifts is INITIAL_SHIFTS void copy_buckets(table const& other) { if (!empty()) { m_shifts = other.m_shifts; allocate_buckets_from_shift(); std::memcpy(m_buckets, other.m_buckets, sizeof(Bucket) * bucket_count()); } } /** * True when no element can be added any more without increasing the size */ [[nodiscard]] auto is_full() const -> bool { return size() >= m_max_bucket_capacity; } void deallocate_buckets() { auto bucket_alloc = BucketAlloc(m_values.get_allocator()); BucketAllocTraits::deallocate(bucket_alloc, m_buckets, bucket_count()); m_buckets = nullptr; m_num_buckets = 0; m_max_bucket_capacity = 0; } void allocate_buckets_from_shift() { auto bucket_alloc = BucketAlloc(m_values.get_allocator()); m_num_buckets = calc_num_buckets(m_shifts); m_buckets = BucketAllocTraits::allocate(bucket_alloc, m_num_buckets); m_max_bucket_capacity = static_cast<value_idx_type>(static_cast<float>(m_num_buckets) * max_load_factor()); } void clear_buckets() { if (m_buckets != nullptr) { std::memset(m_buckets, 0, sizeof(Bucket) * bucket_count()); } } void clear_and_fill_buckets_from_values() { clear_buckets(); for (value_idx_type value_idx = 0, end_idx = static_cast<value_idx_type>(m_values.size()); value_idx < end_idx; ++value_idx) { auto const& key = get_key(m_values[value_idx]); auto [dist_and_fingerprint, bucket] = next_while_less(key); // we know for certain that key has not yet been inserted, so no need to check it. place_and_shift_up({dist_and_fingerprint, value_idx}, bucket); } } void increase_size() { --m_shifts; deallocate_buckets(); allocate_buckets_from_shift(); clear_and_fill_buckets_from_values(); } void do_erase(size_t bucket_idx) { auto const value_idx_to_remove = m_buckets[bucket_idx].value_idx; // shift down until either empty or an element with correct spot is found auto next_bucket_idx = next(bucket_idx); while (m_buckets[next_bucket_idx].dist_and_fingerprint >= Bucket::DIST_INC * 2) { m_buckets[bucket_idx] = {m_buckets[next_bucket_idx].dist_and_fingerprint - Bucket::DIST_INC, m_buckets[next_bucket_idx].value_idx}; bucket_idx = std::exchange(next_bucket_idx, next(next_bucket_idx)); } m_buckets[bucket_idx] = {}; // update m_values if (value_idx_to_remove != m_values.size() - 1) { // no luck, we'll have to replace the value with the last one and update the index accordingly auto& val = m_values[value_idx_to_remove]; val = std::move(m_values.back()); // update the values_idx of the moved entry. No need to play the info game, just look until we find the values_idx auto mh = mixed_hash(get_key(val)); bucket_idx = bucket_idx_from_hash(mh); auto const values_idx_back = static_cast<value_idx_type>(m_values.size() - 1); while (values_idx_back != m_buckets[bucket_idx].value_idx) { bucket_idx = next(bucket_idx); } m_buckets[bucket_idx].value_idx = value_idx_to_remove; } m_values.pop_back(); } template <typename K> auto do_erase_key(K&& key) -> size_t { if (empty()) { return 0; } auto [dist_and_fingerprint, bucket_idx] = next_while_less(key); while (dist_and_fingerprint == m_buckets[bucket_idx].dist_and_fingerprint && !m_equal(key, get_key(m_values[m_buckets[bucket_idx].value_idx]))) { dist_and_fingerprint += Bucket::DIST_INC; bucket_idx = next(bucket_idx); } if (dist_and_fingerprint != m_buckets[bucket_idx].dist_and_fingerprint) { return 0; } do_erase(bucket_idx); return 1; } template <class K, class M> auto do_insert_or_assign(K&& key, M&& mapped) -> std::pair<iterator, bool> { auto it_isinserted = try_emplace(std::forward<K>(key), std::forward<M>(mapped)); if (!it_isinserted.second) { it_isinserted.first->second = std::forward<M>(mapped); } return it_isinserted; } template <typename K, typename... Args> auto do_place_element(dist_and_fingerprint_type dist_and_fingerprint, size_t bucket_idx, K&& key, Args&&... args) -> std::pair<iterator, bool> { // emplace the new value. If that throws an exception, no harm done; index is still in a valid state m_values.emplace_back(std::piecewise_construct, std::forward_as_tuple(std::forward<K>(key)), std::forward_as_tuple(std::forward<Args>(args)...)); // place element and shift up until we find an empty spot auto value_idx = static_cast<value_idx_type>(m_values.size()) - 1; place_and_shift_up({dist_and_fingerprint, value_idx}, bucket_idx); return {begin() + static_cast<difference_type>(value_idx), true}; } template <typename K, typename... Args> auto do_try_emplace(K&& key, Args&&... args) -> std::pair<iterator, bool> { if (ANKERL_UNORDERED_DENSE_UNLIKELY(is_full())) { increase_size(); } auto hash = mixed_hash(key); auto dist_and_fingerprint = dist_and_fingerprint_from_hash(hash); auto bucket_idx = bucket_idx_from_hash(hash); while (true) { auto* bucket = m_buckets + bucket_idx; if (dist_and_fingerprint == bucket->dist_and_fingerprint) { if (m_equal(key, m_values[bucket->value_idx].first)) { return {begin() + static_cast<difference_type>(bucket->value_idx), false}; } } else if (dist_and_fingerprint > bucket->dist_and_fingerprint) { return do_place_element(dist_and_fingerprint, bucket_idx, std::forward<K>(key), std::forward<Args>(args)...); } dist_and_fingerprint += Bucket::DIST_INC; bucket_idx = next(bucket_idx); } } template <typename K> auto do_find(K const& key) -> iterator { if (ANKERL_UNORDERED_DENSE_UNLIKELY(empty())) { return end(); } auto mh = mixed_hash(key); auto dist_and_fingerprint = dist_and_fingerprint_from_hash(mh); auto bucket_idx = bucket_idx_from_hash(mh); auto* bucket = m_buckets + bucket_idx; // unrolled loop. *Always* check a few directly, then enter the loop. This is faster. if (dist_and_fingerprint == bucket->dist_and_fingerprint && m_equal(key, get_key(m_values[bucket->value_idx]))) { return begin() + static_cast<difference_type>(bucket->value_idx); } dist_and_fingerprint += Bucket::DIST_INC; bucket_idx = next(bucket_idx); bucket = m_buckets + bucket_idx; if (dist_and_fingerprint == bucket->dist_and_fingerprint && m_equal(key, get_key(m_values[bucket->value_idx]))) { return begin() + static_cast<difference_type>(bucket->value_idx); } dist_and_fingerprint += Bucket::DIST_INC; bucket_idx = next(bucket_idx); bucket = m_buckets + bucket_idx; while (true) { if (dist_and_fingerprint == bucket->dist_and_fingerprint) { if (m_equal(key, get_key(m_values[bucket->value_idx]))) { return begin() + static_cast<difference_type>(bucket->value_idx); } } else if (dist_and_fingerprint > bucket->dist_and_fingerprint) { return end(); } dist_and_fingerprint += Bucket::DIST_INC; bucket_idx = next(bucket_idx); bucket = m_buckets + bucket_idx; } } template <typename K> auto do_find(K const& key) const -> const_iterator { return const_cast<table*>(this)->do_find(key); // NOLINT(cppcoreguidelines-pro-type-const-cast) } public: table() : table(0) {} explicit table(size_t /*bucket_count*/, Hash const& hash = Hash(), KeyEqual const& equal = KeyEqual(), Allocator const& alloc = Allocator()) : m_values(alloc) , m_hash(hash) , m_equal(equal) {} table(size_t bucket_count, Allocator const& alloc) : table(bucket_count, Hash(), KeyEqual(), alloc) {} table(size_t bucket_count, Hash const& hash, Allocator const& alloc) : table(bucket_count, hash, KeyEqual(), alloc) {} explicit table(Allocator const& alloc) : table(0, Hash(), KeyEqual(), alloc) {} template <class InputIt> table(InputIt first, InputIt last, size_type bucket_count = 0, Hash const& hash = Hash(), KeyEqual const& equal = KeyEqual(), Allocator const& alloc = Allocator()) : table(bucket_count, hash, equal, alloc) { insert(first, last); } template <class InputIt> table(InputIt first, InputIt last, size_type bucket_count, Allocator const& alloc) : table(first, last, bucket_count, Hash(), KeyEqual(), alloc) {} template <class InputIt> table(InputIt first, InputIt last, size_type bucket_count, Hash const& hash, Allocator const& alloc) : table(first, last, bucket_count, hash, KeyEqual(), alloc) {} table(table const& other) : table(other, other.m_values.get_allocator()) {} table(table const& other, Allocator const& alloc) : m_values(other.m_values, alloc) , m_max_load_factor(other.m_max_load_factor) , m_hash(other.m_hash) , m_equal(other.m_equal) { copy_buckets(other); } table(table&& other) noexcept : table(std::move(other), other.m_values.get_allocator()) {} table(table&& other, Allocator const& alloc) noexcept : m_values(std::move(other.m_values), alloc) , m_buckets(std::exchange(other.m_buckets, nullptr)) , m_num_buckets(std::exchange(other.m_num_buckets, 0)) , m_max_bucket_capacity(std::exchange(other.m_max_bucket_capacity, 0)) , m_max_load_factor(std::exchange(other.m_max_load_factor, DEFAULT_MAX_LOAD_FACTOR)) , m_hash(std::exchange(other.m_hash, {})) , m_equal(std::exchange(other.m_equal, {})) , m_shifts(std::exchange(other.m_shifts, INITIAL_SHIFTS)) { other.m_values.clear(); } table(std::initializer_list<value_type> ilist, size_t bucket_count = 0, Hash const& hash = Hash(), KeyEqual const& equal = KeyEqual(), Allocator const& alloc = Allocator()) : table(bucket_count, hash, equal, alloc) { insert(ilist); } table(std::initializer_list<value_type> ilist, size_type bucket_count, const Allocator& alloc) : table(ilist, bucket_count, Hash(), KeyEqual(), alloc) {} table(std::initializer_list<value_type> init, size_type bucket_count, Hash const& hash, Allocator const& alloc) : table(init, bucket_count, hash, KeyEqual(), alloc) {} ~table() { auto bucket_alloc = BucketAlloc(m_values.get_allocator()); BucketAllocTraits::deallocate(bucket_alloc, m_buckets, bucket_count()); } auto operator=(table const& other) -> table& { if (&other != this) { deallocate_buckets(); // deallocate before m_values is set (might have another allocator) m_values = other.m_values; m_max_load_factor = other.m_max_load_factor; m_hash = other.m_hash; m_equal = other.m_equal; m_shifts = INITIAL_SHIFTS; copy_buckets(other); } return *this; } auto operator=(table&& other) noexcept( noexcept(std::is_nothrow_move_assignable_v<value_container_type>&& std::is_nothrow_move_assignable_v<Hash>&& std::is_nothrow_move_assignable_v<KeyEqual>)) -> table& { if (&other != this) { deallocate_buckets(); // deallocate before m_values is set (might have another allocator) m_values = std::move(other.m_values); m_buckets = std::exchange(other.m_buckets, nullptr); m_num_buckets = std::exchange(other.m_num_buckets, 0); m_max_bucket_capacity = std::exchange(other.m_max_bucket_capacity, 0); m_max_load_factor = std::exchange(other.m_max_load_factor, DEFAULT_MAX_LOAD_FACTOR); m_hash = std::exchange(other.m_hash, {}); m_equal = std::exchange(other.m_equal, {}); m_shifts = std::exchange(other.m_shifts, INITIAL_SHIFTS); other.m_values.clear(); } return *this; } auto operator=(std::initializer_list<value_type> ilist) -> table& { clear(); insert(ilist); return *this; } auto get_allocator() const noexcept -> allocator_type { return m_values.get_allocator(); } // iterators ////////////////////////////////////////////////////////////// auto begin() noexcept -> iterator { return m_values.begin(); } auto begin() const noexcept -> const_iterator { return m_values.begin(); } auto cbegin() const noexcept -> const_iterator { return m_values.cbegin(); } auto end() noexcept -> iterator { return m_values.end(); } auto cend() const noexcept -> const_iterator { return m_values.cend(); } auto end() const noexcept -> const_iterator { return m_values.end(); } // capacity /////////////////////////////////////////////////////////////// [[nodiscard]] auto empty() const noexcept -> bool { return m_values.empty(); } [[nodiscard]] auto size() const noexcept -> size_t { return m_values.size(); } [[nodiscard]] static constexpr auto max_size() noexcept -> size_t { return std::numeric_limits<value_idx_type>::max(); } // modifiers ////////////////////////////////////////////////////////////// void clear() { m_values.clear(); clear_buckets(); } auto insert(value_type const& value) -> std::pair<iterator, bool> { return emplace(value); } auto insert(value_type&& value) -> std::pair<iterator, bool> { return emplace(std::move(value)); } template <class P, std::enable_if_t<std::is_constructible_v<value_type, P&&>, bool> = true> auto insert(P&& value) -> std::pair<iterator, bool> { return emplace(std::forward<P>(value)); } auto insert(const_iterator /*hint*/, value_type const& value) -> iterator { return insert(value).first; } auto insert(const_iterator /*hint*/, value_type&& value) -> iterator { return insert(std::move(value)).first; } template <class