
RHUL Psychology Statistical modelling notebook

Matteo Lisi

2024-02-26



2



Contents

1 About 5

2 Departmental survey about statistical methods 7
2.1 March 2022 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3 Introduction to R 13
3.1 Installing R . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.2 First steps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.3 Resources for learning R . . . . . . . . . . . . . . . . . . . . . . . 21

4 Correlations 23
4.1 Comparing correlations . . . . . . . . . . . . . . . . . . . . . . . 23
4.2 Polychoric and polyserial correlations . . . . . . . . . . . . . . . . 25
4.3 Partial correlations . . . . . . . . . . . . . . . . . . . . . . . . . . 25

5 Linear models 29
5.1 Simple linear regression . . . . . . . . . . . . . . . . . . . . . . . 29

6 Models for count data 35
6.1 Poisson model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
6.2 Negative binomial model . . . . . . . . . . . . . . . . . . . . . . . 38
6.3 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

7 Models for ordinal data 49
7.1 Ordered logistic regression . . . . . . . . . . . . . . . . . . . . . . 49

8 Meta-analyses 57

9 Missing data 59
9.1 Types of missing data . . . . . . . . . . . . . . . . . . . . . . . . 59
9.2 Deciding whether the data are MCAR . . . . . . . . . . . . . . . 60
9.3 Causal analysis and Bayesian imputation . . . . . . . . . . . . . 61

10 Signal Detection Theory 63

3



4 CONTENTS

10.1 Equal-variance Gaussian SDT . . . . . . . . . . . . . . . . . . . . 63
10.2 Bayesian confidence in equal-variance SDT . . . . . . . . . . . . 68
10.3 Unequal-variance SDT . . . . . . . . . . . . . . . . . . . . . . . . 72

11 Fitting Zipf’s law to word frequency data 79
11.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
11.2 Data preparation . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
11.3 Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
11.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
11.5 Visualization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

12 Workshops 85
12.1 Linear multilevel models (LMM) workshop (9th Sept 2022) . . . 85
12.2 Introduction to meta-analyses in R . . . . . . . . . . . . . . . . . 85
12.3 Power analyses via data simulation . . . . . . . . . . . . . . . . . 85
12.4 Introduction to Bayesian data analysis using R and Stan . . . . . 86
12.5 Introduction to linear algebra . . . . . . . . . . . . . . . . . . . . 86

13 Useful links & resources 87
13.1 Statistical theory . . . . . . . . . . . . . . . . . . . . . . . . . . . 87



Chapter 1

About

This online resource is created and maintained by Matteo Lisi and is designed
as a collective repository for the staff and students of the Department of Psy-
chology of Royal Holloway, University of London. It contains a miscellaneous
collection of tutorials, examples, case studies, workshop materials, and a variety
of additional content focusing on data analysis and modelling. These materi-
als will be updated and expanded regularly in response to the most frequent
questions and requests received.

A pdf version is available at this link.

This is a work in progress and may contain imprecisions and typos. If you
spot any please let me know at matteo.lisi [at] rhul.ac.uk. The materials that
will be included builds upon and draw from existing literature on statistics and
modelling. I will endeavor to properly cite existing books and papers; but if
any author feels that I have not given them fair acknowledgement, please let
me know and I will make amend. This book is licenbsed under CC BY-SA 4.0
license.

5

https://mlisi.xyz/
https://www.royalholloway.ac.uk/research-and-teaching/departments-and-schools/psychology/
https://www.royalholloway.ac.uk/research-and-teaching/departments-and-schools/psychology/
https://raw.githubusercontent.com/mattelisi/RHUL-stats/main/RHUL-stats-notebook.pdf
https://creativecommons.org/licenses/by-sa/4.0/


6 CHAPTER 1. ABOUT



Chapter 2

Departmental survey about
statistical methods

I used an anonymous survey to ask colleagues some questions about which topics
may be more interesting or useful in their research.

2.1 March 2022

2.1.1 Question 1

In the first question people indicated topics of interests. The winner are multi-
level models, followed closely by Bayesian statistics.

7



8CHAPTER 2. DEPARTMENTAL SURVEY ABOUT STATISTICAL METHODS

Probabilistic mixture models

Modelling of psychophysical
data (advanced)

Models for ordinal dependent
variables

Reinforcement learning models
for sequential

decision−making problems

Jointly modelling choices and
response times with

sequential sampling models

Models for response time data

Developing and estimating
task−specific models of

cognitive processes

Modelling of psychophysical
data

Principal component analysis
(PCA)

Dealing with censored,
truncated or missing data

Generalized additive models
(GAM)

Causal inference (using
non−experimental data to

study causation)

Generalized linear models
(GLM)

Bayesian statistics

Bayesian statistics (more
advanced)

Multilevel (also known as
hierarchical or

random−effects)

0 10 20 30 40
N

There were some additional suggestions.

#> [1] "power analyses using Shiny apps"
#> [2] "agent-based models"
#> [3] "this may be covered in the above, but approaches to analysing experience sampling method"
#> [4] "Methods for longitudinal analyses"
#> [5] "Network modelling"



2.1. MARCH 2022 9

#> [6] "Neural networks, Markov processes"
#> [7] "Random forests and related"
#> [8] "causal modelling using regression models - path models etc"
#> [9] "prediction modelling"

A few other topics were mentioned in the comment section:

• Shiny apps
• Network modelling
• Longitudinal analyses
• Random forests
• Neural network

2.1.2 Question 2
Here people indicated their interest for topics related to data analysis.

Maintaining and sharing code
and data repositories using

Github and OSF

tidyverse (this is an R
"dialect" specifically aimed

at facilitating data
analysis)

Data visualization in R

Programming and doing
analyses in R

0 10 20 30
N

Other things mentioned in the comments were:

• SPM
• Docker
• Python

2.1.3 Question 4
This question was about likelihood of using different formats of support



10CHAPTER 2. DEPARTMENTAL SURVEY ABOUT STATISTICAL METHODS

Short workshop

one−on−one meeting shared resource

collaboration Longer workshop

Very unlikelyUnlikely Unsure Likely Very likely

Very unlikelyUnlikely Unsure Likely Very likely

0

10

20

30

0

10

20

30

0

10

20

30

N

2.1.4 Respondents’ status

The final questions asked about the status / career level.



2.1. MARCH 2022 11

0

5

10

15

Lecturer Other PhD student Postdoc Professor Reader Senior lecturer
role

co
un

t



12CHAPTER 2. DEPARTMENTAL SURVEY ABOUT STATISTICAL METHODS



Chapter 3

Introduction to R

Most of the practical statistical tutorials and recipes in this book use the soft-
ware R, so this section provides some introduction to R for the uninitiated.

3.1 Installing R
The base R system can be downloaded at the following link, which provides
installers for both Windows, Mac and Linux:

https://cran.rstudio.com/

In addition to the base R system, it is useful to have also R-studio, which is an
IDE (Integrated Development Environment) for R, and provides both an editor,
a graphical interface and much more. It can be downloaded from:

https://www.rstudio.com/products/rstudio/download/

3.2 First steps
R is a programming language and free software environment for statistical com-
puting and graphics. It is an interpreted language, which means that to give

13

https://cran.rstudio.com/
https://www.rstudio.com/products/rstudio/download/


14 CHAPTER 3. INTRODUCTION TO R

instructions to the computer you do not have to compile it first in machine
language, everything is done ‘on the fly’ through a command line interpreter,
e.g. if you type 2+2 in the command line R, the computer will reply with the
answer (try this on your computer):
2+2
#> [1] 4

Typically the normal workflow involve writing and saving a series of instructions
in a script file (usually saved with the .R extension), which can be executed
(either step by step or all at once). Since all steps of the analyes are documented
in the script, this makes them transparent and reproducible.

In an R script you can use the # sign to add comments, so that you and others
can understand what the R code is about. Commented lines are ignored by R,
so they will not influence your result. See the next example:
# calculate 3 + 4
3 + 4
#> [1] 7

3.2.1 Arithmetic with R
In its most basic form, R can be used as a simple calculator. Consider the
following arithmetic operators:

• Addition: +
• Subtraction: -
• Multiplication: *
• Division: /
• Exponentiation: ^
• Modulo: %%

The last two might need some explaining:

The ^ operator raises the number to its left to the power of the number to its
right: for example 3^2 is 9.

The modulo returns the remainder of the division of the number to the left by
the number on its right, for example 5 modulo 3 (or 5 %% 3) is 2.

3.2.2 Variable assignment
A basic concept in programming (statistical or not) is called a variable.

A variable allows you to store a value (e.g. 2) or an object (e.g. a function
description) in R. You can then later use this variable’s name to easily access
the value or the object that is stored within this variable.

You can assign a value 2 to a variable my_var with the command



3.2. FIRST STEPS 15

my_var <- 2

Note that you would have obtained the same result using:
2 -> my_var

that is, the assignment operator works in both directions <- and ->.

The variable can then be used in any computation, for example:
my_var + 2
#> [1] 4

3.2.3 Basic data types in R
Variables can be of many types, not just numerical values. For example, they
can contain text values (e.g. a string of characters). Arithmetic operators such
as + do no work with these. If you tried to apply them characters R will give
you an error message.
# Assign a value to the variable apples
apples <- 5

# Assign a text value
oranges <- "six"

#
apples + oranges
#> Error in apples + oranges: non-numeric argument to binary operator

In fact R works with numerous data types, and some of these are not numerical
(so they can’t be added, subtracted, etc.). Some of the most basic types to get
started are:

• Decimal values like 4.5 are called numerics.
• Natural numbers like 4 are called integers. Integers are also numerics.
• Boolean values (TRUE or FALSE, abbreviated T and F) are called logical1.
• Text (or string) values are called characters.

3.2.4 Vectors and other data types
Additionally, the simple data types listed above can be combined in more com-
plex ‘objects’ that can comprise several values. For example, we can obtain a
vector by concatenating values using the function c(). This can be applied both
on numerical or character data types, e.g.

1Note that you can add or multiply logical Boolean values: internally FALSE are treated as
zeroes, and TRUE as ones.



