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1 Introduction

PyDMD - Python Dynamic Mode Decomposition [4] is a Python package that uses Dynamic Mode

Decomposition for a data-driven model simplification based on spatiotemporal coherent structures.

Dynamic Mode Decomposition (DMD) is a model reduction algorithm developed by Schmid [15]. Since then

has emerged as a powerful tool for analyzing the dynamics of nonlinear systems. DMD relies only on the high-

fidelity measurements, like experimental data and numerical simulations, so it is an equation-free algorithm.

Its popularity is also due to the fact that it does not make any assumptions about the underlying system.

See Kutz [9] for a comprehensive overview of the algorithm and its connections to the Koopman-operator

analysis, initiated in Koopman [8], along with examples in computational fluid dynamics.

In the last years many variants arose, such as multiresolution DMD [10], compressed DMD [5], DMD with

control [13], forward backward DMD, sparsity promoting DMD to choose dynamically important DMD

modes [7], and higher order DMD [11] among others, in order to deal with noisy data, big dataset, or spurius

data for example.

In the PyDMD package we implemented in Python the majority of the variants mentioned above with a

user friendly interface. We also provide many tutorials that show all the characteristics of the software,

ranging from the basic use case to the most sofisticated one allowed by the package.

The research in the field is growing both in computational fluid dynamic and in structural mechanics, due

to the equation-free nature of the model. We cite among others, applications in the framework of shape

optimization in naval engineering [2, 16, 3]. For numerical non-intrusive pipelines for applied sciences and

industrial application we cite [14, 17].

2 Main features

The main important features of the PyDMD package are the following:

• Thoroughly documented, with an easily accessible online documentation.

• Modular package easily integrable into existing computational pipelines.

• Fast learning rate due to the simplicity of the code design inspired by scikit-learn.

• No external dependencies. It uses only standard and well spread Python packages.

• Written following the Python programming best practices.

• Open source software, distributed via GitHub. This ensures an easy contributing procedure and issue

tracking.

• A permissive free software license (MIT License), with an excellent license compatibility.

• A vast amount of tutorials.

3 Installation

PyDMD requires requires numpy, scipy, matplotlib, future, sphinx (for local documentation) and nose

(for local test). The code is compatible with Python 2.7 and Python 3.6. It can be installed using pip or

directly from the source code.

Mac and Linux users can install pre-built binary packages using pip. To install the package just type:

pip install pydmd

Page 2 of 11



To uninstall the package:

pip uninstall pydmd

It is also possible to install the package locally, after cloning it, for example during the developing stage of

new features, with

git clone https://github.com/mathLab/PyDMD

python setup.py install

or, in alternative, to install the lastest version on the master branch on GitHub use the following command

pip install git+https://github.com/mathLab/PyDMD.git

4 Documentation

PyDMD uses sphinx for code documentation. You can view the documentation online here: https:

//mathlab.github.io/PyDMD/. To build the html version of the docs locally simply type the following from

within the pydmd folder:

cd docs

make html

The generated html can be found in docs/build/html. Open up the index.html file you find there to

browse the documentation.

5 Testing

We are using Travis CI for continuous intergration testing for Mac and Linux platforms and for Python 2.7

and 3.6. You can check out the current status here: https://travis-ci.org/mathLab/PyDMD.

To run tests locally (nose is required):

python test.py

6 Tutorials

We are going to present the main features of the software following some of the tutorials available online.

First we introduce mathematically the algorithm, then in the following subsections we start with the basic

usage of the classical DMD, then we introduce more advanced options we can pass to the base class, and

finally we show how to use the DMD variants we implemented. All the tutorials can be found online in the

GitHub repository at https://github.com/mathLab/PyDMD/tree/master/tutorials

Page 3 of 11

https://mathlab.github.io/PyDMD/
https://mathlab.github.io/PyDMD/
https://travis-ci.org/mathLab/PyDMD
https://github.com/mathLab/PyDMD/tree/master/tutorials


