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GRASSMANN'S DIALECTICS AND CATEGORY THEORY 

PROGRAMMATIC OUTLINE 

In several key connections in his foundations of geometrical algebra, 
Grassmann makes significant use of the dialectical philosophy of 150 
years ago. Now, after fifty years of development of category theory as a 
means for making explicit some nontrivial general arguments in 
geometry, it is possible to recover some of Grassmann's insights and to 
express these in ways comprehensible to the modem geometer. For 
example, the category J/. of affine-linear spaces and maps (a monument 
to Grassmann) has a canonical adjoint functor to the category of 
(anti)commutative graded algebras, which as in Grassmann's detailed 
description yields a sixteen-dimensional algebra when applied to a three
dimensional affine space (unlike the eight-dimensional exterior algebra 
of a three-dimensional vector space). The natural algebraic structure of 
these algebras includes a boundary operator d which satisfies the 
(signed) Leibniz rule; for example, if A, B are points of the affine space 
then the product AB is the axial vector from A to B which the 
boundary degrades to the corresponding translation vector: d(AB) = 
B-A (since dA = dB = I for points). Grassmann philosophically 
motivated a notion of a "simple law of change," but his editors in the 
1890' s found this notion incoherent and decided he must have meant 
mere translations. However, translations are insufficient for the 
foundational task of deciding when two formal products are 
geometrically equal axial vectors. But if "Iaw of change" is understood 
as an action of the additive monoid of time, "simple" turns out to mean 
that the action is internal to the category J/. at hand, in the following 
sense: The affine category has a unique c10sed structure, consisting of an 
internal horn functor with an adjoint tensor-product functor which neither 
is the cartesian product nor underlies the usual tensor product of vector 
spaces, and since addition of times does define an internal monoid 
structure R ® R ~ R with respect to this tensor product, it is very 
natural to interpret "internal law of becoming" on aspace E to mean an 
action (= "flow") R ® E ~ E with respect to this tensor. Such actions 
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turn out to be determined by shear transformations, of which there are 
indeed enough to detect equality ofaxial vectors! 

ORIENTATION 

Grassmann in his philosophical introduction describes the two-fold 
division of formal sciences, that is, the science of thinking, into dialectics 
and mathematics. He briefly describes dialectics as seeking the unity in 
all things, and he describes mathematics as the art and practice of taking 
each thought in its particularity and pursuing it to the end. There is a 
need for an instrument which will guide students to follow in a unified 
way both of these activities, passing from the general to the particular 
and from the particular to the general. 

general 

mathematics dialectics 

particular 

1 believe that the theory of mathematical categories (wh ich was made 
explicit 50 years ago by Eilenberg and Mac Lane, codifying extensive 
work done by Hurewicz in particular during the 1930's), can serve as 
such an instrument. It was introduced and designed in response to a very 
particular question involving passage to the limit in calculating 
cohomology of certain portions of spheres, but this particular calculation 
necessitated an explicit recognition of the manner in which these spaces 
were related to all other spaces and, in particular. how their motion might 
induce other motions. In other words, category theory was introduced 
(and still serves) as "a universal geometrical calculus." 

Looking more closely into Grassmann, Stephen Schanuel and 1 found 
numerous ways in which it could be justified to say that Grassmann was 
apre-cursor of category theory. The general algebraic operations which 
he discussed have become the explicit object of a particular developed 
theory, and those general concepts, general operations, systems of 
operations and systems of equations in invariant coordinate free form 
have been made into apart of category theory. More specifically. we find 
that in certain cases the famous distinction between analytic and 
synthetic operations can only be explained in terms of adjoint functors. 
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This is because, although in simple cases the analytic operation may be 
the actual inverse of the synthetic one, there are a great many cases 
(arising in deductive logic and finance and so forth) where there are 
clearly pairs of operations having this analytic/synthetic relation, but the 
precise mathematical form of their relationship is not that of inverse, but 
rather of adjointness, in the sense of category theory. I hope to illustrate 
the use of category theory in making explicit certain of Grassmann's 
ideas, wh ich have been misunderstood or neglected, with a few 
examples. I have written several other papers on the general principles of 
dialectics and how these can be formalized using category theory, so I 
think it is appropriate here to describe two particular algebraic examples 
worked out with Schanuel. 

