
Theoretische Informatik 1
Algorithmen und Datenstrukturen

Inofficial lecture notes
Marvin Borner

Vorlesung gehalten von
Ulrike von Luxburg

Wintersemester 2022/23

0 Content 1

Content
1 Tricks 2

1.1 Logarithms . 2

2 Big-O-Notation 2
2.1 Naming . 2
2.2 Rules . 2

3 Divide and conquer 2
3.1 Recursion tree . 3
3.2 Master theorem . 3

4 Arrays and lists 3
4.1 Array . 3
4.2 Doubly linked list . 4

4.2.1 Basic operations . 4
4.3 Singly linked list . 4

5 Trees 4
5.1 Binary tree . 4

5.1.1 Height of binary tree . 5
5.1.2 Representation . 5

6 Stack and Queue 5
6.1 Stack . 5

6.1.1 Implementation . 5
6.2 Queue . 5

6.2.1 Implementation . 5

7 Heaps and priority queues 6
7.1 Heaps . 6

7.1.1 Usage . 6
7.1.2 Heapify . 6
7.1.3 DecreaseKey . 7
7.1.4 IncreaseKey . 7
7.1.5 ExtractMax . 8
7.1.6 InsertElement . 8
7.1.7 BuildMaxHeap . 8

8 Priority queue 9
8.1 Implementation . 9

9 Hashing 9
9.1 Simple hash function . 9
9.2 Hashing with chaining . 9
9.3 Hashing with open addressing . 10

10 Graph algorithms 10
10.1 Graphs . 10

10.1.1 Representation . 10
10.2 Depth first search . 11
10.3 Strongly connected components . 11

0 Content 2

10.4 DFS in sink components . 12
10.5 Finding sources . 12
10.6 Converting sources to sinks . 12
10.7 Finding SCCs . 12
10.8 Cycle detection . 12
10.9 Topological sort . 12
10.10Breadth first search . 13
10.11Shortest path problem (unweighted) . 13
10.12Testing whether a graph is bipartite . 14
10.13Shortest path problems . 14

10.13.1 Storing paths efficiently . 14
10.14Relaxation . 14
10.15Bellman-Ford algorithm . 15
10.16Decentralized Bellman-Ford . 15
10.17Dijkstra’s algorithm . 16

10.17.1 Naive algorithm . 16
10.17.2 Using min-priority queues . 16

10.18All pairs shortest paths . 17
10.19Floyd-Warshall algorithm . 17
10.20Point to Point Shortest Paths . 17
10.21Bidirectional Dijkstra . 18
10.22Generic labeling method . 18
10.23A* search . 18
10.24Union-find data structure . 19
10.25Operation O1 . 19
10.26Minimal spanning trees . 19

10.26.1 Safe edges . 19
10.26.2 Cut property to find safe edges . 20
10.26.3 Kruskal’s algorithm . 20

0 Content 3

1 Tricks

1.1 Logarithms

loga(x) = logb(x)
logb(a)

2 Big-O-Notation
• f ∈ O(g): f is of order at most g:

0 ≥ lim sup
n→∞

f(n)
g(n) < ∞

• f ∈ Ω(g): f is of order at least g:

0 < lim inf
n→∞

f(n)
g(n) ≤ ∞ ⇐⇒ g ∈ O(f)

• f ∈ o(g): f is of order strictly smaller than g:

0 ≥ lim sup
n→∞

f(n)
g(n) = 0

• f ∈ ω(g): f is of order strictly larger than g:

lim inf
n→∞

f(n)
g(n) = ∞ ⇐⇒ g ∈ o(f)

• f ∈ Θ(g): f has exactly the same order as g:

0 < lim inf
n→∞

f(n)
g(n) ≤ lim sup

n→∞

f(n)
g(n) < ∞ ⇐⇒ f ∈ O(g) ∧ f ∈ Ω(g)

2.1 Naming

• linear =⇒ Θ(n)
• sublinear =⇒ o(n)
• superlinear =⇒ ω(n)
• polynomial =⇒ Θ(na)
• exponential =⇒ Θ(2n)

2.2 Rules

• f ∈ O(g1 + g2) ∧ g1 ∈ O(g2) =⇒ f ∈ O(g2)
• f1 ∈ O(g1) ∧ f2 ∈ O(g2) =⇒ f1 + f2 ∈ O(g1 + g2)
• f ∈ g1O(g2) =⇒ f ∈ O(g1g2)
• f ∈ O(g1), g1 ∈ O(g2) =⇒ f ∈ O(g2)

3 Divide and conquer

Problem

Given two integers x and y, compute their product x · y.

