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Lecture 6: Stochastic Processes
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Overview

▸ Definitions and classifications

▸ Markov chains

▸ Binomial processes

▸ Poisson processes
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Stochastic Processes

▸ Stochastic process:
Sequence of random variables X1,X2, ... observed over time

▸ Example: Xt = number of ”likes” for video on YouTube during day t
▸ Example: Xt = temperature in certain city at time t

▸ Stochastic process:
Random variable X(t, ω) which also depends on time, where

▸ t ∈ T and T - set of times,
can be discrete, e. g. T = {1,2,3, . . .} or continuous, e. g. T = [0,T ]

▸ ω ∈ Ω - outcome of an experiment

▸ Values of X(t, ω) are called states

▸ Simplified notation X(t) = X(t, ω)

▸ Classification of processes:

▸ Discrete or continuous states
▸ Discrete or continuous time

▸ Discrete states, continuous time: Number of ”likes” on YouTube over time

▸ Discrete states, discrete time: Number of ”likes” on YouTube during day t

▸ Continuous states, discrete time: Highest temperature on certain day

▸ Continuous states, continuous time: Temperature over time
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Markov processes

▸ Markov process: The forecast for tomorrow depends only on today:

P(future∣now,history) = P(future∣now)

▸ (Discrete-time) Markov process:
For all times t1 < ... < tn < tn+1 it holds that

P(X(tn+1) = xn+1∣X(t1) = x1, . . . ,X(tn) = xn) = P(X(tn+1) = xn+1)∣X(tn) = xn)

i.e. X(tn+1) is independent of X(t1), . . . ,X(tn−1) if X(tn) is given

▸ Well-developed theory, simple techniques

▸ But many processes are not Markov
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Markov chains

▸ Markov chain: Markov process with discrete time and discrete states

▸ Time: T = {1,2,3, . . .}
▸ Enumerate states: 1,2, . . . ,n (or A,B,C , . . . )

n = ∞ generally possible; not in this course

▸ Transition probability (one-step)

pij(t) = PPP {X(t + 1) = j ∣X(t) = i}

→ probability to move from state i to state j

▸ Example:
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Markov chains

▸ Transition probability (h-steps)

p(h)ij (t) = PPP {X(t + h) = j ∣X(t) = i}

→ probability to move from state i to state j by means of h transitions

▸ Homogeneous Markov chain: Transition probabilities independent of
time:

pij(t) = pij

▸ Transition matrix

P = ( p11 p12

p21 p22
)

▸ Example: Ω = {sunny, rainy}
P(sunny tomorrow∣sunny today) = 0.9, P(rainy tomorrow∣rainy today) = 0.3

▸ Example from previous slide

P =
⎛
⎜
⎝

0 0.8 0.2
0.5 0.1 0.4
0.5 0 0.5

⎞
⎟
⎠
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Markov chains

▸ Transition matrix 1-step

P =
⎛
⎜⎜⎜
⎝

p11 p12 ⋯ p1n

p21 p22 ⋯ p2n

⋮ ⋮ ⋱ ⋮
pn1 pn2 ⋯ pnn

⎞
⎟⎟⎟
⎠

Note that pi1 + pi2 + . . .pin = 1, for all i

▸ Transition probability (h-steps)

p(h)ij (t) = PPP {X(t + h) = j ∣X(t) = i}

▸ Complicated: many paths for i → j when h > 1
▸ Example: Ω = {1,2}. If h = 2, we can make the trip 1→ 2 in two ways:

▸ 1→ 1→ 2
▸ 1→ 2→ 2

→ Use matrices
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Markov chains

▸ Transition matrix h-steps

P(h) =
⎛
⎜⎜⎜⎜
⎝

p(h)11 p(h)12 ⋯ p(h)1n

p(h)21 p(h)22 ⋯ p(h)2n

⋮ ⋮ ⋱ ⋮
p(h)n1 p(h)n2 ⋯ p(h)nn

⎞
⎟⎟⎟⎟
⎠

Note that p(h)i1 + p(h)i2 + . . .p(h)in = 1, for all i

▸ Relation between P and P(h)