GRASSMANN FUNCTOR MORE STRUCTURED THAN EX1ERIOR ALGEBRA 

If as modem geometers we look into Grassmann 's Ausdehnungslehre, 
we see on page 305 that the Grassmann algebra built on three
dimensional space has itself dimension 16, whereas in all the modem text 
books, the exterior algebra of a three-dimensional space has dimension 8. 
This distinction is by no means trivial; in fact a large part of the 
geometrical content of Grassmann's algebra, as he explains it in detail in 
the book, can be traced back to this opposition which sterns from the 
opposition between points and vectors. As explained in most modem text 
books, the space of points has no preferred origin and the space of 
vectors lives principally because it acts on points; a special property of 
this action is that with two points there is a unique vector wh ich is their 
difference and therefore the same translation motion by the vector can be 
applied to a new starting point. 

The Grassmann algebra is the anti-commutative graded algebra which 
is universally associated to the space. There is the category of 
"commutative" (which is the modem word for anti-commutative) graded 
algebras and homomorphisms thereof. In particular, there is the 
possibility of taking the grade 1 portion of any such algebra which we 
can consider as an affine space of points; moreover, any homomorphism 
which preserves the grading and the addition and multiplication between 
these graded algebras will induce an affine linear map between the grade 
1 portions. Now, the algebra Grassmann considered, (and discussed in 
detail the nature of grade 0, grade 1, grade 2, grade 3, grade 4) is 
uniquely characterized as the construction which is left adjoint to this 
forgetting process. This is one of the qualitative improvements of 
category theory over previous formulations, that a process can have a 
uniquely determined reverse attempt, which is however not actually an 
mverse. 

Thus the Grassmann construction is uniquely determined by the fact 
that it assigns to any affine space of points a commutative graded algebra 
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with the original points included into the grade 1 portion of the algebra in 
a way which is universal with respect to homomorphisms of graded 
algebras. 

Graded Algebra 

i 
-lmeans 
"left adjoint of" 

I 
-l I () I = forgetful functor taking 

1 the grade 1 portion of any 
graded algebra 

G 

Affine 

We can explain this construction with the help of the standard 20th 
century constructions by noting that this forgetful (throwing away the 
multiplication and higher grades) functor can actually be factored into 
two parts, namely the grade 1 portion of an algebra is a vector space and 
then we can forget the origin. If we take a vector space and forget the 
origin, what's left is an affine space. Now, it's a general principle of 
adjoints (proved by Kan in 1958) that the adjoint of a composite is the 
composite of the adjoints. So the Grassmann adjoint G is actually the 
composite of two left adjoints: the second is the exterior algebra of a 
vector space, as described in the text books; in particular, it assigns to a 
vector space of dimension n a graded commutative algebra of dimension 
2n; for example, to a three-dimensional vector space it associates an 8-
dimensional algebra, and to a four-dimensional vector space it associates 
a 16-dimensional algebra etc. 

Graded Algebra 

A = modern exterior algebra 

Vect 

Affine 
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The proeess of forgetting the origin is not trivial, beeause the left 
adjoint to it is the following eonstruetion: You have a flat spaee (another 
word for affine is "flat") and you must adjoin in a universal way an 
origin. That origin eannot be in the original space, it must be adjoined 
outside, so the veetor spaee generated by the original affine space and 
this new origin will always be of dimension 1 more than the dimension 
of the affine spaee. For example, the 3-dimensional affine or flat spaee 
by this eomposite proeess has at first associated to it a 4-dimensional 
veetor spaee; so if we then take the exterior algebra in the modem sense 
of that 4-dimensional veetor spaee, we will obtain the 16-dimensional 
Grassmann algebra, the one that he deseribes step by step in his book. 

E= {XE G1lax= I} 

V= {XE G1Iax=o} 

E 

r 
i 
~ 

v 

G~G~G 2 3 4 

It has a grade 0 portion which is just the scalar field R; it has as grade 
1 portion the 4-dimensional veetor spaee G J generated by the 3-
dimensional affine spaee E, a 6-dimensional grade 2 portion and at the 
end a I-dimensional grade 4 portion. An extremely important feature of 
this eonstruetion is that the Grassmann algebra has mueh more natural 
structure than the exterior algebra. The natural structure (in the teehnical 
sense of my 1963 doetoral thesis) of any funetor eonsists of all natural 
operations, where a natural operation is an assignment to every value of 
the funetor of an operation which eommutes with all the morphisms 
which are values of the funetor. In this ease the natural strueture includes 
a "boundary" operator a which decreases grade by one and eommutes 
with all the maps indueed by an arbitrary affine-linear map a . 
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E Gk(E) ( 
OE 

Gk+,(E) 

1" 
1 G,(") 1 G,.,(a) 

