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Lecture 5: Central Limit Theorem, Simulations, Monte Carlo Methods
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Overview

▸ Law of large numbers

▸ Central Limit Theorem

▸ Simulation of random variables

▸ Monte Carlo methods
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Law of large numbers

▸ Mean: X̄n = X1+X2+⋯+Xn

n

▸ Mean of n independent random variables with the same expectation µ and
the same variance σ2 < ∞ is very close to µ for large n

Law of large numbers
lim
n→∞

PPP (∣X̄n − µ∣ > ε) = 0

for all ε > 0

▸ Proof with Chebyshev’s inequality: E(X̄) = µ and then

PPP(∣X̄n − µ∣ > ε) ≤
Var(X̄n)

ε2

but Var(X̄n) = Var(Xi)/n → 0 for n →∞
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Central Limit Theorem

▸ Distribution of X̄n -?

Central Limit Theorem. Let X1,X2, . . . ,Xn be independent random variables
with the same expectation µ and the same variance σ2 (standard deviation σ),
and let

Sn = X1 +X2 +⋯ +Xn.

As n →∞ the standardized sum

Zn =
Sn − E(Sn)
Std(Sn)

converges in distribution to a standard normally distributed random variable, i. e.

FZn(z) = PPP(Sn − nµ

σ
√
n

≤ z) → Φ(z).

▸ Sn and X̄n converge in distribution to N(nµ,nσ2) and N(µ,σ2/n)
▸ For large n (n > 30) normal distribution can be used

▸ Example: See Example 4.13 in textbook
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Central Limit Theorem

▸ Binomial(n,p) → N(np,np(1 − p)) for large n
NegativBinomial(k,p) and Gamma(α,λ) can also be approximated to
normal distribution

▸ For normal distribution PPP(X = x) = 0
⇒ correction for approximation of discrete distributions:
PPP(X = x) → PPP(x − 0.5 < X < x + 0.5)

▸ For normal distribution PPP(X < x) = PPP(X ≤ x)
⇒ correction for approximation of discrete distributions:
PPP(X < x) → PPP(X < x − 0.5)
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Simulation of random variables

▸ Pseudo random number generator: Computers can generate sequences
of numbers that look like independent U(0,1) random numbers
→ Good enough

▸ R: runif(n) simulates n random variables with U(0,1) distribution

▸ Using U ∼ U(0,1) other distributions can be generated

▸ Example: Bernoulli distribution with success probability p:

X =
⎧⎪⎪⎨⎪⎪⎩

1 if U < p

0 if U ≥ p

▸ R code for Bernoulli distribution: U=runif(1); X=1*(U<p)

▸ Example: Binomially distributed random variables - Sum of Bernoulli
distributed random variables

▸ R code for Binomial(n,p): U=runif(n); X=sum(U<p)

▸ Example: Geometric distribution - number of trials for first success

▸ R code for Geo(p): X<-1; U=runif(1); while
(U>p){X<-X+1;U=runif(1)}; X
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Simulation of discrete distributions

▸ General approach for simulation of discrete distributions, i. e.

pi = PPP(X = xi) and ∑
all i

pi = 1

▸ Divide the interval [0,1] into sub-intervals:

▸ A0 = [0,p0)

▸ A1 = [p0,p0 + p1)

▸ A2 = [p0 + p1,p0 + p1 + p2)

▸ ⋮

▸ U ∼ U(0,1).
▸ If U ∈ Ai then X = xi

▸ Example: Poisson distribution (see Example 5.9 in textbook)
▸ xi = i , Ai = [F(i − 1),F(i))
▸ R code for Po(λ): λ<-5; U=runif(1); i<-0; F<-exp(-λ);

while (U>=F){F<-F+exp(-λ)λ(i+1)/factorial(i+1); i<-i+1}
X<-i; X
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Inverse cdf method

Theorem. Let X be a continuous variable with cdf FX (x) and let U = FX (X)
(random variable). Then U ∼ U(0,1).

