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TDAB01 Probability and Statistics

Maryna Prus
IDA, Linköping University

Lecture 11: Regression
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Overview

▸ Linear regression

▸ Estimation: Least squares method

▸ Multivariate and polynomial regression
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Regression

▸ So far: Distribution of one random variable

▸ Data: x1, . . . , xn

▸ Relation between two (or more) variables

▸ Data: (x1, y1), . . . , (xn, yn)
▸ Regression: Type of relation between variables

▸ Y - response variable or dependent variable

▸ X - explanatory variable, independent variable, also called predictor

▸ Example: X - year, Y - population
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Linear regression

▸ One explanatory variable X , assumed known, i.e. not random.

▸ Regression model / function:

ŷ(x) = E(Y ∣X = x) = β0 + β1x

▸ Can also be written as
Y = β0 + β1x + ε

▸ ε is random variable with zero mean, often ε ∼ N(0, σ2)
▸ ε called error term or random error
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Example: Cars data
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Estimation: Least squares method

▸ Data: (x1, y1), . . . , (xn, yn)
▸ Regression line β0 + β1x provides the forecasts

ŷi = β0 + β1xi , i = 1, . . . ,n

▸ Residual at xi :
ei = yi − ŷi

▸ Least squares method: Choose β0 and β1 that minimize sum of the
squared residuals

Q =
n

∑
i=1

e2i =
n

∑
i=1
(yi − β0 − β1xi)2

Solution:

β̂1 =
Sxy

Sxx
= ∑

n
i=1(xi − x̄)(yi − ȳ)
∑n

i=1(xi − x̄)2

β̂0 = ȳ − β̂1x̄



7/11

Example: Cars data, cont.
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R-code: See file LinReg
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Estimation: ML method

▸ ML method: Choose values of β0 and β1 that maximize the probability
(density) of the data. Assume independent normally distributed error
terms (ε1, . . . , εn)

▸ Then Yi ∼ N(β0 + β1xi , σ2)
▸ Likelihood function:

L(β0, β1) =
n

∏
i=1

fYi (yi)

L(β0, β1) = (
1√

2πσ2
)
n

exp(− 1

2σ2

n

∑
i=1
(yi − β0 − β1xi)2)

▸ Log-likelihood function:

lnL(β0, β1) = c −
1

2σ2

n

∑
i=1
(yi − β0 − β1xi)2 ,

where c = −n ln (
√

2πσ2) is constant, i.e. independent of β0 and β1

▸ Maximizing lnL(β0, β1) is the same as minimizing ∑n
i=1 (yi − β0 − β1xi)2

▸ ML estimators are the same as LS estimators!
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Example: Quadratic regression
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Multivariate and polynomial regression

▸ More than one explanatory variables

▸ Regression function:

ŷ = E(Y ∣X (1) = x(1), . . . ,X (k))

and explicitly
ŷ = β0 + β1x(1) +⋯ + βkx(k)

▸ Can also be written

y = β0 + β1x(1) +⋯ + βkx(k) + ε

▸ Least squares: β̂ββ = (β̂0, β̂1, . . . , β̂k) = (XXXTXXX)−1XXXTyyy where

XXX =
⎛
⎜⎜
⎝

1 x(1)1 . . . x(k)1

⋮ ⋮ ⋮ ⋮
1 x(1)n . . . x(k)n

⎞
⎟⎟
⎠

yyy =
⎛
⎜
⎝

y1
⋮
yn

⎞
⎟
⎠

▸ Polynomial regression

y = β0 + β1x + β2x2 +⋯ + βkxk + ε
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Thank you for your attention!