16 CHAPTER 3. INTRODUCTION TO R

some_numbers <- c(4,87,10, 0.5, -6)
some_numbers
#> [1] 4.0 87.0 10.0 0.5 -6.0

my_modules <- c("PS115", "PS509", "PS300", "PS938", "PS9457")
my_modules
#> [1] "PS115" "PS509" "PS300" "PS938" "PS9457"

There are some special handy functions to create specific types of vectors, such
as sequences (using the function seq() or the operator :)
x <- seq(from = -10, to = 10, by = 2)
x
#> [1] -10 -8 -6 -4 -2 0 2 4 6 8 10

y <- seq(-0, 1, 0.1)
y
#> [1] 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

z <- 1:5
z
#> [1] 1 2 3 4 5

Another useful type of vector can be obtained by repetition of elements, and
this can be numerical, character, or even applied to other vectors
rep(3, 5)
#> [1] 3 3 3 3 3

x <- 1:3
rep(x, 4)
#> [1] 1 2 3 1 2 3 1 2 3 1 2 3

rep(c("leo the cat", "daisy the dog"), 2)
#> [1] "leo the cat" "daisy the dog" "leo the cat"
#> [4] "daisy the dog"

We can combine vectors of different types into a data frame, one of the most
useful ways of storing data in R. Let’s say we have 3 vectors:
# create a numeric vector
a <- c(0, NA, 2:4) # NA means not available

# create a character vector
b <- c("PS115", "PS509", "PS300", "PS938", "PS9457")

# create a logical vector



3.2. FIRST STEPS 17

c <- c(TRUE, FALSE, TRUE, FALSE, FALSE) # must all be caps!

we can combine them into a data.frame using:
# create a data frame with the vectors a, b,and c that we just created
my_dataframe <- data.frame(a,b,c)

# we could also change the column names (currently they are a, b, c)
colnames(my_dataframe) <- c("some_numbers", "my_modules", "logical_values")

# now let's have a look at it
my_dataframe
#> some_numbers my_modules logical_values
#> 1 0 PS115 TRUE
#> 2 NA PS509 FALSE
#> 3 2 PS300 TRUE
#> 4 3 PS938 FALSE
#> 5 4 PS9457 FALSE

Although note that in most cases we would probably import a dataframe from
an external data file, for example using the functions read.table or read.csv.

3.2.5 Basic plotting in R

We can create plots using the function plot(). For example:
x = 1:10
y = 3*x - 5
plot(x, y)



18 CHAPTER 3. INTRODUCTION TO R

2 4 6 8 10

0
5

10
15

20
25

x

y

3.2.6 Other operations

3.2.6.1 Random number generation

Generate uniformly distributed random numbers (function runif())
x <- runif(100, min = 0, max = 1)
hist(x)



3.2. FIRST STEPS 19

Histogram of x

x

F
re

qu
en

cy

0.0 0.2 0.4 0.6 0.8 1.0

0
5

10
15

Generate numbers from a normal distribution
y <- rnorm(100, mean = 0, sd = 1)
hist(y)



20 CHAPTER 3. INTRODUCTION TO R

Histogram of y

y

F
re

qu
en

cy

−2 −1 0 1 2 3

0
5

10
15

20

3.2.7 Getting help

R has a lot of functions, and extra packages that can provides even more. It
may seem a bit overwhelming, but it is very easy to get help about how to use
a function: just type in a question mark, followed by the name of the function.
For example, to see the help of the function we used above to generate the
histogram, type
?hist



3.3. RESOURCES FOR LEARNING R 21

3.3 Resources for learning R
There is plenty of resources on the web to learn R. I will recommend a couple
that I think are particularly well-done and useful:

• Software Carpentry tutorials on R for Reproducible Scientific Analysis
• The free book Learning Statistics with R by Danielle Navarro

https://swcarpentry.github.io/r-novice-gapminder/
https://learningstatisticswithr.com/
https://djnavarro.net/


22 CHAPTER 3. INTRODUCTION TO R



Chapter 4

Correlations

Readers of this page will likely already familiar with the Pearson correlation
coefficient and its significance test. The Pearson correlation coefficient measures
the strength of association between two variables, denoted as 𝑥 and 𝑦, and is
essentially a normalized measure of their covariance. It is calculated by dividing
the covariance of 𝑥 and 𝑦 by the product of their standard deviations:

𝑟𝑥,𝑦 = cov(𝑥, 𝑦)
𝜎𝑥𝜎𝑦

The normalization is achieved by dividing the covariance by the maximum possi-
ble covariance that can be attained when the variables are perfectly correlated,
represented by the product of their standard deviations. This normalization
constrains the Pearson correlation coefficient to a range between -1 and 1.

In R, simple correlation analyses can be run using the function cor.test.

In this chapter we will consider some more complex examples and issues that
may occur when doing correlation analyses.

4.1 Comparing correlations
Often, we have to compare a correlation value between two conditions (or groups
or whatever). One simple approach to do this - if we have access to the raw
data - is to run a regression model (with interaction term) with the condition
as categorical predictor, and test whether the slope differs between the two
conditions. (Note that if all the variables are standardized - i.e. transformed in
Z-scores - the regression slope is identical to the Pearson correlation coefficient.)

23



24 CHAPTER 4. CORRELATIONS

If we don’t have the raw data available, we can still compare the correlations
using Fisher’s Z transform. This requires first transforming all correlation values,
e.g. 𝑟1, 𝑟2, into Z scores using the following:

𝑍 = log(1 + 𝑟) − log(1 − 𝑟)
2

We can then take the differences in these transformed correlation coefficients,
and divide by √ 1

𝑁1−3 + 1
𝑁2−3 , where 𝑁1 and 𝑁2 are the sample size of the two

conditions/groups that are compared. We obtain the statistics

Δ𝑍 = |𝑍1 − 𝑍2|
√ 1

𝑁1−3 + 1
𝑁2−3

Under the null hypothesis that the two correlations are not different (𝐻0 ∶
𝑟1 = 𝑟2) the statistics is normally distributed with mean 0 and variance 1,
Δ𝑍 ∼ 𝒩(0, 1). Thus we can get a p value by using the cumulative distribu-
tion function of the normal distribution. For example, in R if the statistic is
saved in the variable Delta_Z we can calculate the p-value using p_value <-
2*(1-pnorm(Delta_Z)).

To verify the correctness of this approach, we can perform a simple simulation
in R. The code below simulates multiple pairs of datasets, each consisting of
two variables, from a population with a given correlation. In this simulation,
the ‘true’ correlation value remains constant, representing the case where the
null hypothesis is true. We then use the aforementioned approach to deter-
mine whether the difference is statistically significant. Finally, we calculate the
proportion of significant tests (i.e., false positives) and verify that it is approx-
imately equal to the desired false positive rate (alpha), conventionally set at
0.05.
# function to simulate correlated normal variables
sim_data <- function(N=100, r=0.3){
d <- MASS::mvrnorm(N,

mu = c(0,0),
Sigma=matrix(c(1,r,r,1), nrow=2, ncol=2))

return(data.frame(d))
}

# function that calculate F transform and statistics
Fisher_Z_test <- function(r1, r2, N1, N2){
Z1 <- (log(1+r1) - log(1-r1))/2
Z2 <- (log(1+r2) - log(1-r2))/2
denomin <- sqrt(1/(N1-3) + 1/(N2-3))
Delta_Z <- abs(Z1 - Z2)/denomin

https://en.wikipedia.org/wiki/Fisher_transformation


4.2. POLYCHORIC AND POLYSERIAL CORRELATIONS 25

p_value <- 2*(1-pnorm(Delta_Z))
return(list(statistic=Delta_Z, p=p_value))

}

# run simulations
set.seed(1)
N_sim <- 1e4
p_vals <- rep(NA, N_sim)
for(i in 1:N_sim){
d1 <- sim_data()
d2 <- sim_data()
r1 <- cor(d1$X1, d1$X2)
r2 <- cor(d2$X1, d2$X2)
test.results <- Fisher_Z_test(r1, r2, 100, 100)
p_vals[i] <- test.results$p

}

# false positive rate
# should be approximately equal to desired alpha
# (here alpha=0.05)
mean(p_vals<0.05)
#> [1] 0.0505

4.2 Polychoric and polyserial correlations
Polychoric and polyserial correlations are methods used to estimate correlations
between ordinal variables or between ordinal and continuous variables. These
methods assume that the ordinal variables can be considered as divisions of
underlying latent variables that follow a normal distribution (similar to ordinal
models discussed in a later chapter). In R, calculating polychoric correlations
is straightforward with the help of the polycor package. You can use the
polychor function to estimate correlations between two variables or the hetcor
function to compute a correlation matrix for multiple variables simultaneously.

4.3 Partial correlations
Partial correlation is a statistical measure that quantifies the relationship be-
tween two variables while controlling for the effects of other variables. It assesses
the strength and direction of the linear association between two variables after
removing the influence of the remaining variables in the analysis.

Partial correlations are useful in situations where there are multiple variables
that may be interconnected, and we want to understand the relationship between
two variables while accounting for the effects of other variables. By calculating

https://cran.r-project.org/web/packages/polycor/index.html


26 CHAPTER 4. CORRELATIONS

partial correlations, we can examine the direct association between two variables
while holding constant the influence of other variables, thereby revealing the
unique relationship between them.

Here are a few scenarios where partial correlations can be useful:

• Confounding Control: In observational studies, there may be confound-
ing variables that affect both the dependent and independent variables. By
computing partial correlations, we can determine the relationship between
the variables of interest while controlling for potential confounders.

• Multivariate Analysis: When examining the relationships between mul-
tiple variables simultaneously, partial correlations can help identify direct
associations between pairs of variables, accounting for the shared influence
of other variables in the analysis.

• Network Analysis: Partial correlations are commonly employed in net-
work analysis to uncover the underlying structure and connections between
variables, such as in gene regulatory networks, social networks, or financial
networks.

In R, and for simple Pearson’s correlation coefficients, we can use the packages
ppcor to calculate a matrix of partial correlation coefficients.