We know that x = 2n/2xl + xr and y = 2n/2yl + yr.

3 Divide and conquer 4

We use the following equality:

(xlyr + xryl) = (xl + xr)(yl + yr) − xlyl − xryr

leading to

x · y = 2nxlyl + 2n/2(xlyr + xryl) + xryr

= 2nxlyl + 2n/2((xl + xr)(yl + yr) − xlyl − xryr) + xryr

= 2n/2xlyl + (1 − 2n/2)xryr + 2n/2(xl + xr)(ylyr).

Therefore we get the same result with 3 instead of 4 multiplications.

If we apply this principle once: Running time of (3/4)n2 instead of n2.

If we apply this principle recursively: Running time of O(nlog2 3) ≈ O(n1.59) instead of n2

(calculated using the height of a recursion tree).

3.1 Recursion tree
Visualisation

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

• Level k has ak problems of size n
bk

• Total height of tree: ⌈logb n⌉
• Number of problems at the bottom of the tree is alogb n = nlogb a

• Time spent at the bottom is Θ(nlogb a)

3.2 Master theorem

If T (n) = aT (⌈n/b⌉) + O(nd) for constants a > 0, b > 1 and d ≥ 0, then

T (n) =

O(nd) d > logb a

O(nd logn) d = logba

O(nlogba) d < logb a

Example

Previous example of clever integer multiplication:

T (n) = 3T (n/2) + O(n) =⇒ T (n) = O(nlog2 3)

4 Arrays and lists

4.1 Array

• needs to be allocated in advance
• read/write happens in constant time (using memory address)

4 Arrays and lists 5

4.2 Doubly linked list

Visualisation

NIL a b c d e f · · · y z NIL

NIL can be replaced by a sentinel element, basically linking the list to form a loop.

4.2.1 Basic operations

• Insert: If the current pointer is at e, inserting x after e is possible in O(1).
• Delete: If the current pointer is at e, deleting x before e is possible in O(1).
• Find element with key: We need to walk through the whole list =⇒ O(n)
• Delete a whole sublist: If you know the first and last element of the sublist: O(1)
• Insert a list after element: Obviously also O(1)

4.3 Singly linked list

Visualisation

head a b c d e f · · · y z NIL

• needs less storage
• no constant time deletion =⇒ not good

5 Trees
Visualisation

root

a

b

• (a) is the parent/predecessor of (b)
• (b) is a child of (a)

• Height of a vertex: length of the shortest path from the vertex to the root
• Height of the tree: maximum vertex height in the tree

5.1 Binary tree

• each vertex has at most 2 children
• complete if all layers except the last one are filled
• full if the last level is filled completely

5 Trees 6

Visualisation

Complete
Full

5.1.1 Height of binary tree

• Full binary tree with n vertices: log2(n + 1) − 1 ∈ Θ(log n)
• Complete binary tree with n vertices: ⌈log2(n + 1) − 1⌉ ∈ Θ(log n)

5.1.2 Representation

• Complete binary tree: Array with entries layer by layer
• Arbitrary binary tree: Each vertex contains the key value and pointers to left, right, and

parent vertices
– Elegant: Each vertex has three pointers: A pointer to its parent, leftmost child, and

right sibling

6 Stack and Queue

6.1 Stack

• Analogy: Stack of books to read
• Push(x) inserts the new element x to the stack
• Pop() removes the next element from the stack (LIFO)