P, std::enable_if_t<std::is_constructible_v<value_type, P&&>, bool> = true> auto insert(const_iterator /*hint*/, P&& value) -> iterator { return insert(std::forward<P>(value)).first; } template <class InputIt> void insert(InputIt first, InputIt last) { while (first != last) { insert(*first); ++first; } } void insert(std::initializer_list<value_type> ilist) { insert(ilist.begin(), ilist.end()); } // nonstandard API: *this is emptied. // Also see "A Standard flat_map" https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2022/p0429r9.pdf auto extract() && -> value_container_type { return std::move(m_values); } template <class M, typename Q = T, std::enable_if_t<!std::is_void_v<Q>, bool> = true> auto insert_or_assign(Key const& key, M&& mapped) -> std::pair<iterator, bool> { return do_insert_or_assign(key, std::forward<M>(mapped)); } template <class M, typename Q = T, std::enable_if_t<!std::is_void_v<Q>, bool> = true> auto insert_or_assign(Key&& key, M&& mapped) -> std::pair<iterator, bool> { return do_insert_or_assign(std::move(key), std::forward<M>(mapped)); } template <class M, typename Q = T, std::enable_if_t<!std::is_void_v<Q>, bool> = true> auto insert_or_assign(const_iterator /*hint*/, Key const& key, M&& mapped) -> iterator { return do_insert_or_assign(key, std::forward<M>(mapped)).first; } template <class M, typename Q = T, std::enable_if_t<!std::is_void_v<Q>, bool> = true> auto insert_or_assign(const_iterator /*hint*/, Key&& key, M&& mapped) -> iterator { return do_insert_or_assign(std::move(key), std::forward<M>(mapped)).first; } template <class... Args> auto emplace(Args&&... args) -> std::pair<iterator, bool> { if (is_full()) { increase_size(); } // first emplace_back the object so it is constructed. If the key is already there, pop it. auto& val = m_values.emplace_back(std::forward<Args>(args)...); auto hash = mixed_hash(get_key(val)); auto dist_and_fingerprint = dist_and_fingerprint_from_hash(hash); auto bucket_idx = bucket_idx_from_hash(hash); while (dist_and_fingerprint <= m_buckets[bucket_idx].dist_and_fingerprint) { if (dist_and_fingerprint == m_buckets[bucket_idx].dist_and_fingerprint && m_equal(get_key(val), get_key(m_values[m_buckets[bucket_idx].value_idx]))) { m_values.pop_back(); // value was already there, so get rid of it return {begin() + static_cast<difference_type>(m_buckets[bucket_idx].value_idx), false}; } dist_and_fingerprint += Bucket::DIST_INC; bucket_idx = next(bucket_idx); } // value is new, place the bucket and shift up until we find an empty spot value_idx_type value_idx = static_cast<value_idx_type>(m_values.size()) - 1; place_and_shift_up({dist_and_fingerprint, value_idx}, bucket_idx); return {begin() + static_cast<difference_type>(value_idx), true}; } template <class... Args> auto emplace_hint(const_iterator /*hint*/, Args&&... args) -> iterator { return emplace(std::forward<Args>(args)...).first; } template <class... Args, typename Q = T, std::enable_if_t<!std::is_void_v<Q>, bool> = true> auto try_emplace(Key const& key, Args&&... args) -> std::pair<iterator, bool> { return do_try_emplace(key, std::forward<Args>(args)...); } template <class... Args, typename Q = T, std::enable_if_t<!std::is_void_v<Q>, bool> = true> auto try_emplace(Key&& key, Args&&... args) -> std::pair<iterator, bool> { return do_try_emplace(std::move(key), std::forward<Args>(args)...); } template <class... Args, typename Q = T, std::enable_if_t<!std::is_void_v<Q>, bool> = true> auto try_emplace(const_iterator /*hint*/, Key const& key, Args&&... args) -> iterator { return do_try_emplace(key, std::forward<Args>(args)...).first; } template <class... Args, typename Q = T, std::enable_if_t<!std::is_void_v<Q>, bool> = true> auto try_emplace(const_iterator /*hint*/, Key&& key, Args&&... args) -> iterator { return do_try_emplace(std::move(key), std::forward<Args>(args)...).first; } auto erase(iterator it) -> iterator { auto hash = mixed_hash(get_key(*it)); auto bucket_idx = bucket_idx_from_hash(hash); auto const value_idx_to_remove = static_cast<value_idx_type>(it - cbegin()); while (m_buckets[bucket_idx].value_idx != value_idx_to_remove) { bucket_idx = next(bucket_idx); } do_erase(bucket_idx); return