4.3.1 Partial correlations using Schur complement
Occasionally, we may need to calculate partial polychoric correlations (e.g. par-
tial correlations between ordinal variables). To the best of my knowledge there
isn’t a simple package that allows to compute these. However, we can use an
approach known as Schur complement.

The approach works as follow. Say we have computed a matrix of partial poly-
choric correlations using the polycor package; in particular Σ is the correlation
matrix between the variables of interests. We further have also a set of variables
we want to account for (let’s call these ‘confounders’), and we calculate the ma-
trix of the correlations between them, let’s call this 𝐶. Finally, we also have
a matrix of correlations between the variables of interest and the confounders,
here notated as 𝐵.

The partial correlation matrix can be computed as the Schur complement of 𝐶
in the block matrix 𝑀 , defined as 𝑀 = [ Σ 𝐵

𝐵𝑇 𝐶]. Note that the matrix 𝑀
simply corresponds to the ‘full’ correlation matrix - the the matrix including
correlations between all variables (variables of interest and confounders).

In practice, the Schur complement (partial correlation matrix) is computed as

Partial Correlation Matrix = Σ − 𝐵𝐶−1𝐵𝑇 .

https://cran.r-project.org/web/packages/ppcor/index.html
https://en.wikipedia.org/wiki/Schur_complement


4.3. PARTIAL CORRELATIONS 27

Here is a simple function in R that can calculate the partial correlation matrix
when some or all the variables are ordinal:
partial_polychoric <- function(dX, dC, useML = TRUE) {
# dX is a dataframe containing variables of interest
# dC is a dataframe containing confounding variables that needs to be partialled out
# ML estimation is recommended, but may be slow with very large datasets
combined_data <- cbind(dX, dC)
combined_polychoric_matrix <- hetcor(combined_data,

parallel=TRUE,
ML=useML,
use="pairwise.complete.obs")$correlations

cor_dX <- combined_polychoric_matrix[1:ncol(dX), 1:ncol(dX)]
cor_dC <- combined_polychoric_matrix[1:ncol(dX), (ncol(dX) + 1):ncol(combined_data)]
cor_yy <- combined_polychoric_matrix[(ncol(dX) + 1):ncol(combined_data), (ncol(dX) + 1):ncol(combined_data)]
inv_cor_yy <- solve(cor_yy)
cor_dX - cor_dC %*% inv_cor_yy %*% t(cor_dC)

}

To estimate the p-values of partial correlation coefficients, we can use a permu-
tation test: essentially we shuffle the order of columns in our dataset indepen-
dently, then re-calculate the correlation matrix, and keep track of how often a
correlation higher than the observed ones occur by chance.

The code below is an example of how such a test can be implemented in R
# first, compute the observed matrix of partial correlation
sigma_polychoric <- partial_polychoric(dX, dC)

# custom function to shuffle independently the columns
# of a data.frame containing ordinal variables
shuffle_df <- function(A) {
A_shuffle <- as.data.frame(lapply(A, function(x) {
if (is.ordered(x)) {

levels <- levels(x)
x <- as.numeric(x)
x <- sample(x)
x <- ordered(x, labels = levels)

} else {
x <- sample(x)

}
return(x)

}))
return(A_shuffle)

}

# Use replicate() to compute 1000 matrix from permutations of the datasets



28 CHAPTER 4. CORRELATIONS

n_permutations <- 1000
permuted_partial_polychoric <- replicate(n_permutations, {
permuted_dX <- shuffle_df(dX)
permuted_dC <- shuffle_df(dC)
partial_polychoric(permuted_dX, permuted_dC)

})

# Compute p-values by counting how often we observe correlations
# as high as that in the observed matrix from the permuted datasets.
# The output is a mtrix of p-values
p_values <- matrix(0, ncol(dX), ncol(dX))
tot_it <- ncol(dX)*ncol(dX)
for (i in 1:ncol(dX)) {
for (j in 1:ncol(dX)) {
p_values[i, j] <- mean(abs(permuted_partial_polychoric[i, j, ]) >= abs(observed_partial_polychoric[i, j]))

}
}



Chapter 5

Linear models

This section will provide some worked examples of how to do analyses in R.

5.1 Simple linear regression
In this example1 we will see how to import data into R and perform a simple
linear regression analysis.

According to the standard big-bang model, the universe expands uniformly and
locally, according to Hubble’s law(Hubble, 1929)

velocity = 𝛽 × distance

where velocity and distance are the relative velocity and distance of a galaxy,
respectively; and 𝛽 is “Hubble’s constant”2. Note that this is a simple linear
equation, in which 𝛽 indicate how much the variable velocity changes for each
unitary increase in the variable distance.

According to this model 𝛽−1 gives the approximate age of the universe, but 𝛽
is unknown and must somehow be estimated from observations of velocity and
distance, made for a variety of galaxies at different distances from us. Luckily
we have available data from the Hubble Space Telescope. Velocities are assessed
by measuring the Doppler effect red shift in the spectrum of light that we receive
from the Galaxies. Distance is estimated more indirectly, by using the discovery
that in certain class of stars (Cepheids), which display fluctuations in diameter
and temperature over a stable period, there is a systematic relationship between
the period and their luminosity.

1Taken from Simon Wood’s book on GAM(Wood, 2017).
2Note the Hubble “constant” is a constant only in space, not in time

29



30 CHAPTER 5. LINEAR MODELS

We can load a dataset of measurements from the Hubble Space Telescope in R
using the following code
d <- read.table(file="https://raw.githubusercontent.com/mattelisi/RHUL-stats/main/data/hubble.txt",

header=T)

read.table is a generic function to import dataset in text files (e.g. .csv files)
into R. We use the argument header=T to specify that the first line of the
dataset gives the names of the columns. Note that the argument file here is
a URL, but it could be also a path to a file in our local folder. To see the
help of this function, and what other arguments and features are available type
?read.table in the R command line.

We can use the command str() to examine what we have imported
str(d)
#> 'data.frame': 24 obs. of 3 variables:
#> $ Galaxy : chr "NGC0300" "NGC0925" "NGC1326A" "NGC1365" ...
#> $ velocity: int 133 664 1794 1594 1473 278 714 882 80 772 ...
#> $ distance: num 2 9.16 16.14 17.95 21.88 ...

This tells us that our data frame has 3 variables:

• Galaxy, the ‘names’ of the galaxies in the dataset
• velocity, their relative velocity in Km/sec
• distance, their distance expressed in Mega-parsecs3

We can plot4 them using the following code:
plot(d$distance, # indicate which variable on X axis

d$velocity, # indicate which variable on Y axis
xlab="Distance [Mega-parsecs]",
ylab="Velocity [Km/sec]",
pch=19) # set the type of point

31Mega-parsec = 3.09 × 1019Km
4See ?plot for more info about how to customize plots in R.



5.1. SIMPLE LINEAR REGRESSION 31

5 10 15 20

50
0

10
00

15
00

Distance [Mega−parsecs]

V
el

oc
ity

 [K
m

/s
ec

]

It is clear, from the figure, that the observed data do not follow Hubble’s law ex-
actly, but given the how these measurements were obtained (there is uncertainty
about the true values of the distance and velocities) it would be surprising if
they did. Given the apparent variability, what can be inferred from these data?
In particular:

1. what value of 𝛽 is most consistent with the data?
2. what range of 𝛽 values is consistent with the data?

In order to make inferences we make some assumptions about the nature of the
measurement noise. Specifically, we assume that measurements errors are well-
characterized by a Gaussian distribution. This result in the following model:

𝑦 = 𝛽𝑥 + 𝜖
𝜖 ∼ 𝒩 (0, 𝜎2

𝜖 )

which is essentially a linear regression but without the intercept: that is, whereas
normally a linear regression model include an additive term that is not multi-
plied with the predictor (as in 𝑦 = 𝛽0 +𝛽1𝑥+ 𝜖), which gives the expected value
of the dependent variable when all predictors are set to zero, in this case the
theory tells us we can assume the intercept (the term 𝛽0) is zero and we can
ignore it.

We can fit the model with the function lm in R. Note that to tell R that I don’t
want to fit the intercept, I include in the formula the term 0 + - this essentially
tells R that the intercept term is set to zero5

5A similar results would have been obtained using the notation velocity ~ -1 + distance.



32 CHAPTER 5. LINEAR MODELS

hub.m <- lm(velocity ~ 0 + distance, d)
summary(hub.m)
#>
#> Call:
#> lm(formula = velocity ~ 0 + distance, data = d)
#>
#> Residuals:
#> Min 1Q Median 3Q Max
#> -736.5 -132.5 -19.0 172.2 558.0
#>
#> Coefficients:
#> Estimate Std. Error t value Pr(>|t|)
#> distance 76.581 3.965 19.32 1.03e-15 ***
#> ---
#> Signif. codes:
#> 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> Residual standard error: 258.9 on 23 degrees of freedom
#> Multiple R-squared: 0.9419, Adjusted R-squared: 0.9394
#> F-statistic: 373.1 on 1 and 23 DF, p-value: 1.032e-15

So, based on this data, our estimate of the Hubble constant is 76.58
with a standard error of 3.96. The standard error - which is the standard
deviation of the sampling distribution of our estimates - gives an ideas of the
range of values that is compatible with our data and could be used to compute
a confidence intervals (roughly, we would expect that the ‘true’ values of the
parameters lies in the interval defined by ± 2 standard errors 95% of the times).

So, how old is the universe?

The Hubble constant estimate have units of Km/sec
Mega-parsecs . A Mega-parsecs is

3.09 × 1019Km, so we divide our estimate of ̂𝛽 by this amount. The reciprocal
of ̂𝛽 then gives the approximate age of the universe (in seconds). In R we can
calculate it (in years) as follow
# transform in Km
hubble.const <- coef(hub.m)/(3.09 * 10^(19))

# invert to get age in seconds
age <- 1/hubble.const

# use unname() to avoid carrying over
# the label "distance" from the model
age <- unname(age)

# transform age in years



5.1. SIMPLE LINEAR REGRESSION 33

age <- age/(60^2 * 24 * 365)

# age in billion years
age/10^9
#> [1] 12.79469

giving an estimate of about 13 billion years.