F Gk(F) ( 
OF 

Gk+,(F) 

Thus we can consider the richer category of differential graded 
algebras and we find that the Grassmann functor actually lifts up along 
the forgetful functor (from this richer category back to the graded 
algebras). The axioms satisfied by the boundary operator in each 
differential graded algebra are that it is linear and satisfies the graded 
(signed) Leibniz rule with respect to the product, while of course 
reducing the grade by 1, and has square zero. By contrast, there is no 
such natural boundary operator on the exterior algebra of a vector space. 
Again we can explain this by modern constructions. The specific 
construction of the first step can be understood in the following way: The 
GlE) is the 4-dimensional vector space generated by the 3-dimensional 
affine space E. There is the unique affine map from any affine space E 
to the one point affine space and yet G lJ) = R . Hence, by the 
functoriality of G J there is a canonicallinear map from G J (E) to G lJ) 
= R; in fact, this map is just the lowest-grade instance of the boundary 
operator. If the elements of GlE) are thought of as weighted points, then 
this linear functional simply specifies the weight value. The kernel of this 
linear functional is a 3-dimensional vector space which is actually the 
space of translations of E acting as folIows: The part of GlE) where 
this functional takes the value 1 is just the original affine space E, and 
obviously the addition of an element of value 0 takes elements of value 
1 into elements of value 1 by linearity. Similarly, subtracting two 
points, that is, two elements of value 1, will give an element of value 0, 
i.e. a translation vector. The whole chain complex, i.e. the sequence of 
boundary operators of higher grade, can be described as the 20th century 
construction of the "Koszul" complex, the unique differential graded 
algebra structure which extends this lowest-grade part, which for the 
Koszul construction could be any linear functional on any given R
module. l 

I For a non-empty affine space the homology of this complex is trivial, since a 
contracting homotopy is defined by the Grassmann product with any chosen point. 
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VectJR = category of 
vector spaces equipped 
with a linear functional 

K= Koszul 

connected 
o-graded algebra 

+100
,1 \ 

graded 
VectJR algebra 

~ GI 10 , 

affine/l ~ affine 
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This boundary operator contains much of the geometry which 
Grassmann was talking about: for example, if we take two points, (i.e. 
two elements of GI wh ich have boundary one) and form their 
Grassmann product, we obtain an element of G2 which represents the 
axial vector from the first point A to the second point B. The boundary 
of the product is equal to B -A , the ordinary vector which translates A 
to B for 

a (AB) = (aA)B ± AaB 

but if A and B are points, then aA and aB are both 1 and moreover in 
this grade it is the minus sign which we must take in the Leibniz rule. 
Higher products represent triangles, tetrahedra and so on and their 
boundaries are their usual combinatorial boundaries. Thus not only do 
the volume elements etc. live at the expected grades, but moreover, their 
boundaries are connected in the expected way. 

Grassmann's term for the boundary operator is "Ausweichung." The 
exactness (vanishing of homology) he affirms on page 187; the special 
case, that the top-grade instance of the boundary operator is injective, is 
used for example on page 198. The fact that the lowest-grade instance of 
the boundary operator coincides with the weight functional is explicit on 
page 185. The quantities of boundary zero (wh ich Grassmann called 
"Ausdehnungsgrösse") constitute the exterior algebra of the translation 
vector space of the original affine space; through their inclusion into the 
larger algebra these quantities can act on the "rigid" quantities which 
contain point factors. 
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"SIMPLE" LA WS AND EQUALITY OFAXIAL VECTORS 

Grassmann apparently intended that his philosophical notion of 
"Becoming according to a simple law of change,,2 should serve as a 
foundation far his geometrical algebra. But Engel and Study, the editors 
of his collected works, found his discussion incoherent and decided that 
"in fact" (page 405) his changes were merely parallel translations. 
However, let us consider the foundational problem in the following 
sense. While indeed the description of the Grassmann algebra 
construction as the left adjoint into graded "commutative" algebras is 
very effective for calculation, we can ask why that particular category is 
chosen as geometrically natural. The crucial ingredient in presenting 
some algebra generated by points is the relation stating when two formal 
products of generating points are to be considered equal; there should be 
a criterion for AB = CD in terms of the basic affine category itself. One 
idea for solving the foundational problem of providing such a criterion is 
as folIows. Assuming that "simple law of change" is somehow 
interpreted as a special kind of affine-linear morphism, we can associate, 
with each pair of points A, B in a given affine space E , the set of all 
simple endomorphisms S of E for which SA = B; then define an 
equivalence relation on the set of pairs of points by the requirement that 
(for B distinct from A, and D distinct from C ), these sets should be 
equal, in other words (A,B) is equivalent to (C, D) if and only if for every 
simple endomorphism S , SA = B iff SC = D . If "simple" merely meant 
translations, this idea would collapse, because the equivalence would just 
say B - A = D - C , equality of the mere boundaries of the axial vectors. 
But it seems that Grassmann's description on the cited pages supports a 
broader interpretation of "simple" which both narrows the above 
equivalence idea enough to separate distinct bound or axial vectors and is 
also extremely natural in view of the particular nature of the affine 
category. 