6.1.1 Implementation

• Array with a pointer to the current element, Push and Pop in O(1)
• Doubly linked list with pointer to the end of the list
• Singly linked list and insert elements at the beginning of the list

6.2 Queue

• Analogy: waiting line of customers
• Enqueue(x) insertes the new element x to the end of the queue
• Dequeue() removes the next element from the queue (FIFO)

6.2.1 Implementation

• Array with two pointers, one to the head and one to the tail =⇒ Enqueue/Dequeue in
O(1)

• Linked lists

7 Heaps and priority queues 7

7 Heaps and priority queues

7.1 Heaps

• Data structure that stores elements as vertices in a tree
• Each element has a key value assigned to it
• Max-heap property: all vertices in the tree satisfy

key(parent(v)) ≥ key(v)

Visualisation

7

5

1 3

1 2 3

1 2

1 0

• Binary heap:
– Each vertex has at most two children
– Layers must be finished before starting a new one (left to right insertion)
– Advantage:

∗ Control over height/width of tree
∗ easy storage in array without any pointers

7.1.1 Usage

• Compromise between a completely unsorted and completely sorted array
• Easier to maintain/build than a sorted array
• Useful for many other data structures (e.g. priority queue)

7.1.2 Heapify

The Heapify operation can repair a heap with a violated heap property (key(i) < key(child(i))
for some vertex i and at least one child).

Visualisation

2

7

4

3 3

1

6

5

2

Violated!

Not violated!

Procedure: “Let key(i) float down”

• Swap i with the larger of its children

7 Heaps and priority queues 8

• Recursively call heapify on this child
• Stop when heap condition is no longer violated

Visualisation

1.
2

7

4

3 3

1

6

5

2

2.
7

2

4

3 3

1

6

5

2

3.
7

4

2

3 3

1

6

5

2

Worst case running time:

• Number of swapping operations is at most the height of the tree
• Height of tree is at most h = ⌈log(n)⌉ = O(log n)
• Swapping is in O(1) =⇒ worst case running time is O(log n)

7.1.3 DecreaseKey

The DecreseKey operation decreases the key value of a particular element in a correct heap.

Procedure:

• Decrease the value of the key at index i to new value b
• Call heapify at i to let it bubble down

Running time: O(log n)

7.1.4 IncreaseKey

The IncreseKey operation increases the key value of a particular element in a correct heap.

Procedure:

• Increase the value of the key at index i to new value b
• Walk upwards to the root, exchaning the key values of a vertex and its parent if the heap

property is violated

Running time: O(log n)

7 Heaps and priority queues 9

Visualisation

IncreaseKey from 4 to 15:

1.
16

14

8

2 4

7

1

10

9 3

2.
16

14

8

2 15

7

1

10

9 3

3.
16

14

8

2 15

7

1

10

9 3

4.
16

14

15

2 8

7

1

10

9 3

5.
16

15

14

2 8

7

1

10

9 3

7.1.5 ExtractMax

The ExtractMax operation removes the largest element in a correct heap.

Procedure:

• Extract the root element (the largest element)
• Replace the root element by the last leaf in the tree and remove that leaf
• Call heapify(root)

Running time: O(log n)

7.1.6 InsertElement

The InsertElement operation inserts a new element in a correct heap.

Procedure:

• Insert it at the next free position as a leaf, asiign it the key −∞
• Call IncreaseKey to set the key to the given value

Running time: O(log n)

7.1.7 BuildMaxHeap

The BuildMaxHeap operation makes a heap out of an unsorted array A of n elements.

Procedure:

• Write all elements in the tree in any order

7 Heaps and priority queues 10

• Then, starting from the leafs, call heapify on each vertex

Running time: O(n)

8 Priority queue
Maintains a set of prioritized elements. The Dequeue operation returns the element with the
largest priority value. Enqueue and IncreaseKey work as normal.

8.1 Implementation

Typically using a heap:

• Building the heap is O(n)
• Enqueue: heap InsertElement, O(log n)
• Dequeue: heap ExtractMax, O(log n)
• IncreaseKey, DecreaseKey: O(log n)

“Fibonacci heaps” can achieve DecreaseKey in O(1).