34 CHAPTER 5. LINEAR MODELS



Chapter 6

Models for count data

This section will provide some examples of models that can deal with count data.
Typically, count data occurs when the dependent variable is the counted number
of occurrences of an event - for example the number of patients arriving in an
emergency department (A&E) in a given time of the day - e.g. between 10:00
and 11:00. In this case, the dependent variable (the number of patients) has
several characteristics that make it unsuitable for analysis with standard linear
models such as linear regression: their distribution is discrete, composed only
of non-negative integers, and is often positively skewed, with many observations
having a value of 0.

Another characteristic is that the variance of the observations (e.g. the variance
of the number of counts across observations within the same condition) increases
with their expected value (e.g. the average number of counts for that condition)1.

6.1 Poisson model
The simplest model that account for the characteristics mentioned above is a
generalized linear model that assume a dependent variable with a Poisson dis-
tribution. The Poisson distribution has a single free parameter, usually notated
with 𝜆, which gives both the expected value (the mean) and the variance of the
count variable. In fact it assumes that the variance has the same value as the
mean.

Formally, a Poisson model is usually formulated as follow: let 𝑦 = (𝑦1, … , 𝑦𝑛)
be the dependent variable, consisting of counts (non-negative integers) and 𝑥
the independent variable (predictor). Then

1This makes sense if you think that when the expected number of counts is very low, say ≈ 1,
there cannot be many observations with very high counts - otherwise their average wouldn’t
be as low (recall that counts are strictly non-negative). In other words, the variance must be
low when the average is also low.

35

https://en.wikipedia.org/wiki/Poisson_distribution
https://en.wikipedia.org/wiki/Poisson_distribution


36 CHAPTER 6. MODELS FOR COUNT DATA

𝑦𝑖 ∼ Poisson (𝜆𝑖)
where2

log(𝜆𝑖) = 𝛽0 + 𝛽1𝑥𝑖
or alternatively

𝜆𝑖 = 𝑒𝛽0+𝛽1𝑥𝑖

Which indicates that we can use the exponential function (in R the function
exp()) to calculate the predicted values of the mean (more precisely, the ex-
pected value, 𝔼(𝑦)) and variance (𝑉 𝑎𝑟(𝑦)) of the dependent variable. This
relies on the property of the Poisson distribution3

𝑦𝑖 ∼ Poisson (𝜆) ⟹ 𝔼(𝑦) = 𝑉 𝑎𝑟(𝑦) = 𝜆

However, in practice, data often do not conform to the constraint of having
identical mean and variance. Often the observed variance of the count is higher
than what predicted according to the Poisson model (we say in this case that
the data is over-dispersed).

How does over-dispersion look like?

The type of data expected under a Poisson model is illustrated in the figure be-
low, which shows 100 datapoints simulated from the model 𝑦𝑖 ∼ Poisson (𝑒1+2𝑥𝑖).
The vertical deviations of the datapoints from the line are consistent with the
property of the Poisson distribution that the variance of hte count has the same
value as their expected value, formally, 𝑉 𝑎𝑟(𝑦) = 𝔼(𝑦)).
set.seed(2)
n <- 100
x <- runif(n, -1.3, 1.3)
a <- 1
b <- 2
linpred <- a + b*x # linear predictor part
y <- rpois(n, exp(linpred)) # simulate Poisson observations

plot(x,y,col="blue") # plot
x_ <- seq(-2,2,0.1)
lines(x_, exp(a+b*x_))
segments(x,exp(a+b*x),x,y, lwd=1,lty=3, col="red")

2This is the most common formulation, and is sometime referred to as log ‘link’ function,
to indicate the fact that we have a function (the logarithm function) that ‘link’ the linear
part of the model (the linear combination of the independent variables, here 𝛽0 + 𝛽1𝑥𝑖) with
the parameter of the distribution of the dependent variable (here the Poisson rate parame-
ter 𝜆). This is a common component to all generalized linear models, for example for the
logistic regression we have a ‘logit’ link function - the quantile function of the standard lo-
gistic distribution - that link the linear predictor part with the parameter 𝑝 of the binomial
distribution.

3The symbol ⟹ is used to denote logical implication, e.g. (𝐴 = 𝐵) ⟹ (𝐵 = 𝐴) -
symmetry of logical equivalence.



6.1. POISSON MODEL 37

−1.0 −0.5 0.0 0.5 1.0

0
10

20
30

40

x

y

We can adjust the code above to simulate the same data with some degree of
over-dispersion, using a negative binomial distribution, for different values of
the precision parameter theta (𝜃), which regulate the degree of overdispersion.
Importantly, these datapoints are simulated assuming the same function fo the
average (expected) number of counts (same also as the previous figure), they
just differe in the amount of overdispersion relative to a Poissone model. Note
that for value arbitrarily large of the precision parameter 𝜃 → ∞ (bottom-right
panel) the negative binomial converges to the Poisson.



38 CHAPTER 6. MODELS FOR COUNT DATA

−2 −1 0 1 2

0
10

0
30

0

θ = 0.5

x

y

−2 −1 0 1 2

0
10

0
30

0

θ = 1

x

y

−2 −1 0 1 2

0
10

0
30

0

θ = 10

x

y

−2 −1 0 1 2

0
10

0
30

0

θ → ∞

x

y

6.2 Negative binomial model
As mentioned above, data are often overdispersed relative to the Poisson (that
is, their variance is larger than the mean). This is an issue because when the
data are overdispersed then our results may be largely influences by few extreme
datapoints. Moreover, we will have the wrong estimated about the variability of
the data. To account for overdispersion we can use the negative binomial which
can be seen as a generalization of the Poisson model4.

4The name negative binomial comes from a sampling procedure that give rise to this dis-
tribution: basically the negative binomial gives the probability of the number of successes
in a sequence of independent and identically distributed Bernoulli trials before a specified
(non-random) number of failures occur (this pre-fixed number of failures is a parameter of the
negative binomial under an alternative parametrization of this distribution).



6.3. EXAMPLES 39

Formally, the negative binomial model with 1 predictor 𝑥 can be notated as

𝑦𝑖 ∼ NegBinomial (𝜆𝑖, 𝜃)
log(𝜆𝑖) = 𝛽0 + 𝛽1𝑥𝑖

The negative binomial is very similar to the Poisson - in particular it still the
case that 𝔼(𝑦) = 𝜆. However, it includes an additional precision (or “reciprocal
dispersion”) parameter which I referred to as 𝜃5. Essentially, whereas for the
Poisson we had that 𝑉 𝑎𝑟(𝑦) = 𝔼(𝑦), now we have that

𝑉 𝑎𝑟(𝑦) = 𝔼(𝑦) + 𝔼(𝑦)2

𝜃

6.3 Examples
6.3.1 Anchoring and alcohol units
To see how this would work in practice, I use negative binomial to analyse
a dataset that is based on an experiment run by Ryan McKay and his MSc
students6.

The goal of the study was to use the anchoring effect to:

…to see if we could attenuate under-reporting of alcohol consumption
(which is a medical problem). Participants in a high-anchor condition
were asked “do you drink more or less than 40 units of alcohol a
week”, and were then asked to estimate exactly how many units
they’d consumed. Those in a low anchor condition were initially
asked “do you drink more or less than 4 units of alcohol a week”
before giving their precise estimate, and those in a control condition
just gave their precise estimate.

In R we begin by loading the data
d <- read_csv("../data/nb_units.csv", show_col_types = F) # data availabel in the data folder of the repository
d
#> # A tibble: 930 x 3
#> gender condition units
#> <chr> <chr> <dbl>
#> 1 Male high 10
#> 2 Male low 0
#> 3 Female high 1
#> 4 Female high 2
#> 5 Male high 0

5I choose ‘theta’ for consistency with the R output but note that this is sometime referred
to as 𝜙 in the literature ¯\_(�)_/¯

6Note that this is not the actual dataset that they collected but just some data that I
simulated based on their research idea.



40 CHAPTER 6. MODELS FOR COUNT DATA

#> 6 Female low 2
#> 7 Male control 23
#> 8 Female low 2
#> 9 Female high 1
#> 10 Male control 4
#> # i 920 more rows

We can calculate the mean and variance of the number of units reported in each
conditions. This reveal that the variance across participants in the number of
units reported is many times higher than the mean in the number of reported
units.
d %>%
group_by(condition) %>%
summarise(Mean = mean(units),

Variance = var(units)) %>%
knitr::kable(digits=2,

caption="Mean and Variance of weekly units of alcohol reported.")

Mean and Variance of weekly units of alcohol reported.

condition

Mean

Variance

control

7.53

138.35

high

11.97

363.69

low

8.12

177.05

We can use ggplot2 library to visualize the distributions of reported units in
each condition. We can see tha the distribution are skewed and contains many
0, which would make them unsuitable for an analysis with a linear regression
model.
d %>%
ggplot(aes(x=units, fill=condition)) +
geom_histogram(binwidth=1)+



6.3. EXAMPLES 41

facet_grid(condition~.) +
theme_minimal()

control
high

low

0 40 80 120

0

25

50

75

0

25

50

75

0

25

50

75

units

co
un

t

condition

control

high

low

To estimate the negative-binomial model, we can use the function glm.nb()
from available in the MASS package. Our predictor condition is categorical with
3 levels and therefore it is coded internally as a set of 2 dummy variables. We
can see how the contrast is set using
d$condition <- factor(d$condition) # tell R that this is a categorical factor
contrasts(d$condition)
#> high low
#> control 0 0
#> high 1 0
#> low 0 1

This indicate that control is our baseline condition and the model will have 2
coefficients that code for the difference in the high and low anchoring condition
relative to the control one.

Note also that for this analysis the variable units must contain only integer
values - if participants reported non-integer values (e.g. a bottle of lager is about
1.7 units) we could divide everything by the minimum common denominator so



42 CHAPTER 6. MODELS FOR COUNT DATA

that we end up with integer values.