begin() + static_cast<difference_type>(value_idx_to_remove); } auto erase(const_iterator it) -> iterator { return erase(begin() + (it - cbegin())); } auto erase(const_iterator first, const_iterator last) -> iterator { auto const idx_first = first - cbegin(); auto const idx_last = last - cbegin(); auto const first_to_last = std::distance(first, last); auto const last_to_end = std::distance(last, cend()); // remove elements from left to right which moves elements from the end back auto const mid = idx_first + std::min(first_to_last, last_to_end); auto idx = idx_first; while (idx != mid) { erase(begin() + idx); ++idx; } // all elements from the right are moved, now remove the last element until all done idx = idx_last; while (idx != mid) { --idx; erase(begin() + idx); } return begin() + idx_first; } auto erase(Key const& key) -> size_t { return do_erase_key(key); } template <class K, class H = Hash, class KE = KeyEqual, is_transparent<H, KE> = true> auto erase(K&& key) -> size_t { return do_erase_key(std::forward<K>(key)); } void swap(table& other) noexcept(noexcept(std::is_nothrow_swappable_v<value_container_type>&& std::is_nothrow_swappable_v<Hash>&& std::is_nothrow_swappable_v<KeyEqual>)) { using std::swap; swap(other, *this); } // lookup ///////////////////////////////////////////////////////////////// template <typename Q = T, std::enable_if_t<!std::is_void_v<Q>, bool> = true> auto at(key_type const& key) -> Q& { if (auto it = find(key); end() != it) { return it->second; } throw std::out_of_range("ankerl::unordered_dense::map::at(): key not found"); } // LCOV_EXCL_LINE is this a gcov/lcov bug? this method is fully tested. template <typename Q = T, std::enable_if_t<!std::is_void_v<Q>, bool> = true> auto at(key_type const& key) const -> Q const& { return const_cast<table*>(this)->at(key); // NOLINT(cppcoreguidelines-pro-type-const-cast) } template <typename Q = T, std::enable_if_t<!std::is_void_v<Q>, bool> = true> auto operator[](Key const& key) -> Q& { return try_emplace(key).first->second; } template <typename Q = T, std::enable_if_t<!std::is_void_v<Q>, bool> = true> auto operator[](Key&& key) -> Q& { return try_emplace(std::move(key)).first->second; } auto count(Key const& key) const -> size_t { return find(key) == end() ? 0 : 1; } template <class K, class H = Hash, class KE = KeyEqual, is_transparent<H, KE> = true> auto count(K const& key) const -> size_t { return find(key) == end() ? 0 : 1; } auto find(Key const& key) -> iterator { return do_find(key); } auto find(Key const& key) const -> const_iterator { return do_find(key); } template <class K, class H = Hash, class KE = KeyEqual, is_transparent<H, KE> = true> auto find(K const& key) -> iterator { return do_find(key); } template <class K, class H = Hash, class KE = KeyEqual, is_transparent<H, KE> = true> auto find(K const& key) const -> const_iterator { return do_find(key); } auto contains(Key const& key) const -> size_t { return find(key) != end(); } template <class K, class H = Hash, class KE = KeyEqual, is_transparent<H, KE> = true> auto contains(K const& key) const -> size_t { return find(key) != end(); } auto equal_range(Key const& key) -> std::pair<iterator, iterator> { auto it = do_find(key); return {it, it == end() ? end() : it + 1}; } auto equal_range(const Key& key) const -> std::pair<const_iterator, const_iterator> { auto it = do_find(key); return {it, it == end() ? end() : it + 1}; } template <class K, class H = Hash, class KE = KeyEqual, is_transparent<H, KE> = true> auto equal_range(K const& key) -> std::pair<iterator, iterator> { auto it = do_find(key); return {it, it == end() ? end() : it + 1}; } template <class K, class H = Hash, class KE = KeyEqual, is_transparent<H, KE> = true> auto equal_range(K const& key) const -> std::pair<const_iterator, const_iterator> { auto it = do_find(key); return {it, it == end() ? end() : it + 1}; } // bucket interface /////////////////////////////////////////////////////// auto bucket_count() const noexcept -> size_t { // NOLINT(modernize-use-nodiscard) return m_num_buckets; } static constexpr auto max_bucket_count() noexcept -> size_t { // NOLINT(modernize-use-nodiscard) return std::numeric_limits<value_idx_type>::max(); } // hash policy //////////////////////////////////////////////////////////// [[nodiscard]] auto load_factor() const -> float { return bucket_count() ? static_cast<float>(size()) / static_cast<float>(bucket_count()) : 0.0F; } [[nodiscard]] auto max_load_factor() const -> float { return m_max_load_factor; } void max_load_factor(float ml) { m_max_load_factor = ml; m_max_bucket_capacity = static_cast<value_idx_type>(static_cast<float>(bucket_count()) * max_load_factor()); } void rehash(size_t count) { auto shifts = calc_shifts_for_size(std::max(count, size())); if (shifts != m_shifts) { m_shifts = shifts; deallocate_buckets(); m_values.shrink_to_fit(); allocate_buckets_from_shift(); clear_and_fill_buckets_from_values(); } } void reserve(size_t capa) { m_values.reserve(capa); auto shifts = calc_shifts_for_size(std::max(capa, size())); if (shifts < m_shifts) { m_shifts = shifts; deallocate_buckets(); allocate_buckets_from_shift(); clear_and_fill_buckets_from_values(); } } // observers ////////////////////////////////////////////////////////////// auto hash_function() const -> hasher { return m_hash; } auto key_eq() const -> key_equal { return m_equal; } // nonstandard API: expose the underlying values container [[nodiscard]] auto values() const noexcept -> value_container_type const& { return m_values; } // non-member functions /////////////////////////////////////////////////// friend auto operator==(table const& a, table const& b) -> bool { if (&a == &b) { return true; } if (a.size() != b.size()) { return false; } for (auto const& b_entry : b) { auto it = a.find(get_key(b_entry)); if constexpr (std::is_void_v<T>) { // set: only check that the key is here if (a.end() == it) { return false; } } else { // map: check that key is here, then also check that value is the same if (a.end() == it || !(b_entry.second == it->second)) { return false; } } } return true; } friend auto operator!=(table const& a, table const& b) -> bool { return !(a == b); } }; } // namespace detail template <class Key, class T, class Hash = hash<Key>, class KeyEqual = std::equal_to<Key>, class Allocator = std::allocator<std::pair<Key, T>>, class Bucket = bucket_type::standard> using map = detail::table<Key, T, Hash, KeyEqual, Allocator, Bucket>; template <class Key, class Hash = hash<Key>, class KeyEqual = std::equal_to<Key>, class Allocator = std::allocator<Key>, class Bucket = bucket_type::standard> using set = detail::table<Key, void, Hash, KeyEqual, Allocator, Bucket>; # if ANKERL_UNORDERED_DENSE_PMR namespace pmr { template <class Key, class T, class Hash = hash<Key>, class KeyEqual = std::equal_to<Key>, class Bucket = bucket_type::standard> using map = detail::table<Key, T, Hash, KeyEqual, std::pmr::polymorphic_allocator<std::pair<Key, T>>, Bucket>; template <class Key, class Hash = hash<Key>, class KeyEqual = std::equal_to<Key>, class Bucket = bucket_type::standard> using set = detail::table<Key, void, Hash, KeyEqual, std::pmr::polymorphic_allocator<Key>, Bucket>; } // namespace pmr # endif // deduction guides /////////////////////////////////////////////////////////// // deduction guides for alias templates are only possible since C++20 // see https://en.cppreference.com/w/cpp/language/class_template_argument_deduction } // namespace ankerl::unordered_dense // std extensions ///////////////////////////////////////////////////////////// namespace std { // NOLINT(cert-dcl58-cpp) template <class Key, class T, class Hash, class KeyEqual, class Allocator, class Bucket, class Pred> auto erase_if(ankerl::unordered_dense::detail::table<Key, T, Hash, KeyEqual, Allocator, Bucket>& map, Pred pred) -> size_t { using Map = ankerl::unordered_dense::detail::table<Key, T, Hash, KeyEqual, Allocator, Bucket>; // going back to front because erase() invalidates the end iterator auto const old_size = map.size(); auto idx = old_size; while (idx) { --idx; auto it = map.begin() + static_cast<typename Map::difference_type>(idx); if (pred(*it)) { map.erase(it); } } return map.size() - old_size; } } // namespace std #endif #endif