9 Hashing
Idea:

• Store data that is assigned to particular key values
• Give a “nickname” to each of the key values
• Choose the space of nicknames reasonably small
• Have a way to compute “nicknames” from the keys themselves
• Store the information in an array (size = #nicknames)

Formally:

• Universe U : All possible keys, actually used key values are much less (m < |U |)
• Hash function: h : U → {1, ..., m}
• Hash values: h(k) (slot)
• Collision: h(k1) = h(k2), k1 ̸= k2

9.1 Simple hash function

If we want to hash m elements in universe N:

h(k) = k (mod m)

For n slots generally choose m using a prime number mp > n

9.2 Hashing with chaining

Method to cope with collisions:

Each hash table entry points to a linked list containing all elements with this particular hash key
- collisions make the list longer.

We might need to traverse this list to retrieve a particular element.

9 Hashing 11

9.3 Hashing with open addressing

(Linear probing)

All empty slots get marked as empty

Inserting a new key into h(k):

• If unused, insert at h(k)
• If used, try insert at h(k) + 1

Retrieving elements: Walk from h(k)

• If we find the key: Yay
• If we hit the empty marker: Nay

Removing elements:

• Another special symbol marker..
• Or move entries up that would be affected by the “hole” in the array

10 Graph algorithms

10.1 Graphs

A graph G = (V, E) consists of a set of vertices V and a set of edges E ⊂ V × V .

• edges can be directed (u, v) or undirected {u, v}
• u is adjacent to v if there exists an edge between u and v: u ∼ v or u → v
• edges can be weighted: w(u, v)
• undirected degree of a vertex:

dv := d(v) :=
∑
v∼u

wvu

• directed in-/out-degree of a vertex:

din =
∑

{u:u→v}
w(u, v)

dout =
∑

{u:v→u}
w(v, y)

• number of vertices: n = |V |
• number of edges: m = |E|
• simple path if each vertex occurs at most once
• cycle path if it end in the vertex where it started from and uses each edge at most once
• strongly connected directed graph if for all u, v ∈ V, u ̸= v exists a directed path from

u to v and a directed path from v to u
• acyclic graph if it does not contain any cycles (DAG if directed)
• bipartite graph if its vertex set can be decomposed into two disjoint subsets such that all

edges are only between them

10.1.1 Representation

• Unordered edge list: For each edge, encode start and end point
• Adjacency matrix:

– n × n matrix that contains entries aij = 1 if there is a directed edge from vertex i to
vertex j

10 Graph algorithms 12

– if weighted, aij = wij
– implementation using n arrays of length n
– adjacency test in O(1)
– space usage n2

• Adjacency list:
– for each vertex, store a list of all outgoing edges
– if the edges are weighted, store the weight additionally in the list
– sometimes store both incoming and outgoing edges
– implementation using an array with list pointers or using a list for each vertex that

encodes outgoing edges

Typical choice:

• dense graphs: adjacency matrices tend to be easier.
• sparse graphs: adjacency lists

10.2 Depth first search

Idea: Starting at a arbitrary vertex, jump to one of its neighbors, then one of his neighbors etc.,
never visiting a vertex twice. At the end of the chain we backtrack and walk along another chain.

Running time

• graph: O(|V | + |E|)
• adjacency matrix: O(|V |2)

Algorithm:

1 function DFS(G)
2 for all u ∈ V
3 u.color = white # not visited yet
4 for all u ∈ V
5 if u.color == white
6 DFS -Visit(G, u)
7
8 function DFS -Visit(G, u)
9 u.color = grey # in process

10 for all v ∈ Adj(u)
11 if v.color == white
12 v.pre = u # just for analysis
13 DFS -Visit(G, v)
14 u.color = black # done!