The following command can be used to estimate the model and examine the
results
library(MASS)
#>
#> Attaching package: 'MASS'
#> The following object is masked from 'package:dplyr':
#>
#> select
nb01 <- glm.nb(units ~ condition, data = d)
summary(nb01)
#>
#> Call:
#> glm.nb(formula = units ~ condition, data = d, init.theta = 0.3852966632,
#> link = log)
#>
#> Coefficients:
#> Estimate Std. Error z value Pr(>|z|)
#> (Intercept) 2.01856 0.09396 21.482 < 2e-16 ***
#> conditionhigh 0.46365 0.13218 3.508 0.000452 ***
#> conditionlow 0.07564 0.13255 0.571 0.568251
#> ---
#> Signif. codes:
#> 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> (Dispersion parameter for Negative Binomial(0.3853) family taken to be 1)
#>
#> Null deviance: 1040.0 on 929 degrees of freedom
#> Residual deviance: 1025.2 on 927 degrees of freedom
#> AIC: 5656.8
#>
#> Number of Fisher Scoring iterations: 1
#>
#>
#> Theta: 0.3853
#> Std. Err.: 0.0196
#>
#> 2 x log-likelihood: -5648.7830

We can see from output that the condition high anchoring elicited reports with
higher number of alcohol units than the control condition.

We can use the model to make a more precise statement about the size of the
difference. We can use the value of the coefficients to calculate the predicted
values of counts. The exact values of the coefficients can be accessed from the



6.3. EXAMPLES 43

fitted model using the $ operator
nb01$coefficients
#> (Intercept) conditionhigh conditionlow
#> 2.01856406 0.46365080 0.07563937

The values are combined together according to the dummy variables coding for
the condition and represents the linear predictor part of the model:

𝜆𝑖 = exp (𝛽0 + 𝛽1 × 𝐷high + 𝛽2 × 𝐷low)
where I have used the notation 𝐷high and 𝐷low to indicate the two dummy
variable, whose value is 1 for observation in the high and low conditions, re-
spectively, and zero otherwise.

𝛽0 is a common notation for the intercept parameter - in this case it gives the
expected number of alcohol units in the control condition (because for observa-
tions in the control condition we have that 𝐷high = 𝐷low = 0). Thus our model
predict an average number of counts in the control condition of
exp(nb01$coefficients["(Intercept)"]) # equivalent to exp(nb01$coefficients[1])
#> (Intercept)
#> 7.527508

(Compare this value with the table above).

Furthermore, our models tells us also that the number of reported alcohol units
increase multiplicatively in the high condition by a factor of
exp(nb01$coefficients["conditionhigh"])
#> conditionhigh
#> 1.589868

In fact the predicted number of counts in the high condition can be derived
from the model as
exp(nb01$coefficients["(Intercept)"]) * exp(nb01$coefficients["conditionhigh"])
#> (Intercept)
#> 11.96774

or equivalently
exp(nb01$coefficients["(Intercept)"] + nb01$coefficients["conditionhigh"])
#> (Intercept)
#> 11.96774

Finally, note that we can use the sjPlot library to prepare a fancy version of
the model output, and we can see that the multiplicative factor that describe
the increase in reported units is called here an incidence ratio7.

7Although honestly I am not sure how common is this terminology



44 CHAPTER 6. MODELS FOR COUNT DATA

library(sjPlot)
#> Install package "strengejacke" from GitHub (`devtools::install_github("strengejacke/strengejacke")`) to load all sj-packages at once!
tab_model(nb01)

units

Predictors

Incidence Rate Ratios

CI

p

(Intercept)

7.53

6.29 – 9.10

<0.001

condition [high]

1.59

1.23 – 2.06

<0.001

condition [low]

1.08

0.83 – 1.40

0.568

Observations

930

R2 Nagelkerke

0.023

6.3.1.1 Adding predictors

The dataset include also information about the gender of the participants. We
may hypothesize that male participants drink more than female ones8. Does
taking this into account improve the accuracy of our modelling?

8For the sake of the example we use only 2 gender categories, but in a real study we should
be mindful to include more options for non-binary / third gender participants, as McKay’s
students did in the real study.



6.3. EXAMPLES 45

To test this, we can estimate an additional model with also gender as predictor.
We can compare this to the previous one using a likelihood-ratio test. This is
based on a theorem which states that the difference in log-likelihood9 between
nested models is (asymptotically) distributed according to a Chi-squared distri-
bution, therefore allowing the calculation of a p-value. In R this can be done
using the function anova().

First, let’s fit an additional model with the extra predictor gender
nb02 <- glm.nb(units ~ condition + gender, data = d)
summary(nb02)
#>
#> Call:
#> glm.nb(formula = units ~ condition + gender, data = d, init.theta = 0.4212084665,
#> link = log)
#>
#> Coefficients:
#> Estimate Std. Error z value Pr(>|z|)
#> (Intercept) 1.495941 0.105452 14.186 < 2e-16 ***
#> conditionhigh 0.426116 0.127159 3.351 0.000805 ***
#> conditionlow 0.006701 0.127720 0.052 0.958156
#> genderMale 0.909721 0.103969 8.750 < 2e-16 ***
#> ---
#> Signif. codes:
#> 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> (Dispersion parameter for Negative Binomial(0.4212) family taken to be 1)
#>
#> Null deviance: 1115.5 on 929 degrees of freedom
#> Residual deviance: 1025.4 on 926 degrees of freedom
#> AIC: 5587.9
#>
#> Number of Fisher Scoring iterations: 1
#>
#>
#> Theta: 0.4212
#> Std. Err.: 0.0219
#>
#> 2 x log-likelihood: -5577.9060

This indicate that indeed male participants report on average

9In this model the parameters are estimated via maximum likelihood, which amounts to
choosing the values of the parameters that maximize the probability (likelihood) of the data
under the model. Thus when we refer to the log-likelihood of a model we indicate the logarithm
of the maximized value of the likelihood function.

https://en.wikipedia.org/wiki/Wilks%27_theorem


46 CHAPTER 6. MODELS FOR COUNT DATA

exp(nb02$coefficients["genderMale"])
#> genderMale
#> 2.48363

times more units of alcohol per week than females.

We can already see that the difference due to gender is significant, but never-
theless let’s compare them using a likelihood ratio test.
anova(nb01, nb02)
#> Likelihood ratio tests of Negative Binomial Models
#>
#> Response: units
#> Model theta Resid. df 2 x log-lik.
#> 1 condition 0.3852967 927 -5648.783
#> 2 condition + gender 0.4212085 926 -5577.906
#> Test df LR stat. Pr(Chi)
#> 1
#> 2 1 vs 2 1 70.87633 0

Here the value of the likelihood ratio statistic is NA, 70.88 and under the null
hypothesis that any improvement of model fit obtained after adding gender
as predictor is due to chance is distributed as a Chi-square with 1 degree of
freedom.

6.3.1.2 Plotting model fit

It’s not straightforward to visualize the model fit to the data - the code below
give one possibility:
# here I make a new data matric for claculating the prediction of the model
nd <- expand.grid(condition=unique(d$condition),

units = 0:max(d$units),
KEEP.OUT.ATTRS = F)

# use the predict() function to calculate the predicted counts for each condition
nd$predicted_units <- predict(nb01, newdata=nd, type="response")

# here I use the dnbinom() function - which gives the probability density of
# the negative binomial - to calculate the probability of the observations under the model
nd$pred_density <- dnbinom(nd$units, mu=nd$predicted_units, size=nb01$theta)

# finally take all together and plot
d %>%
ggplot(aes(x=units, fill=condition)) +
geom_histogram(aes(y=..density..),binwidth=1, color="white")+
geom_line(data=nd, aes(x=units, y=pred_density),size=1) +



6.3. EXAMPLES 47

facet_grid(condition~.) +
theme_minimal() +
coord_cartesian(xlim=c(0,40))

#> Warning: Using `size` aesthetic for lines was deprecated in ggplot2
#> 3.4.0.
#> i Please use `linewidth` instead.
#> This warning is displayed once every 8 hours.
#> Call `lifecycle::last_lifecycle_warnings()` to see where
#> this warning was generated.
#> Warning: The dot-dot notation (`..density..`) was deprecated in
#> ggplot2 3.4.0.
#> i Please use `after_stat(density)` instead.
#> This warning is displayed once every 8 hours.
#> Call `lifecycle::last_lifecycle_warnings()` to see where
#> this warning was generated.

control
high

low

0 10 20 30 40

0.0

0.1

0.2

0.3

0.0

0.1

0.2

0.3

0.0

0.1

0.2

0.3

units

de
ns

ity

condition

control

high

low

Figure 6.1: The black line represent the predicted probability of the data (note
that I clipped the x-axis at 40)

Admittedly the probability of the data under the model (the black lines) looks
quite similar across the three panels, however, the model does assign higher



48 CHAPTER 6. MODELS FOR COUNT DATA

probability to higher count values in the high condition compared to the other
ones - we can see this by putting them together in the same panel, and by
plotting the logarithm of the probability instead of the probability itself. These
changes in the probability of the data may not seems large when looked at in
this way, but they amount to quite substantial changes in the average number
of counts - recall that in the high condition participants reported on average
nearly 1.6 times the number of alcohol units than in the control condition.
nd %>%
ggplot(aes(x=units, y=log(pred_density), color=condition))+
geom_line(size=0.6)+
theme_minimal() +
coord_cartesian(xlim=c(0,40),ylim=c(-7,-1.4))+
labs(y="log (probability)")

−7

−6

−5

−4

−3

−2

0 10 20 30 40
units

lo
g 

(p
ro

ba
bi

lit
y) condition

control

high

low



Chapter 7

Models for ordinal data

Ordinal-type of variable arise often in psychology. One common example are
responses to Likert scales. Although it is very common practice that these are
analyzed with a linear model, it is know that this approach can lead to serious
inference errors (Liddell and Kruschke, 2018). For this reason, the recommended
approach is to use a model appropriate for ordinal data. Here I will describe
an approach to this, using an ordered logistic regression model (also know as
proportional odds model).