6.1 Mathematical formulation

The dynamic mode decomposition is a powerful method that allows the approximation of complex nonlinear

systems as the combination of low-rank structures evolve linearly in time. These structures, called modes,

and their time evolution, called dynamics, come from the decomposition, based on the singular value decom-

position (SVD), of the output data of the studied system. Relying only on the high-fidelity measurements

(experimental data, numerical simulations), the DMD has the big benefit of being an equation-free algorithm,

and it does not make assumptions about the underlying system. Due to the complex systems simplification

through the dynamics modes, this method gives us the possibility to

• better understand the model thanks to the analysis of the low-rank spatiotemporal features extracted,

as we are going to show in Section 6.2;

• accurately reconstruct the temporal evolution of the system and a short-time future estimation.

The basic idea behind DMD is to approximate the evolution of the complex system with a linear operator

A such that xk+1 = Axk, where xk ∈ Rn is the vector representing the state of the system at time k. We

underline that the state vectors are equispaced in time. To obtain the minimum approximation error across

all these snapshots, it is possible to arrange them in two matrices as following:

X =


x11 x12 · · · x1m−1
x21 x22 · · · x2m−1
...

...
. . .

...

xn1 xn2 · · · xnm−1

 , Y =


x12 x13 · · · x1m
x22 x23 · · · x2m
...

...
. . .

...

xn2 xn3 · · · xnm

 . (1)

In this way, each column of Y contains the state vector at the next timestep of the one in the corresponding

X column.

We underline that the snapshots are sampling the evolution of a nonlinear system and we are looking for a

linear operator. Thus, we want to find A such that Y ≈ AX. The best-fit A matrix is given by A = YX†,

where the symbol † denotes the Moore-Penrose pseudo-inverse.

Since the snapshots xi represent the state of the system, we assume they are high dimensional: hence the

matrix A has n2 elements (supposing the dimension n of a snapshot is larger than the number of snapshots

m) and it is difficult to decompose or to handle. The DMD algorithm projects the data onto a low-rank

subspace defined by the proper orthogonal decomposition (POD) modes, then computes the low-dimensional

operator Ã; finally this operator is used to reconstruct the leading nonzero eigenvalues and eigenvectors of

the full-dimensional operator A without ever explicitly computing A.

First, we compute the truncated SVD of the matrix X:

X ≈ UrΣrV
∗
r , (2)

where Ur ∈ Cn×r, Σr ∈ Cr×r and Vr ∈ Cm×r. Here r is the rank of the reduced SVD approximation and ∗

denotes the conjugate transpose. The columns of Ur are orthonormal and they are the first r POD modes,

so we can use the matrix Ur to build the low-dimensional operator Ã. Recalling the definition of A and the

decomposition of X we obtain

Ã = U∗rYVrΣ
−1
r . (3)

Avoiding the explicit calculation of the high-dimensional operator A, we obtain the matrix Ã ∈ Cr×r

that defines the linear evolution of the low-dimensional model as x̃k+1 = Ãx̃k, where x̃k is the low-rank

approximated state. It is possible reconstruct the high-dimensional state xk as xk = Urx̃k.

Thanks to the eigendecomposition of Ã

ÃW = WΛ (4)

we can reconstruct the eigenvectors and eigenvalues of the matrix A: in particular the eigenvectors can be

computed in two ways:
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• the eigenvectors of A are reconstructed by projecting the low-rank approximation W on the high-

dimensional space: Φ = UrW. We call the eigenvectors computed in this way the projected dynamic

mode decomposition (DMD) modes.

• the so called exact DMD modes, the real eigenvectors of A, are instead the columns of Φ = YVrΣ
−1
r W.

To demonstrate the relation between the exact DMD modes and the eigenvectors of the matrix Ã, we

recall the eigendecomposition of the high-dimensional operator and the definitions A = YVrΣ
−1
r U∗r and

Ã = U∗rYVrΣ
−1
r :

AΦ = ΦΛ

AYVrΣ
−1
r W = YVrΣ

−1
r WΛ

YVrΣ
−1
r U∗rYVrΣ

−1
r W = YVrΣ

−1
r WΛ

YVrΣ
−1
r ÃW = YVrΣ

−1
r WΛ

ÃW = WΛ.