P(h) = P ⋅ P⋯P = Ph

▸ Example: Example 6.9 in textbook
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Distribution of X (h)
▸ Initial distribution of X(t) at t = 0 is the row vector:

P0 = (P0(1),P0(2), ....,P0(n)) , P0(i) = P(X(0) = i)

▸ Probability distribution over the states after h steps:

Ph = (Ph(1),Ph(2), ....,Ph(n))

▸ Computing Ph:
Phhh = P0P

(h)(h)(h) = P0P
hhh

▸ Example: P0 = (1/3,1/3,1/3) and

P =
⎛
⎜
⎝

0.8 0.1 0.1
0.1 0.6 0.3
0.1 0.5 0.4

⎞
⎟
⎠

⇒ P3 = (1/3,1/3,1/3)
⎛
⎜
⎝

0.8 0.1 0.1
0.1 0.6 0.3
0.1 0.5 0.4

⎞
⎟
⎠

3

= (0.333,0.407,0.259)

⇒ P(X(3) = 1) = 0.333 - probability for first state after 3 transitions

▸ See Example 6.10 in textbook
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Steady-state distribution

▸ Probability distribution over states after many steps - ?

▸ Steady-state distribution is the row vector

π = lim
h→∞

Ph

▸ limh→∞ Ph = limh→∞ Ph+1 ⇒ πP = π
▸ Computing π:

⎧⎪⎪⎨⎪⎪⎩

πP = π
∑x πx = 1

▸ A Markov chain is regular if there is h such that

p(h)ij > 0

for all i , j .

▸ Any regular Markov chain has steady-state distribution
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Binomial process

▸ Counting processes: X(t) - number of items counted by time t

▸ Binomial process: X(n) - number of successes in first n independent
Bernoulli trials

▸ X(n) ∼ Binomial(n,p), p - probability of success

▸ Y = number of trials between two consecutive successes

▸ Y ∼ Geo(p)
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Binomial process

▸ New Bernoulli trial every ∆ seconds → ∆= time frame

▸ n trials occur during t = n∆ seconds → n = t/∆
▸ Process as function of time: X(n) = X(t/∆)
▸ Expected number of successes during t seconds:

E(X(t/∆)) = tp/∆

▸ Expected number of successes per second: λ = p/∆
▸ λ is also called arrival rate
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Binomial process

▸ Interarrival time T - time between two consecutive successes

▸ Y = number of trials between two consecutive successes, Y ∼ Geo(p)
▸ Interarrival time: T = Y∆

▸ T has rescaled geometric distribution with support ∆,2∆,3∆, . . .

→ E(T) = E(Y∆) = ∆E(Y ) = ∆/p = 1/λ
▸ Binomial process - homogeneous Markov chain with transition probabilities

pij =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

p, j = i + 1

1 − p, j = i

0, othervise

This Markov chain is non-regular as X(n) non-decreasing, p(h)i,i−1 = 0 for all
h

→ no steady-state distribution

▸ Example: Example 6.18 in textbook
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Poisson process

▸ Poisson process - continuous-time stochastic process obtained from
Binomial process by letting ∆→ 0 while keeping λ constant

▸ From Lecture 3: X(t) ∼ Binomial(t/∆,p) → Poisson(λt) when
n = t/∆→∞ and p = λ∆→ 0

▸ Interarrival time T ∼ Exp(λ)
▸ Time for k-th success: Tk ∼ Gamma(k, λ) - sum of k iterarrival times

▸ Example: See Example 6.20 in textbook
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Simulation of stochastic processes

▸ For simulation of stochastic processes

see Chapter 6.4 in textbook

▸ See also

SimulateMarkovChain.R

for simulation Markov chains

SimulateBinomialProcess.R

for simulation of Binomial processes

SimulatePoissonProcess.R

for simulation of Poisson processes
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Thank you for your attention!