7.1 Ordered logistic regression
One way to think about this model is by assuming the existence of a continuous
latent quantity, call it 𝑦, specified by a logistic probability density function.
The latent distribution is partitioned into a series of 𝑘 intervals, where 𝑘 is the
number of ordered choice options available to respondents, using 𝑘 + 1 latent
cut-points, 𝑐1, … , 𝑐𝑘+1. By integrating the latent density function within each
interval we obtain the ordinal response probabilities 𝑝1, … , 𝑝𝑘. Other choices
are possible (e.g. assuming a normally distributed latent variable would yield
an ordered probit model). Beyond mathematical convenience, one advantage
of the ordered logit is that coefficient can be interpreted as ordered log-odds,
implementing the proportional odds assumption (McCullagh, 1980).

Formally, the model can be notated as

𝑝𝑘 = 𝑝 (𝑐𝑘−1 < 𝑦 ≤ 𝑐𝑘 ∣ 𝜇)
= logit−1 (𝑐𝑘 − 𝜇) − logit−1 (𝑐𝑘−1 − 𝜇)

where
logit−1(𝛼) = 1

1 + 𝑒−𝛼

49



50 CHAPTER 7. MODELS FOR ORDINAL DATA

is the cumulative function of the logistic distribution (also known as inverse-
logit), and

𝜇 = 𝛽1𝑥1 + … + 𝛽𝑛𝑥𝑛

is the linear part of the model (a linear combination of the 𝑛 predictor variables).

This is the general approach and the formalism used - below I present few
examples that illustrates how this work in practice in R.

7.1.1 Mixed-effects ordinal regression
R libraries used in this example
library(ggplot2)
library(ordinal)
library(tidyverse)
library(DescTools)

In addition to the above libraries, here I will create a handy R function that gives
the probabilities of the categorical responses given a mean value of the latent
quantity (indicated with 𝜇 above) and a set of cutpoints 𝑐1, … , 𝑐𝑘+1. This will
be used both for simulating the data and for plotting the fit of the model.
ordered_logistic <- function(eta, cutpoints){
cutpoints <- c(cutpoints, Inf)
k <- length(cutpoints)
p <- rep(NA, k)
p[1] <- plogis(cutpoints[1], location=eta, scale=1, lower.tail=TRUE)
for(i in 2:k){
p[i] <- plogis(cutpoints[i], location=eta, scale=1, lower.tail=TRUE) -

plogis(cutpoints[i-1], location=eta, scale=1, lower.tail=TRUE)
}
return(p)

}

For this example we simulate some data. We have two predictors: x1, a contin-
uous predictor that vary with each observation, and d1 a dummy variable that
indicate a categorical predictor with 2 levels (e.g. two experimental conditions).
The conditions are within-subject, meaningthat each participant (identified by
the variable id) is being tested in both conditions.
set.seed(5)
N <- 200
N_id <- 10
dat <- data.frame(
id = factor(sample(1:N_id,N, replace = T)),
d1 = rbinom(N,1,0.5), # dummy variable (0,1) indicate 2 conditions
x1 = runif(n = N, min = 1, max = 10)

)



7.1. ORDERED LOGISTIC REGRESSION 51

rfx <- rnorm(length(unique(dat$id)), mean=0, sd=5)
LP <- 0.5*dat$x1 + 2*dat$d1 + rfx[dat$id]
for(i in 1:N){
dat$response[i] <- which(rmultinom(1,1, ordered_logistic(LP[i], c(0,2.5, 5,10)))==1)

}
dat$response <- factor(dat$response)
str(dat)
#> 'data.frame': 200 obs. of 4 variables:
#> $ id : Factor w/ 10 levels "1","2","3","4",..: 2 9 9 9 5 7 7 3 3 6 ...
#> $ d1 : int 0 0 0 0 0 0 0 1 0 0 ...
#> $ x1 : num 6.81 1.49 6.94 3.09 3.97 ...
#> $ response: Factor w/ 5 levels "1","2","3","4",..: 4 1 3 2 2 3 3 4 3 2 ...

The dependent variable is categorical with 5 levels - here is a plot of the number
of responses per category in the two conditions. We are interested in testing
whether the distribution differ across the conditions.
ggplot(dat,aes(x=response))+
geom_bar()+
facet_grid(.~d1)

0 1

1 2 3 4 5 1 2 3 4 5

0

10

20

30

40

50

response

co
un

t

We use the clmm() function in the package ordinal to estimate the model. The
syntax is similar to what we would use for a linear mixed effect model. Note that
in the output the Threshold coefficients are the latent cutpoints 𝑐1, … , 𝑐4



52 CHAPTER 7. MODELS FOR ORDINAL DATA

model <- clmm(response ~ x1 + d1 + (1|id), data = dat)
summary(model)
#> Cumulative Link Mixed Model fitted with the Laplace approximation
#>
#> formula: response ~ x1 + d1 + (1 | id)
#> data: dat
#>
#> link threshold nobs logLik AIC niter max.grad
#> logit flexible 200 -175.75 365.49 291(919) 6.56e-05
#> cond.H
#> 8.6e+02
#>
#> Random effects:
#> Groups Name Variance Std.Dev.
#> id (Intercept) 4.224 2.055
#> Number of groups: id 10
#>
#> Coefficients:
#> Estimate Std. Error z value Pr(>|z|)
#> x1 0.55685 0.07516 7.409 1.27e-13 ***
#> d1 2.29521 0.36659 6.261 3.82e-10 ***
#> ---
#> Signif. codes:
#> 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> Threshold coefficients:
#> Estimate Std. Error z value
#> 1|2 -2.1850 0.8512 -2.567
#> 2|3 0.2853 0.7664 0.372
#> 3|4 2.9453 0.8059 3.655
#> 4|5 7.8126 1.0072 7.757

There is no function that can out-of the box calculate the predictions of the
model for us, so this will need some coding. I also use the library DescTools to
calculate simultaneous multinomial confidence intervals. In the resulting plot
the black line are model fit, and bar the observed responses.
# pre-allocate a matrix to store model predictions
# note that these are a vector of 5 probabilities for each trial
pred_mat <- matrix(NA, nrow=N, ncol=length(unique( dat$response)))

for(i in 1:N){

# first calculate the linear predictor
# by summing all variable as indicated
# in the model formulate, weighted by the coefficients



7.1. ORDERED LOGISTIC REGRESSION 53

eta <- dat$x1[i]*model$beta['x1'] + dat$d1[i]*model$beta['d1'] + model$ranef[dat$id[i]]
# note that + model$ranef[dat$id[i]] adds
# the random intercept for the subjects of observation i

# calculate vector of predicted probabilities
pred_mat[i,] <- ordered_logistic(eta, model$Theta)

}

# add predictions to dataset
pred_dat <- data.frame(pred_mat)
colnames(pred_dat) <- paste("resp_",1:ncol(pred_mat),sep="")
pred_dat <- cbind(dat, pred_dat)

# in order to visalize the predictions,
# we first average them for each condition
pred_dat %>%
pivot_longer(cols=starts_with("resp_"),

names_prefix="resp_",
values_to = "prob",
names_to ="response_category") %>%

group_by(d1, response_category) %>%
summarise(prob = mean(prob),

n=sum(response==response_category)) %>%
group_by(d1) %>%
mutate(prop_obs = n/sum(n),
response=as.numeric(response_category)) -> pred_d1

#> `summarise()` has grouped output by 'd1'. You can override
#> using the `.groups` argument.

# cimpute the multinomial interval
pred_d1$CI_lb <- MultinomCI(pred_d1$n)[,"lwr.ci"] *2
pred_d1$CI_ub <- MultinomCI(pred_d1$n)[,"upr.ci"] *2
# note that I multiply for 2 because in the plot each condition
# will be in a different panel and the probability will sum to 1 in each panel

# visualize (aggregated) ordinal response & prediction
# the black line are the predictions of the model

ggplot(pred_d1,aes(x=response, y=prop_obs))+
geom_col()+
geom_errorbar(data=pred_d1, aes(ymin=CI_lb, ymax=CI_ub),width=0.2)+
facet_grid(.~d1)+
geom_line(data=pred_d1, aes(y=prob), size=2)+
labs(y="probability")



54 CHAPTER 7. MODELS FOR ORDINAL DATA

#> Warning: Using `size` aesthetic for lines was deprecated in ggplot2
#> 3.4.0.
#> i Please use `linewidth` instead.
#> This warning is displayed once every 8 hours.
#> Call `lifecycle::last_lifecycle_warnings()` to see where
#> this warning was generated.

0 1

1 2 3 4 5 1 2 3 4 5

0.0

0.2

0.4

0.6

response

pr
ob

ab
ili

ty

We can repeat the same process also for calculating predictions for individual
participants
# split by ID
pred_dat %>%
pivot_longer(cols=starts_with("resp_"),

names_prefix="resp_",
values_to = "prob",
names_to ="response_category") %>%

group_by(id, d1, response_category) %>%
summarise(prob = mean(prob),

n=sum(response==response_category)) %>%
group_by(d1, id) %>%
mutate(prop_obs = n/sum(n),

response=as.numeric(response_category)) -> pred_d1
#> `summarise()` has grouped output by 'id', 'd1'. You can
#> override using the `.groups` argument.



7.1. ORDERED LOGISTIC REGRESSION 55

# calculate multinomial CI
# we do a loop over all participants and conditions
pred_d1$CI_lb <- NA
pred_d1$CI_ub <- NA
for(i in unique(pred_d1$id)){
for(cond in c(0,1)){
pred_d1$CI_lb[pred_d1$id==i & pred_d1$d1==cond] <- DescTools::MultinomCI(pred_d1$n[pred_d1$id==i & pred_d1$d1==cond])[,"lwr.ci"]
pred_d1$CI_ub[pred_d1$id==i & pred_d1$d1==cond] <- DescTools::MultinomCI(pred_d1$n[pred_d1$id==i & pred_d1$d1==cond])[,"upr.ci"]

}
}

pred_d1 %>%
mutate(condition = factor(d1)) %>%
ggplot(aes(x=response, y=prop_obs, fill=condition))+
geom_col()+
geom_errorbar(aes(ymin=CI_lb, ymax=CI_ub, color=condition), width=0.2)+
facet_grid(id~d1)+
geom_line(aes(y=prob), size=2)+
labs(y="probability")



56 CHAPTER 7. MODELS FOR ORDINAL DATA

0 1

1
2

3
4

5
6

7
8

9
10

1 2 3 4 5 1 2 3 4 5

0.00
0.25
0.50
0.75
1.00

0.00
0.25
0.50
0.75
1.00

0.00
0.25
0.50
0.75
1.00

0.00
0.25
0.50
0.75
1.00

0.00
0.25
0.50
0.75
1.00

0.00
0.25
0.50
0.75
1.00

0.00
0.25
0.50
0.75
1.00

0.00
0.25
0.50
0.75
1.00

0.00
0.25
0.50
0.75
1.00

0.00
0.25
0.50
0.75
1.00

response

pr
ob

ab
ili

ty condition

0

1



Chapter 8

Meta-analyses

For running meta-analyses, we recommend the metafor package for R (see link
1, link 2).