(5)

This also proves that the eigenvalues obtained from the decomposition of Ã coincide with the eigenvalues

of A. These eigenvalues Λ =
[
λ0 λ1 . . . λr

]
with λi ∈ C for i = 0, 1, . . . , r, contain growth/decay rates

and frequencies of the corresponding DMD modes.

We use the eigendecomposition to rewrite the definition of the linear operator:

Y ≈ AX

≈ ΦΛΦ†X

≈ ΦΛΦ†
[
x0 x1 x2 . . . xr

]
≈ ΦΛΦ†

[
x0 Ax0 A2x0 . . . Ar−1x0

]
≈ ΦΛΦ†

[
x0 ΦΛΦ†x0 ΦΛΦ†ΦΛΦ†x0 . . . (ΦΛΦ†)r−1x0

]
≈ ΦΛ

[
b Λb Λ2b . . . Λr−1b

]
≈ Φ

[
Λ Λ2 . . . Λr

]
b

(6)

where b refers to the amplitudes of the first snapshot such that b = Φ†x0. Thus, it is possible to approximate

the state of the system at the generic time tk = k∆t by computing xk = ΦΛkb.

6.2 How to use the standard algorithm

In the following tutorial, we apply the standard DMD to a very simple system in order to show the capabilities

of the algorithm and the package interface. We create the input data by summing the following two functions

f1(x, t) = sech(x+ 3) exp(i2.3t),

f2(x, t) = 2 sech(x) tanh(x) exp(i2.8t).
(7)

and we import the PyDMD environment and in particular the DMD class using the code below.

1 import matplotlib.pyplot as plt

2 import numpy as np

3

4 from pydmd import DMD

Page 5 of 11



1 def f1(x,t):

2 return 1./np.cosh(x+3)*np.exp(2.3j*t)

3

4 def f2(x,t):

5 return 2./np.cosh(x)*np.tanh(x)*np.exp(2.8j*t)

6

7 x = np.linspace(-5, 5, 128)

8 t = np.linspace(0, 4*np.pi, 256)

9 xgrid, tgrid = np.meshgrid(x, t)

10

11 X1 = f1(xgrid, tgrid)

12 X2 = f2(xgrid, tgrid)

13 X = X1 + X2

Now we have the temporal snapshots in the input matrix rows: we can easily create a new DMD instance

and exploit it in order to compute the decomposition on the data. Since the snapshots must be arranged by

columns, in this case we need to transpose the matrix.

1 dmd = DMD(svd_rank=2)

2 dmd.fit(X.T)

The dmd object contains the principal information about the decomposition:

• the attribute modes is a 2D numpy array where the columns are the low-rank structures individuated;

• the attribute dynamics is a 2D numpy array where the rows refer to the time evolution of each mode;

• the attribute eigs refers to the eigenvalues of the low dimensional operator;

• the attribute reconstructed_data refers to the approximated system evolution.

We are able to easily visualise the eigenvalues using the method plot_eigs or plotting the modes and the

dynamics thanks to matplotlib library, as shown in Figure 1.

1 for mode in dmd.modes.T:

2 plt.plot(x, mode.real)

3 plt.title('Modes')

4 plt.show()

5

6 for dynamic in dmd.dynamics:

7 plt.plot(t, dynamic.real)

8 plt.title('Dynamics')

9 plt.show()

Finally, we can reconstruct the original dataset as the product of modes and dynamics. In Figure 2 we

plot the evolution of each mode to emphasize their similarity with the input functions and we plot the

reconstructed data.
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Figure 1: The DMD modes and the corresponding dynamics.

Figure 2: The application of the DMD algorithm on the toy dataset: the evolving system is simulated

summing f1 and f2; the two dynamics coincide with these functions and the target dynamical system is

faithfully reconstructed.