Cdf of U ∼ U(0,1):

FU(u) = P(U ≤ u) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

0, u < 0
u, 0 ≤ u ≤ 1
1, u > 1

Then for U = FX (X) and Y = F−1
X (U)

FY (y) = P(Y ≤ y)
= P(F−1

X (U) ≤ y)
= P(FX (F−1

X (U)) ≤ FX (y))
= P(U ≤ FX (y))
= FU(FX (y)) = FX (y)

as 0 ≤ FX (y) ≤ 1 and FU(u) = u for 0 ≤ u ≤ 1

Then Y has same probability distribution as X
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Inverse cdf method

▸ Inverse cdf method (or inverse transform method):

X with cdf F(X) can be simulated using U ∼ U(0,1):
▸ Generate values for U ∼ U(0,1)
▸ Compute values for X from X = F−1

(U)

▸ Example: X ∼ Exp(λ) ⇒ CDF of X :

FX (x) = {
1 − e−λx , x ≥ 0

0, otherwise

To determine F−1
X solve y = 1 − e−λx :

⇒ e−λx = 1 − y ⇒ x = − 1

λ
ln(1 − y) ⇒ F−1

X (y) = −
1

λ
ln(1 − y)

Then for U ∼ U(0,1)

X = − 1

λ
ln(1 −U) ∼ exp(λ)
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Monte Carlo methods

▸ From Lecture 1:
For large number of trials, relative frequency → probability,
i. e. PPP(X = x) = 0.25 means that X = x occurs in 25 % of cases

▸ Simulation from distributions can be used to approximate probabilities

▸ Let X1,X2, . . . ,XN be generated values from distribution of X
Then probability p = PPP(X < 0.5) can be approximated by

p̂ = P̂PP(X < 0.5) = number of X1,X2, . . . ,XN which are less than 0.5

N

▸ Notation: p̂ - estimator (estimate) of probability p
▸ R code:

x = runif(10000, mean = 1, sd = 0.5)
pHat = sum(x<0.5)/10000
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Monte Carlo methods

▸ But p̂ is just estimate of p
Can be different for different samples

▸ Estimate p several times, each time with new sample of size N
Is average estimation value p?
→ Is E(p̂) = p? (Is p̂ unbiased?)
How much will p̂ vary from sample to sample? → Var(p̂)-?

▸ Y = number of X1, . . . ,XN which are less than 2
⇒ Y ∼ Binomial(N,p) and then

E(p̂) = E(Y
N
) = 1

N
N ⋅ p = p

⇒ p̂ is unbiased estimator of p, and

Var(p̂) = Var (Y
N
) = 1

N2
Np(1 − p) = p(1 − p)

N
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Monte Carlo integration

▸ To estimate:

I = ∫
1

0
g(x)dx , 0 ≤ x ≤ 1, 0 ≤ g(x) ≤ 1

▸ Simulate uniformly distributed

U1, . . . ,UN & V1, . . . ,VN

▸ Consider pairs (Ui ,Vi)

Î = Number of pairs for which Vi < g(Ui)
N

▸ R code:
▸ Define function g , for example g=function(x)return(sin(x))
u = runif(10000); v = runif(10000); IHat = mean(v < g(u))
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Simulation in R

▸ Generate n values from N(µ = 2, σ2 = 32):

rnorm(n, mean = 2, sd = 3)

▸ Generate n values from Gamma(α = 2, λ = 3): med

rgamma(n, shape = 2 , rate = 3)

▸ Compute pdf at point x = 1.5 for N(µ = 2, σ2 = 32)

dnorm(x=1.5, mean = 2, sd = 3)

▸ Compute cdf at point x = 1.5 for N(µ = 2, σ2 = 32)

pnorm(x=1.5, mean = 2, sd = 3)

▸ For other distributions see Appendix in textbook
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Thank you for your attention!