A comprehensive, hands-on guide on how to use this package is provided in the
book by Harrer and colleagues (Harrer et al., 2021), freely available at this link.

An alternative to the metafor package is to Bayesian multilevel modelling (also
discussed in the book by Harrer and colleagues). A more technical discussion
of Bayesian multilevel modelling for meta-analyes is provided in this paper by
Williams, Rast and Bürkner (Williams et al., 2018).

Note: the slides of a workshop on meta-analyses using metafor pack-
age are included in the workshop section of this website 12

57

https://www.metafor-project.org/doku.php
https://www.metafor-project.org/doku.php
https://wviechtb.github.io/metafor/
https://bookdown.org/MathiasHarrer/Doing_Meta_Analysis_in_R/
https://psyarxiv.com/7tbrm/


58 CHAPTER 8. META-ANALYSES



Chapter 9

Missing data

9.1 Types of missing data
Following the work of Rubin(RUBIN, 1976), missing data are typically grouped
in 3 categories:

• Missing completely at random (MCAR). This assumes that the prob-
ability of being missing is the same for all cases; this implies that the
mechanisms that causes missingness is not related in any way to the data.
For example, say, there’s a known unpredictable error on the server side
that prevented recording some responses for some respondents to a survey.
As the missingness is entirely independent on the respondents’ characteris-
tics, this would be MCAR. When the data are MCAR we can ignore a lot
of the complexities and just do a complete-case analysis (that is, simply
exclude incomplete observations from the dataset). A part from possible
loss of information, doing a complete case analysis should not introduce
bias in the results. In practice, however, it is difficult to establish whether
the data are truly MCAR. Ideally, to argue that data are MCAR, one
should have a good idea of the mechanisms that caused missigness (more
on this below). Formally, data is MCAR if

Pr(𝑅 = 0|𝑌obs, 𝑌mis, 𝜓) = Pr(𝑅 = 0|𝜓)

where 𝑅 is an indicator variable that is set to 0 for missing data and 1
otherwise; 𝑌obs, 𝑌mis indicate observed and missing data, respectively; and
𝜓 is simply a parameter that determine the overall (fixed) probability of
being missing.

• Missing at random (MAR). A less strong assumption about missingness
is that it is systematically related to the observed but not the unobserved
data. For example, data are MAR if in a study male respondents are less
likely to complete a survey on depression severity than female respondents

59



60 CHAPTER 9. MISSING DATA

- that is, the probability of reaching the end of the survey is related to their
sex (fully observed) but not the severity of their symptoms. Formally, data
is MAR if

Pr(𝑅 = 0|𝑌obs, 𝑌mis, 𝜓) = Pr(𝑅 = 0|𝑌obs, 𝜓)
When data are missing at random (MAR) the results of complete case
analyses may be biased and a common approach to deal with this is to
use imputation. Stef van Buuren has a freely available online book on
this topic(van Buuren, 2018). Among other things, it illustrates how to
do multiple imputation in R with examples.

• Missing not at random (MNAR). This means that the probability of
being missing varies for reasons that are unknown to us, and may de-
pends on the missing values themselves. Formally this means that Pr(𝑅 =
0|𝑌obs, 𝑌mis, 𝜓) does not simplify in any way. This case is the most hard
to handle: a complete case analyses may or may not be biased, but there
is no way of knowing it and we may have to find more information about
what caused missingness.

9.2 Deciding whether the data are MCAR
As MCAR is the only scenario in which it is safe to do a complete case analysis,
it would seem useful to have way to test this assumption. Some approaches have
been proposed to test whether the data are MCAR, but they are not widely used
and it’s not clear how useful they are in practice. For example one could run
a logistic regression with “missingness” as dependent variable (e.g. an indicator
variable set to 1 if data is missing and 0 otherwise), and all other variables as
predictors - if the data are MCAR then none of the predictors should predict
missingness. A popular alternative, implemented in several software packages
is Little’s test(Little, 1988).

Technically, these approaches can help determine whether the missingness de-
pends on some observed variables (that is, if they are MAR), but strictly speak-
ing cannot exclude missingness due to unobserved variables (MNAR scenario).
Nevertheless, if one has good reasons to believe that the data are MCAR, and
want to add some statistical test that corroborate this assumption, these could
be reasonable tests to do. However, it remains important to also discuss openly
possible reasons and mechanisms of missingness, and explain why we deem it a
priori plausible that the data are MCAR. In fact, statistical tests alone cannot
tell whether data are missing completely at random. The terms MCAR, MAR
and MNAR refers to the causal mechanisms that is responsible for missing data
and, strictly speaking, causal claims cannot be decided uniquely on the basis
of a simple statistical test. If the data “pass” the test it would provide some
additional support to the assumption that they are MCAR, but in and of itself
the test alone does not fully satisfy the assumptions of MCAR. To see why note
that MCAR (as formally defined above) assumes also that there should be no
relationship between the missingness on a particular variable and the values of

https://stefvanbuuren.name/fimd/
https://stefvanbuuren.name/fimd/


9.3. CAUSAL ANALYSIS AND BAYESIAN IMPUTATION 61

that same variable: but since this is a question about what is missing from the
data, it cannot be tested with any quantitative analysis of the available data.
Finally, it should be added that as these are null-hypothesis significance test, a
failure to reject the null hypothesis does not, in and of itself, provide evidence
for the null hypothesis (that the data are MCAR). It may be also that we don’t
have enough power to reliably detect the pattern in the missingness.

9.3 Causal analysis and Bayesian imputation
The best and most principled approach to deal with missingness (at least in
my opinion) is to think hard about the causal mechanisms that may determine
missingness, and use our assumption about the causal mechanisms to perform
a full Bayesian imputation (that is, treating the missing data as parameter and
estimating them).

I plan to create and include here a worked example of how to do this; in the mean-
time interested readers are referred to Chapter 15 (in particular section 15.2)
of the excellent book by Richard McElreath Statistical Rethinking(McElreath,
2020) which present a very accessible worked example of how to do this in R.

https://xcelab.net/rm/statistical-rethinking/


62 CHAPTER 9. MISSING DATA



Chapter 10

Signal Detection Theory

Signal Detection Theory (hereafter abbreviated as SDT) is probably the most
important and influential framework for modelling perceptual decisions in
forced-choice tasks, and has wide applicability also beyond purely perceptual
decision tasks. Here I review and derive some fundamental concepts of
equal-variance and unequal variance signal detection theory, and present some
R code to simulate the confidence of an optimal observer/decision-maker.

10.1 Equal-variance Gaussian SDT
SDT relies on the idea that information available to the observer / decision-
maker can be modeled as a single random variable on a latent decision space.
SDT is typically (but not only) applied to detection tasks: each trials a stimulus
is presented, consisting of some background noise with or without a signal. The
observer is tasked with deciding whether the signal was present or absent (thus
there are 2 possible responses, yes and no). SDT assumes that in each trial the
observer makes their decision on the basis of a random variable, call it 𝑋, which
may be drawn from the signal distribution or from the noise distribution.

In the simplest case, the signal distribution is a Gaussian with variance 𝜎2 = 1
and mean 𝑑′ > 0.

𝑓𝑆(𝑥) = 1
𝜎

√
2𝜋 𝑒− (𝑥−𝑑′)2

2𝜎2

= 1√
2𝜋 𝑒− (𝑥−𝑑′)2

2

And the noise distribution is a second normal distribution with mean 0 and
variance 𝜎2 = 1

63



64 CHAPTER 10. SIGNAL DETECTION THEORY

𝑓𝑁(𝑥) = 1√
2𝜋 𝑒− 𝑥2

2

Note that the prior probability of signal and noise may not be equal. Let’s
define the probability of a signal-present trial as 𝑝(𝑆) = 𝛼; we have thus that
𝑝(𝑁) = 1 − 𝑝(𝑆) = 1 − 𝛼.

10.1.1 Optimal decision rule

The optimal way to decide whether a particular value of 𝑥 was drawn from
a signal or noise distribution is by using a likelihood-ratio, that is one should
responde “yes” whenever

𝑓𝑆(𝑥) 𝑝(𝑆)
𝑓𝑁(𝑥) 𝑝(𝑁) ≥ 1

𝑓𝑆(𝑥) 𝛼
𝑓𝑁(𝑥) (1 − 𝛼) ≥ 1

With some algebraic manipulations, it can be shown that the likelihood ratio
decision rule amounts to comparing the value of 𝑥 to a criterion 𝑐:

𝑓𝑆(𝑥)𝛼
𝑓𝑁(𝑥)(1 − 𝛼) ≥ 1

𝑓𝑆(𝑥)
𝑓𝑁(𝑥) ≥ 1 − 𝛼

𝛼
1√
2𝜋 𝑒− (𝑥−𝑑′)2

2

1√
2𝜋 𝑒− 𝑥2

2
≥ 1 − 𝛼

𝛼

𝑒− (𝑥−𝑑′)2
2

𝑒− 𝑥2
2

≥ 1 − 𝛼
𝛼

taking the log of both sides



10.1. EQUAL-VARIANCE GAUSSIAN SDT 65

log (𝑒− (𝑥−𝑑′)2
2

𝑒− 𝑥2
2

) ≥ log (1 − 𝛼
𝛼 )

log (𝑒− (𝑥−𝑑′)2
2 ) − log (𝑒− 𝑥2

2 ) ≥ log (1 − 𝛼
𝛼 )

−(𝑥 − 𝑑′)2

2 + 𝑥2

2 ≥ log (1 − 𝛼
𝛼 )

−𝑥2 − (𝑑′)2 + 2𝑑′𝑥 + 𝑥2

2 ≥ log (1 − 𝛼
𝛼 )

−(𝑑′)2 + 2𝑑′

2 𝑥 ≥ log (1 − 𝛼
𝛼 )

𝑑′𝑥 − (𝑑′)2

2 ≥ log (1 − 𝛼
𝛼 )

𝑑′𝑥 ≥ log (1 − 𝛼
𝛼 ) + (𝑑′)2

2
𝑥 ≥ 1

𝑑′ log (1 − 𝛼
𝛼 ) + 𝑑′

2

The optimal criterion is thus found as 𝑐 = 1
𝑑′ log ( 1−𝛼

𝛼 ) + 𝑑′
2 . Whenever the 𝑥

exceed the criterion, 𝑥 ≥ 𝑐, the observer should respond “signal present” and
respond “signal absent” otherwise.