10.3 Strongly connected components

Component graph GSCC of a directed graph:

• vertices of GSCC correspond to the components of G
• edge between vertices A and B in GGCC if vertices u and v in connected components

represented by A and B such that there is an edge from u to v
• GSCC is a DAG for any directed graph G
• sink component if the vertex in GSCC does not have an out-edge
• source component if the vertex in GSCC does not have an in-edge

10 Graph algorithms 13

10.4 DFS in sink components

With sink component B:

• DFS on G in vertex u ∈ B: DFS-Visit tree covers the whole component B
• DFS on G in vertex u non-sink: DFS-Visit tree covers more than this component

=⇒ use DFS to discover SCCs

10.5 Finding sources

• discovery time d(u): time when DFS first visits u
• finishing time f(u): time when DFS is done with u

Also: d(A) = minu∈A d(u) and f(A) = maxu∈A f(u).

Let A and B be two SCCs of G and assume that B is a descendent of A in GSCC . Then
f(B) < f(A) always.

Assume we run DFS on G (with any starting vertex) and record the finishing times of all vertices.
Then the vertex with the largest finishing time is in a source component.

10.6 Converting sources to sinks

Reversing the graph: we consider the graph Gt which has the same vertices as G but all edges
with reversed directions. Note that Gt has the same SCCs as G.

We can then use the source-finding algorithm to find sinks by first reversing the graph.

10.7 Finding SCCs

• run DFS on G with any arbitrary starting vertex. The vertex u∗ with the largest f(u) is in
a source of GSCC

• the vertex u∗ is in a sink of (Gt)SCC

• start a second DFS on u∗ in Gt. The tree discovered by DFS(Gt, u∗) is the first SCC
• continue with DFS on the remaining vertices V = v∗ with the highest f(u)
• etc.

Running time:

• DFS twice: O(|V | + |E|)
• reverse: O(|E|)
• order the vertices by f(u): O(|V |)
• =⇒ O(|V | + |E|)

10.8 Cycle detection

A directed graph has a cycle iff its DFS reveals a back edge (to a previously visited vertex).

10.9 Topological sort

A topological sort of a directed graph is a linear ordering of its vertices such that whenever
there exists a directed edge from vertex u to vertex v, u comes before v in the ordering.

Every DAG has a topological sort.

Procedure:

• run DFS with an arbitrary starting vertex

10 Graph algorithms 14

• if the DFS reveals a back edge, topological sort doesn’t exist
• otherwise, sort the vertices by decreasing finishing times

10.10 Breadth first search

DFS has inefficiency problems with some specific graph structures.

BFS explores the local neighborhood first.

DFS uses a stack, BFS uses a queue.

Algorithm:

1 function BFS(G)
2 for all u ∈ V
3 u.color = white # not visited yet
4 for all s ∈ V
5 if s.color == white
6 BFS -Visit(G, s)
7
8 function BFS -Visit(G, s)
9 u.color = grey # in process

10 Q = [s] # queue containing s
11 while Q ̸= ∅
12 u = dequeue (Q)
13 for all v ∈ Adj(u)
14 if v.color == white
15 v.color = grey
16 enqueue (Q, v)
17 u.color = black

Running time:

• O(|E| + |V |) in adjacency list
• O(|V |2) in adjacency matrix

10.11 Shortest path problem (unweighted)

d(u, v) = min{l(π) | π path between u and v}

Simple algorithm using BFS:

1 function BFS(G)
2 for all u ∈ V \ {s}
3 u.color = white # not visited yet
4 u.dist = ∞
5 s.dist = 0
6 s.color = grey # in process
7 Q = [s] # queue containing s
8 while Q ̸= ∅
9 u = dequeue (Q)

10 for all v ∈ Adj(u)
11 if v.color == white
12 v.color = grey
13 v.dist = u.dist + 1

10 Graph algorithms 15

14 enqueue (Q, v)
15 u.color = black

Other algorithm using BFS, easily provable:
1 function BFS(s)
2 d = [∞, ...,∞]
3 parent = [bot, ..., bot]
4 d[s] = s
5 Q = {s}
6 Q' = {s}
7 for l = 0 to ∞ while Q ̸= ∅ do
8 for each u ∈ Q do
9 for each (u, v) ∈ E do