6.3 More advanced options

We create the dataset with an hyperbolic secant with damped oscillations as in the following formula:

f(x, y, t) = sech(x) sech(y)2.4i−t + r (8)

where r is a random noise term sampled from a normal (Gaussian) distribution, r ∼ N (µ, σ2), with mean

µ = 0 and variance σ = 0.4. In Figure 3 the 16 equispaced snapshots for t ∈ [0, 6] generated with the code

below.
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1 x1 = np.linspace(-3, 3, 80)

2 x2 = np.linspace(-3, 3, 80)

3 x1grid, x2grid = np.meshgrid(x1, x2)

4

5 time = np.linspace(0, 6, 16)

6

7 data = [2/np.cosh(x1grid)/np.cosh(x2grid)*(1.2j**-t) for t in time]

8 noise = [np.random.normal(0.0, 0.4, size=x1grid.shape) for t in time]

9

10 snapshots = [d+n for d,n in zip(data, noise)]

11

12 fig = plt.figure(figsize=(18,12))

13 for id_subplot, snapshot in enumerate(snapshots, start=1):

14 plt.subplot(4, 4, id_subplot)

15 plt.pcolor(x1grid, x2grid, snapshot.real, vmin=-1, vmax=1)

Figure 3: Snapshots state of the dynamical system.

Alright, now it is time to apply the DMD to the collected data. First, we create a new DMD instance.

1 dmd = DMD(svd_rank=1, tlsq_rank=2, exact=True, opt=True)

We note there are four optional parameters:

• svd_rank: since the dynamic mode decomposition relies on singular value decomposition, we can

specify the number of the largest singular values used to approximate the input data. It is also possible

to set it to 0 and the algorithm will calculate for you the optimal rank truncation [6]. Moreover it

accepts non-integer values between 0 and 1, indicating the percentage of spectral energy you want to

retain with the truncation, for instance 0.8 means to retain at least 80% of the cumulative energy of

the singular values, starting from the greatest.
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• tlsq_rank: using the total least square, it is possible to perform a linear regression in order to remove

the noise on the data; because this regression is based again on the singular value decomposition, this

parameter indicates how many singular values are used.

• exact: boolean flag that allows to choose between the exact modes or the projected one (see Subsec-

tion 6.1).

• opt: boolean flag that allows to choose between the standard version and the optimized one. If true

the optimal amplitudes of the DMD modes are computed by minimizing the error between the time

evolution and all the original snapshots [7]. If false the amplitudes are computed using only the initial

condition, that is the first snapshot.

Then using a well known code design, borrowed from scikit-learn [12, 1], with the fit method it is

possible to compute the DMD modes, given the original snapshots. Now we can plot the 2D modes easily

with plot_modes_2D, it is that simple!

1 dmd.fit(snapshots)

2 dmd.plot_modes_2D(figsize=(12,5))

We have everything to compute the reconstructed snapshots using the DMD mode we have computed. The

approximated system is similar to the original one and, moreover, the noise is greatly reduced.

1 fig = plt.figure(figsize=(18,12))

2 for id_subplot, snapshot in enumerate(dmd.reconstructed_data.T, start=1):

3 plt.subplot(4, 4, id_subplot)

4 plt.pcolor(x1grid, x2grid, snapshot.reshape(x1grid.shape).real, vmin=-1, vmax=1)

We can also manipulate the interval between the approximated states and extend the temporal window where

the data is reconstructed thanks to DMD. Let us make the DMD delta time a quarter of the original and

extend the temporal window to [0, 3torg], where torg indicates the time when the last snapshot was caught.

1 dmd.dmd_time['dt'] *= .25

2 dmd.dmd_time['tend'] *= 3

If we recalculate the reconstructed data with this new timeframe we obtain the video you can find at:

https://github.com/mathLab/PyDMD/blob/master/readme/dmd-example.gif
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Figure 4: Snapshots state reconstructed by the DMD algorithm.

6.4 DMD variants use cases

PyDMD allows to use many variants of the standard DMD algorithm: the multi-resolution dynamic mode

decomposition (mrDMD), the forward/backward DMD, the DMD with control (DMDc), the compressed

DMD, and the high order dynamic mode decomposition (HODMD). For all these implementations we refer

to the folder tutorials within the package repository, accessible at https://github.com/mathLab/PyDMD/

tree/master/pydmd, where there is a tutorial for each one of them.
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