For an affine-linear endomorphism S of E , the geometrical property 
that for every point A , the product A(SA) is the same as the product 
(SA)(SSA), is equivalent to the algebraic property S2 = 2S - 1. That 
equivalence can be proved in one direction by applying the boundary 
operator and in the other direction by using (anti)commutativity and the 
fact that the square of any point, such as SA, is zero. The foundational 
significance of this equivalence is that our "algebraic" condition does not 
presuppose the Grassmann product, but only involves composition and 
the fact that affine combinations of such maps (specifically the one with 
coefficients 2, -1) can be formed. Let us call such endomorphisms S 
"simple." Translation by a given vector is indeed simple, but there are 

2 Al' Einleitung, Nr. 9-10, and: Abschnitt I, Kap. I, §13 and §14, and: Anhang II1, I. 5. 
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more examples such as any linear transformation which differs from the 
identity by a linear transformation of square zero, and certain 
combinations of these two types. 

The simple laws of change in the above sense do indeed determine 
relations for presenting the Grassmann algebra. More precisely, not only 
does AB = CD imply that any simple change taking A to B also takes C 
to D, b ut also that the converse is true. That converse can be proved as 
follows: the two sets of simple maps assumed equal inc1ude the 
translation and so, in particular, D = C + (B -A), but more, if C were not 
on the line spanned by A and B, then there would be a simple S for wh ich 
SA = B but SC is not D (for example we could even have SC = C , a 
shearing transformation with C as origin.) 

The apparently bizarre equation S2 = 2S - 1 is in fact determined by 
applying to the affine category Jl the following very general 
consideration. It is a c10sed category in a unique way. This means that 
there is an internal horn functor with a left adjoint tensor product functor 
and unit object. For example. the category of sets has the exponential 
function-set of any two sets, the left adjoint to that is the ordinary 
cartesian product of two sets and the unit object is the one point set. The 
category of vector spaces has the well-known internal horn and tensor 
product whose unit is the ground field. More complicated categories may 
have more than one c10sed structure. but when the unit object is faithful, 
the c10sed structure is unique (but only rarely exists). For the category of 
affine spaces the unit object is the one point space, which is indeed 
faithful; the tensor product (uniquely determined by representing 
bi-affine maps) is bigger than the corresponding one for the category of 
vector spaces, since the functor (discussed previously) of adjoining a 
generic origin does transform the affine tensor product into the linear 
tensor product and hence nm + n + m is the dimension of the affine 
tensor product of two spaces of respective dimensions n, m. In any c10sed 
category there is the notion of a monoid structure on an object M and of 
M-action on any object, both with respect to the tensor product. For 
example, in vector spaces a "monoid" is really any associative linear 
algebra and an "action" of such turns out to mean any module over the 
algebra. The affine tensor product of the scalar field R with itself is 
three-dimensional, and ordinary multiplication is an example of a monoid 
structure on R; however, addition gives a different monoid structure on 
R in the affine category, which is the one that interests us here because 
actions of the additive monoid of time translations are considered in 
many categories as a model of "laws of Becoming" (or in modern 
terminology "dynamical systems"). Of course, when the monoid structure 
is written additively, the associative law required for any action looks 
like an exponential law (also sometimes known as the "semigroup 
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property"). A bi-affine action of the additive monoid R of all real 
numbers on a given affine space E is determined by its instance at t = 1 
because for other times it just affinely follows the straight line through 
its state A at t = 0 and its state SA at t = 1. The associative (or 
exponential) law is a strong restriction on which affine-linear 
endomorphisms S can occur within such a flow: they are exactly those 
satisfying S2 = 2S - 1 wh ich we interpreted above as Grassmann's simple 
laws of change. In this sense the relation imposed on the Grassmann 
multiplication has a foundation in the way in which the affine category 
particularizes the very general notion of internallaw of change. 

Department 0/ Mathematics, State University 01 New York at Buffalo 
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