10 if parent (v) = ⊥ then
11 Q' = Q' ∪{v}
12 d[v] = l + 1
13 parent [v] = u
14 (Q,Q ') = (Q',∅)
15 return (d, parent)

10.12 Testing whether a graph is bipartite

Algorithm:

• assume the graph is connected or run on each component
• start BFS with arbitrary vertex, color start red
• neighbors of a red vertex become blue
• neighbors of a blue vertex become red
• bipartite iff there’s no color conflict

10.13 Shortest path problems

• Single Source Shortest Paths: Shortest path distance of one particular vertex s to all
other vertices

• All Pairs Shortest Paths: Shortest path distance between all pairs of points
• Point to Point Shortest Paths: Shortest path distance between a particular start vertex

s and a particular target vertex t

10.13.1 Storing paths efficiently

Keep track of the predecessors in the shortest paths with the help of a predecessor matrix
Π = (πij)i,j=1,...,n:

• If i = j or there is no path from i to j, set πij = NIL
• Else set πij as the predecessor of j on a shortest path from i to j

Space requirement:

• SSSP: O(|V |)
• APSP: O(|V |2)

10.14 Relaxation

• for each vertex, keep an attribute v.dist that is the current estimate of the shortest path
distance to the source vertex s

10 Graph algorithms 16

• initially set to ∞ for all vertices except start
• step: figure out whether there is a shorter path from s to v by using an edge (u, v) and

thus extending the shortest path of s to u

Formally:
1 function Relax(u,v)
2 if v.dist > u.dist + w(u, v)
3 v.dist = u.dist + w(u,v)
4 v.π = u

Also useful:
1 function InitializeSingleSource (G,s)
2 for all v ∈ V
3 v.dist = ∞ # current distance estimate
4 v.π = NIL
5 s.dist = 0

10.15 Bellman-Ford algorithm

SSSP algorithm for general weighted graphs (including negative edges).
1 function BellmanFord (G,s)
2 InitializeSingleSource (G,s)
3 for i = 1, ..., |V| - 1
4 for all edges (u, v) ∈ E
5 Relax(u,v)
6 for all edges (u, v) ∈ E
7 if v.dist > u.dist + w(u,v)
8 return false # cycle detected
9 return true

Running time: O(|V | · |E|)

Note

Originally designed for directed graphs. Edges need to be relaxed in both directions in an
undirected graph. Negative weights in an undirected graph result in an undefined shortest
path.

10.16 Decentralized Bellman-Ford

Idea: “push-based” version of the algorithm: Whenever a value v.dist changes, the vertex v
communicates this to its neighbors.

Synchronous algorithm:
1 function SynchronousBellmanFord (G,w,s)
2 InitializeSingleSource (G,s)
3 for i = 1, ..., |V| - 1
4 for all u ∈ V
5 if u.dist has been updated in previous iteration
6 for all edges (u, v) ∈ E
7 v.dist = min{v.dist , u.dist + w(u, v)}
8 if no v.dist changed

10 Graph algorithms 17

9 terminate algorithm

Asynchronous algorithm for static graphs with non-negative weights:
1 function AsynchronousBellmanFord (G,w,s)
2 InitializeSingleSource (G,s)
3 set s as active , other nodes as inactive
4 while an active node exists :
5 u = active node
6 for all edges (u, v) ∈ E
7 v.dist = min{v.dist , u.dist + w(u, v)}
8 if last operation changed v.dist
9 set v active

10 set u inactive

10.17 Dijkstra’s algorithm

Works on any weighted, (un)directed graph in which all edge weights w(u, v) are non-negative.

Greedy algorithm: At each point in time it does the “locally best” action resulting in the
“globally optimal” solution.

