TDAB01 Probability and Statistics

Maryna Prus
IDA, Linköping University

Lecture 11: Regression

Overview

- Linear regression
- Estimation: Least squares method
- Multivariate and polynomial regression

Regression

- So far: Distribution of one random variable
- Data: x_{1}, \ldots, x_{n}
- Relation between two (or more) variables
- Data: $\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right)$
- Regression: Type of relation between variables
- Y - response variable or dependent variable
- X - explanatory variable, independent variable, also called predictor
- Example: X - year, Y - population

Linear regression

- One explanatory variable X, assumed known, i.e. not random.
- Regression model / function:

$$
\hat{y}(x)=E(Y \mid X=x)=\beta_{0}+\beta_{1} x
$$

- Can also be written as

$$
Y=\beta_{0}+\beta_{1} X+\varepsilon
$$

- ε is random variable with zero mean, often $\varepsilon \sim N\left(0, \sigma^{2}\right)$
- ε called error term or random error

Example: Cars data

Estimation: Least squares method

- Data: $\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right)$
- Regression line $\beta_{0}+\beta_{1} \times$ provides the forecasts

$$
\hat{y}_{i}=\beta_{0}+\beta_{1} x_{i}, \quad i=1, \ldots, n
$$

- Residual at x_{i} :

$$
e_{i}=y_{i}-\hat{y}_{i}
$$

- Least squares method: Choose β_{0} and β_{1} that minimize sum of the squared residuals

$$
Q=\sum_{i=1}^{n} e_{i}^{2}=\sum_{i=1}^{n}\left(y_{i}-\beta_{0}-\beta_{1} x_{i}\right)^{2}
$$

Solution:

$$
\begin{aligned}
& \hat{\beta}_{1}=\frac{S_{x y}}{S_{x x}}=\frac{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)}{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}} \\
& \hat{\beta}_{0}=\bar{y}-\hat{\beta}_{1} \bar{x}
\end{aligned}
$$

Example: Cars data, cont.

R-code: See file LinReg

Estimation: ML method

- ML method: Choose values of β_{0} and β_{1} that maximize the probability (density) of the data. Assume independent normally distributed error terms $\left(\varepsilon_{1}, \ldots, \varepsilon_{n}\right)$
- Then $Y_{i} \sim N\left(\beta_{0}+\beta_{1} x_{i}, \sigma^{2}\right)$
- Likelihood function:

$$
\begin{gathered}
L\left(\beta_{0}, \beta_{1}\right)=\prod_{i=1}^{n} f_{Y_{i}}\left(y_{i}\right) \\
L\left(\beta_{0}, \beta_{1}\right)=\left(\frac{1}{\sqrt{2 \pi \sigma^{2}}}\right)^{n} \exp \left(-\frac{1}{2 \sigma^{2}} \sum_{i=1}^{n}\left(y_{i}-\beta_{0}-\beta_{1} x_{i}\right)^{2}\right)
\end{gathered}
$$

- Log-likelihood function:

$$
\ln L\left(\beta_{0}, \beta_{1}\right)=c-\frac{1}{2 \sigma^{2}} \sum_{i=1}^{n}\left(y_{i}-\beta_{0}-\beta_{1} x_{i}\right)^{2}
$$

where $c=-n \ln \left(\sqrt{2 \pi \sigma^{2}}\right)$ is constant, i.e. independent of β_{0} and β_{1}

- Maximizing $\ln L\left(\beta_{0}, \beta_{1}\right)$ is the same as minimizing $\sum_{i=1}^{n}\left(y_{i}-\beta_{0}-\beta_{1} x_{i}\right)^{2}$
- ML estimators are the same as LS estimators!

Example: Quadratic regression

Multivariate and polynomial regression

- More than one explanatory variables
- Regression function:

$$
\hat{y}=E\left(Y \mid X^{(1)}=x^{(1)}, \ldots, X^{(k)}\right)
$$

and explicitly

$$
\hat{y}=\beta_{0}+\beta_{1} x^{(1)}+\cdots+\beta_{k} x^{(k)}
$$

- Can also be written

$$
y=\beta_{0}+\beta_{1} x^{(1)}+\cdots+\beta_{k} x^{(k)}+\varepsilon
$$

- Least squares: $\hat{\boldsymbol{\beta}}=\left(\hat{\beta}_{0}, \hat{\beta}_{1}, \ldots, \hat{\beta}_{k}\right)=\left(\boldsymbol{X}^{T} \boldsymbol{X}\right)^{-1} \boldsymbol{X}^{T} \boldsymbol{y}$ where

$$
\boldsymbol{X}=\left(\begin{array}{cccc}
1 & x_{1}^{(1)} & \ldots & x_{1}^{(k)} \\
\vdots & \vdots & \vdots & \vdots \\
1 & x_{n}^{(1)} & \ldots & x_{n}^{(k)}
\end{array}\right) \quad \boldsymbol{y}=\left(\begin{array}{c}
y_{1} \\
\vdots \\
y_{n}
\end{array}\right)
$$

- Polynomial regression

$$
y=\beta_{0}+\beta_{1} x+\beta_{2} x^{2}+\cdots+\beta_{k} x^{k}+\varepsilon
$$

Thank you for your attention!

