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Lecture 5: Central Limit Theorem, Simulations, Monte Carlo Methods



Overview

> Law of large numbers
» Central Limit Theorem
» Simulation of random variables

» Monte Carlo methods



Law of large numbers

» Mean: X, = 7X1+X2:"+X”

» Mean of n independent random variables with the same expectation yx and
the same variance o2 < oo is very close to y for large n

Law of large numbers _
lim P (|X,—p|>€)=0

n—oo

foralle>0

» Proof with Chebyshev’s inequality: E(X) = y and then
- Var(X,
P(|Xo—p|>e) < #

but Var(X,) = Var(X:)/n — 0 for n - oo



Central Limit Theorem

» Distribution of X, -?

Central Limit Theorem. Let Xi, Xo,..., X, be independent random variables
with the same expectation y and the same variance ¢° (standard deviation o),
and let

Sp=Xi+Xo+ -+ X
As n — oo the standardized sum

5, - E(S,)
20 = ~Std(s)

converges in distribution to a standard normally distributed random variable, i. e.

Sn—nu
o\/n

Fz,(z) :P( Sz) - ®(z2).

» S, and X, converge in distribution to N(nu, no®) and N(u,o?/n)
» For large n (n > 30) normal distribution can be used

» Example: See Example 4.13 in textbook



Central Limit Theorem

» Binomial(n, p) — N(np, np(1 - p)) for large n
NegativBinomial(k,p) and Gamma(a, \) can also be approximated to
normal distribution

» For normal distribution P(X =x) =0
= correction for approximation of discrete distributions:
P(X=x)—>P(x-05<X<x+0.5)

» For normal distribution P(X < x) = P(X < x)
= correction for approximation of discrete distributions:
P(X <x) - P(X <x-0.5)



Simulation of random variables

» Pseudo random number generator: Computers can generate sequences
of numbers that look like independent U(0,1) random numbers
— Good enough

» R: runif (n) simulates n random variables with U(0, 1) distribution
» Using U ~ U(0,1) other distributions can be generated

» Example: Bernoulli distribution with success probability p:

)1 ifU<p
o ifU=p

* R code for Bernoulli distribution: U=runif (1); X=1*(U<p)
» Example: Binomially distributed random variables - Sum of Bernoulli
distributed random variables
> R code for Binomial(n,p): U=runif(n); X=sum(U<p)
» Example: Geometric distribution - number of trials for first success

> R code for Geo(p): X<-1; U=runif(1); while
(U>p) {X<-X+1;U=runif (1) }; X



Simulation of discrete distributions

» General approach for simulation of discrete distributions, i.e.

pi=P(X =x;) and Zp,-:l

alli

> Divide the interval [0,1] into sub-intervals:
> Ao = [0, po)
> A1 =[po,po+p1)
* A2 =[po+pr,potpitpe)
» U~ U(0,1).
» If UeA; then X = x;
» Example: Poisson distribution (see Example 5.9 in textbook)
» X =i, Ai=[F(i-1),F(i))
> R code for Po(\): A<-5; U=runif(1); i<-0; F<-exp(-\);
while (U>=F){F<-F+exp(-A)A(*1)/factorial(i+1); i<-i+1}
X<-i; X



Inverse cdf method

Theorem. Let X be a continuous variable with cdf Fx(x) and let U = Fx(X)
(random variable). Then U ~ U(0,1).

Cdf of U~ U(0,1):

0, u<0
Fy(u)=P(U<u)=4 u, O0<u<l
1, u>1

Then for U = Fx(X) and Y = Fx'(U)

Fy(y)

P(Y <y)

= P(F'(U)<y)

= P(Fx(Fx'(U)) < Fx(y))
= P(U<Fx(y))

= Fu(Fx(y)) = Fx(y)

as0< Fx(y)<land Fy(u)=uforO<u<1

Then Y has same probability distribution as X



Inverse cdf method

» Inverse cdf method (or inverse transform method):

X with cdf F(X) can be simulated using U ~ U(0,1):

> Generate values for U ~ U(0,1)
» Compute values for X from X = F~1(U)

» Example: X ~ Exp(\) = CDF of X:

1- e, x>0
Fx(x) = { 0, otherwise

To determine Fx! solve y =1 - e™*:

= eM=1-y = X:—iln(l—y) = F}l(y):—iln(l—y)
Then for U ~U(0,1)

X = —% In(1-U) ~exp(A)



Monte Carlo methods

» From Lecture 1:
For large number of trials, relative frequency — probability,
i.e. P(X =x)=0.25 means that X = x occurs in 25 % of cases
» Simulation from distributions can be used to approximate probabilities

» Let Xi,Xa,..., Xy be generated values from distribution of X
Then probability p = P(X < 0.5) can be approximated by

number of Xi, Xa,..., Xy which are less than 0.5
N

p=P(X<05)=
» Notation: p - estimator (estimate) of probability p
> R code:

x = runif (10000, mean = 1, sd = 0.5)
pHat = sum(x<0.5)/10000



Monte Carlo methods

» But p is just estimate of p
Can be different for different samples
» Estimate p several times, each time with new sample of size N
Is average estimation value p?
— Is E(p) = p? (Is p unbiased?)
How much will p vary from sample to sample? — Var(p)-?

> Y = number of Xi,..., Xy which are less than 2
= Y ~ Binomial(N, p) and then
Y 1
E(p)=E|l—)==N-p=
(p) (N) yNoP=P

= p is unbiased estimator of p, and

Var(p) = Var(%) = %Np(l —p) = #



Monte Carlo integration

» To estimate:

1 o
I:/ g(x)dx,0<x<1,0<g(x)<1 o of Soa® e T s P
0

» Simulate uniformly distributed

U, ....,Uv & Vi,..., Wy
» Consider pairs (Ui, Vi)

Number of pairs for which V; < g(U;)

7=
N

» R code:

» Define function g, for example g=function(x)return(sin(x))
u = runif(10000); v = runif (10000); IHat = mean(v < g(u))



Simulation in R

v

v

Generate n values from N(u =2,0% = 3%):
rnorm(n, mean = 2, sd = 3)

Generate n values from Gamma(a =2,A =3): med
rgamma(n, shape = 2 , rate = 3)

Compute pdf at point x = 1.5 for N(u = 2,0% = 3%)
dnorm(x=1.5, mean = 2, sd = 3)

Compute cdf at point x = 1.5 for N(u = 2,02 = 3%)
pnorm(x=1.5, mean = 2, sd = 3)

For other distributions see Appendix in textbook



Thank you for your attention!