10.17.1 Naive algorithm

Idea:

• maintain a set S of vertices for which we already know the shortest path distances from s
• look at neighbors u of S and assign a guess for the shortest path by using a path through

S and adding one edge
1 function Dijkstra (G,s)
2 InitializeSingleSource (G,s)
3 S = {s}
4 while S ̸= V
5 U = {u /∈ S | u neighbor of vertex ∈ S}
6 for all u ∈ U
7 for all pre(u) ∈ S that are predecessors of u
8 d '(u, pre(u)) = pre(u). dist + w(pre(u), u)
9 d* = min{d'(u,pre(u)) | u ∈ U, pre(U) ∈ S}

10 u* = argmin {d'(u,pre(u)) | u ∈ U, pre(U) ∈ S}
11 u*. dist = d*
12 S = S ∪ {u*}

Running time: O(|V | · |E|)

10.17.2 Using min-priority queues

Algorithm:
1 function Dijkstra (G,w,s)
2 InitializeSingleSource (G,s)
3 Q = (V, V.dist)
4 while Q ̸= ∅
5 u = Extract (Q)
6 for all v adjacent to u
7 Relax(u,v) and update keys in Q

10 Graph algorithms 18

It follows that Q = V \ S.

Running time: O((|V | + |E|) log |V |)

10.18 All pairs shortest paths

Naive approach:

• run Bellman-Ford or Dijkstra with all possible start vertices
• running time of ≈ O(|V |2 · |E|)
• doesn’t reuse already calculated results

Better: Floyd-Warshall

10.19 Floyd-Warshall algorithm

Idea:

• assume all vertices are numbered from 1 to n.
• fix two vertices s and t
• consider all paths from s to t that only use vertices 1, ..., k as intermediate vertices. Let

πk(s, t) be a shortest path from this set and denotee its length by dk(s, t)
• recursive relation between πk and πk−1 to construct the solution bottom-up

Algorithm:

1 function FloydWarshall (W)
2 n = number of vertices
3 D(0) = W
4 for k = 1,...,n
5 let D(k) be a new n × n matrix
6 for s = 1,...,n
7 for t = 1,...,n
8 dk(s,t) = min{dk−1(s,t), dk−1(s,k) + dk−1(k,t)}
9 return D(n)

Running time: O(|V |3) =⇒ not that much better than naive approach but easier to implement

Note

Negative-weight cycles can be detected by looking at the values of the diagonal of the
distance matrix. If it contains negative entries, the graph contains a negative cycle.

10.20 Point to Point Shortest Paths

Given a graph G and two vertices s and t we want to compute the shortest path between s and t
only.

Idea:

• run Dijkstra(G,s) and stop the algorithm when we reached t
• has the same worst case running time as Dijkstra

– often faster in practice

10 Graph algorithms 19

10.21 Bidirectional Dijkstra

Idea:

• instead of starting Dijkstra at s and waitung until we hit t, we start copies of the Dijkstra
algorithm from s as well as t

• alternate between the two algorithms, stop when they meet

Algorithm:

• µ = ∞ (best path length currently known)
• alternately run steps of Dijkstra(G,s) and Dijkstra(G',t)

– when an edge (v, w) is scanned by the forward search and w has already been visited
by the backward search:

∗ found a path between s and t: s...v w...t
∗ length of path is l = d(s, v) + w(v, w) + d(w, t)
∗ if µ > l, set µ = l

– analogously for the backward search
• terminate when the search in one direction selects a vertex v that has already been selected

in other direction
• return µ

Note

It is not always true that if the algorithm stops at v, that then the shortest path between
s and t has to go through v.

10.22 Generic labeling method

A convenient generalization of Dijkstra and Bellman-Ford:

• for each vertex, maintain a status variable S(v) ∈ {unreached, labelchanged, settled}
• repeatedly relax edges
• repeat until nothing changes

1 function GenericLabelingMethod (G,s)
2 for all v ∈ V
3 v.dist = ∞
4 v. parent = NIL
5 v. status = unreached
6 s.dist = 0
7 s. status = labelchanged
8 while a vertex exists with status labelchanged
9 pick such vertex v

10 for all neighbors u of v
11 Relax(v,u)
12 if relaxation changed value u.dist
13 u. status = labelchanged
14 v. status = settled

10.23 A* search

Idea:

10 Graph algorithms 20

• assume that we know a lower bound π(v) on the distance d(v, t) for all vertices v:

∀v : π(v) ≤ d(v, t)

• run the Generic Labeling Method with start in s
• while Dijkstra selects by d(s, u) + w(u, v), A* selects by d(s, u) + w(u, v) + π(v)

Algorithm:

1 function AstarSearch (G,s,t)
2 for all v ∈ V
3 v.dist = ∞
4 v. status = unreached
5 s.dist = 0
6 s. status = labelchanged
7 while a vertex exists with status labelchanged
8 select u = argmin (u.dist + π(u))
9 if u == t

10 terminate , found correct distance
11 for all neighbors v of u
12 Relax(u,v)
13 if relaxation changed value v.dist
14 v. status = labelchanged
15 u. status = settled

Running time: If the lower bounds are feasible, A*-search has the same running time as
Dijkstra. Can often work fast but in rare cases very slow.

10.24 Union-find data structure

TODO.

10.25 Operation O1

TODO.

10.26 Minimal spanning trees

Idea:

Given an undirected graph G = (V, E) with real-valued edge values (we)e∈E find a tree T = (V ′, A)
with V = V ′, A ⊂ E that minimizes

weight(T) =
∑
e∈A

we.

Minimal spanning trees are not unique and most graphs have many minimal spanning trees.

10.26.1 Safe edges

Given a subset A of the edges of an MST, a new edge e ∈ E \ A is called safe with respect to A
if there exists a MST with edge set A ∪ {e}.

• start with MST T = (V, E′)
• take some of its edges A ⊂ E′

• new edge e is safe if A ∪ {e} can be completed to an MST T ′

10 Graph algorithms 21

10.26.2 Cut property to find safe edges

A cut (S, V \ S) is a partition of the vertex set of a graph in two disjoint subsets.

TODO.

10.26.3 Kruskal’s algorithm

Idea:

• start with an empty tree
• repeatedly add the lightest remaining edge that does not produce a cycle
• stop when the resulting tree connects the whole graph

Naive algorithm using cut property:

1 function KruskalNaiveMST (V,E,W)
2 sort all edges according to their weight
3 A = {}
4 for all e ∈ E, in increasing order of weight
5 if A ∪ {e} does not contain a cycle
6 A = A ∪ {e}
7 if |A| = n - 1
8 return A

Running time:

• sorting O(|E| log |E|)
• check for cycle: O(|E|·?)
• total: O(|E| log |E| + |E|·?)

	Tricks
	Logarithms

	Big-O-Notation
	Naming
	Rules

	Divide and conquer
	Recursion tree
	Master theorem

	Arrays and lists
	Array
	Doubly linked list
	Basic operations

	Singly linked list

	Trees
	Binary tree
	Height of binary tree
	Representation

	Stack and Queue
	Stack
	Implementation

	Queue
	Implementation

	Heaps and priority queues
	Heaps
	Usage
	Heapify
	DecreaseKey
	IncreaseKey
	ExtractMax
	InsertElement
	BuildMaxHeap

	Priority queue
	Implementation

	Hashing
	Simple hash function
	Hashing with chaining
	Hashing with open addressing

	Graph algorithms
	Graphs
	Representation

	Depth first search
	Strongly connected components
	DFS in sink components
	Finding sources
	Converting sources to sinks
	Finding SCCs
	Cycle detection
	Topological sort
	Breadth first search
	Shortest path problem (unweighted)
	Testing whether a graph is bipartite
	Shortest path problems
	Storing paths efficiently

	Relaxation
	Bellman-Ford algorithm
	Decentralized Bellman-Ford
	Dijkstra's algorithm
	Naive algorithm
	Using min-priority queues

	All pairs shortest paths
	Floyd-Warshall algorithm
	Point to Point Shortest Paths
	Bidirectional Dijkstra
	Generic labeling method
	A* search
	Union-find data structure
	Operation O1
	Minimal spanning trees
	Safe edges
	Cut property to find safe edges
	Kruskal's algorithm