It is easy to verify that when the signal and noise trials are equiprobable, that
is 𝑝(𝑠) = 𝑝(𝑁) ⟹ 𝛼 = 0.5, the optimal criterion becomes 𝑐 = 𝑑′

2 .

10.1.1.1 Visualizing signal detection theory in R

We use R to verify visually that the optimal criterion (represented by the vertical
red line) is located at horizontal coordinates of the crossover point of the two
probability densities:
# settings
d_prime <- 2
sigma <- 1
alpha <- 0.5

# support of random variable X (for plotting)
supp_x <- seq(-2,4,length.out=500)

# calculate optima criterion
optimal_c <- 1/d_prime * log((1-alpha)/alpha) + d_prime/2

# calculate probability density and scale by prior probability



66 CHAPTER 10. SIGNAL DETECTION THEORY

fS <- alpha*dnorm(supp_x, mean=d_prime, sd=sigma)
fN <- (1-alpha)*dnorm(supp_x, mean=0, sd=sigma)

# plot
plot(supp_x, fS, type="l",lwd=2,col="black",xlab="X",ylab="p(X)")
lines(supp_x, fN, lwd=2,col="dark grey")
abline(v=optimal_c,lwd=1.5,lty=1,col="red")
legend("topleft",c(expression("f"["S"]),expression("f"["N"])),col=c("black","dark grey"),lwd=2,title = "source:",bty="n")

−2 −1 0 1 2 3 4

0.
00

0.
05

0.
10

0.
15

0.
20

X

p(
X

)

source:

fS
fN

(Note that the noise distribution, in dark grey, is centered on zero. The signal
distribution is centered on 𝑑′.)

What if we have unequal prior probabilities, e.g. 𝑝(𝑆) = 𝛼 = 0.8 ?

The optimal criterion is always at the crossover point, which however is in a
different location since the two distribution are scaled by their prior proability.
# Set a different prior probability
alpha <- 0.8

# calculate optima criterion
optimal_c <- 1/d_prime * log((1-alpha)/alpha) + d_prime/2

# calculate probability density and scale by prior probability
fS <- alpha*dnorm(supp_x, mean=d_prime, sd=sigma)
fN <- (1-alpha)*dnorm(supp_x, mean=0, sd=sigma)

# plot
plot(supp_x, fS, type="l",lwd=2,col="black",xlab="X",ylab="p(X)")



10.1. EQUAL-VARIANCE GAUSSIAN SDT 67

lines(supp_x, fN, lwd=2,col="dark grey")
abline(v=optimal_c,lwd=1.5,lty=1,col="red")
legend("topleft",c(expression("f"["S"]),expression("f"["N"])),col=c("black","dark grey"),lwd=2,title = "source:",bty="n")

−2 −1 0 1 2 3 4

0.
00

0.
10

0.
20

0.
30

X

p(
X

)

source:

fS
fN

10.1.2 Estimating the parameters from data
The parameters can be easily estimated form the proportions of hits, 𝑝H, and
false alarms 𝑝FA. (Hits are correct ‘yes’ responses and faalse alarms are incorrect
‘yes’ responses.)

Consider first that the probability of a false alarm is just the probability of
observing 𝑋 ≥ 𝑐 when 𝑋 is drawn from the noise distribution 𝑓𝑁 .

Thus

𝑝FA = 1 − Φ(𝑐)
where Φ is the cumulative distribution function of the standard normal distri-
bution It words, Φ(𝑐) is the area that lies to the left of 𝑐 and under a Gaussian
function with mean 0 and variance 1.

Similarly when 𝑋 is drawn from the signal distribution, the probability of a hit
response is the probability that a 𝑥 drawn from the signal distribution 𝑓𝑆 is
greater than the criterion 𝑐,

𝑝H = 1 − Φ(𝑐 − 𝑑′)

Thus, if we know the proportion of hits and false alarms, we can estimate 𝑐 and
𝑑′ using the inverse of Φ, which can be notated as Φ−1 and its often referred to



68 CHAPTER 10. SIGNAL DETECTION THEORY

as the quantile function

𝑐 = Φ−1 (1 − 𝑝FA) = −Φ−1 (𝑝FA) 𝑑′ = 𝑐 − Φ−1 (1 − 𝑝H) = Φ−1 (𝑝H) − Φ−1 (𝑝FA)

10.1.3 GLM formulation of equal-variance SDT models
Note that the above SDT model could be reformulated a probit generalized
linear model. This could be expressed as

Φ−1(𝑝yes) = 𝛽0 + 𝛽1𝑥
where 𝑝yes is the probability of the observer responding that the signal was
present, and 𝑥 is a variable that indicates the presence/absence of the signal as
1/0, respectively. The similarity with the SDT model is evident if we consider
that, in the GLM, the probability of a hit or a false alarm correspond to 𝑝yes
when the signal is present (that is 𝑥 = 1) or absent (that is 𝑥 = 0), respectively.
This allows mapping the signal detection theory parameters, 𝑑′ and 𝑐 to the
GLM intercept and slope parameters, 𝛽0 and 𝛽1

𝑐 = −Φ−1(𝑝FA) = −𝛽0

and

𝑑′ = Φ−1(𝑝H) − Φ−1(𝑝FA) = 𝛽0 + 𝛽1 − 𝛽0 = 𝛽1

Recognizing this identity makes it easier to use statistical packages such as R to
easily analyse complex design with multiple conditions and interaction effects.
It also makes it possible to estimate multi-level (or hierarchical, random-effects)
SDT models.

10.2 Bayesian confidence in equal-variance SDT
Formally, confidence should be the Bayesian (that is, subjective) posterior prob-
ability that a decision was correct given the evidence available to the observer.

First some notation. Let’s use 𝑆 to indicate the event that a signal was present
(an event is something to which we can assign a probability) and 𝑁 to indicate
the event that only noise was presented. Say the observer respond yes, their
confidence should correspond to the posterior probability 𝑝(𝑆 ∣ 𝑥), that is the
probability that a signal was present given that we observed 𝑥.

This can be calculated applying Bayes theorem:



10.2. BAYESIAN CONFIDENCE IN EQUAL-VARIANCE SDT 69

𝑝(𝑆 ∣ 𝑥) = 𝑝(𝑥 ∣ 𝑆) × 𝑝(𝑆)
𝑝(𝑥)

= 𝑝(𝑥 ∣ 𝑆)𝑝(𝑆)
𝑝(𝑥 ∣ 𝑆)𝑝(𝑆) + 𝑝(𝑥 ∣ 𝑁)𝑝(𝑁)

= 𝑝(𝑥 ∣ 𝑆)𝛼
𝑝(𝑥 ∣ 𝑆)𝛼 + 𝑝(𝑥 ∣ 𝑁)(1 − 𝛼)

This can be simplified further in cases where we have equal probabilities 𝑝(𝑠) =
𝑝(𝑁) ⟹ 𝛼 = 0.5

𝑝(𝑆 ∣ 𝑥)𝛼=0.5 = 𝑝(𝑥 ∣ 𝑆)
𝑝(𝑥 ∣ 𝑆) + 𝑝(𝑥 ∣ 𝑁)

Note also that the confidence for the signal absent trials 𝑁 is calculated in the
same way:

𝑝(𝑁 ∣ 𝑥)𝛼=0.5 = 𝑝(𝑥 ∣ 𝑆)
𝑝(𝑥 ∣ 𝑁) + 𝑝(𝑥 ∣ 𝑁)

One question we may ask at this point is how the distribution of confidence levels
of the observers changes in correct vs wrong responses, and also in signal absent
vs signal present responses. The simplest way to get at this is by simulation -
see the following R code
# load ggplot library for plotting
library(ggplot2)

# settings
d_prime <- 1.5
sigma <- 1
alpha <- 0.5

# calculate optimal criterion
optimal_c <- 1/d_prime * log((1-alpha)/alpha) + d_prime/2

# simulate 2*10^4 trials and calculate the confidence
N_trials <- 2*10^3
tar_pres <- c(rep(0,N_trials/2),rep(1,N_trials/2))

# simulate X by adding Gaussian noise (function rnorm())
x <- tar_pres*d_prime + rnorm(length(tar_pres), mean=0, sd=1)
resp_yes <- ifelse(x >= optimal_c,1,0)

# define a custom function to calculate confidence
confidenceSDT1 <- function(x,resp,d_prime, alpha=0.5){



70 CHAPTER 10. SIGNAL DETECTION THEORY

conf <- ifelse(
resp==1,
dnorm(x,mean=d_prime,sd=1)/(dnorm(x,mean=d_prime,sd=1)+dnorm(x,mean=0,sd=1)),
dnorm(x,mean=0,sd=1)/(dnorm(x,mean=d_prime,sd=1)+dnorm(x,mean=0,sd=1))

)
return(conf)

}

# calculate confidence
confidence <- confidenceSDT1(x, resp_yes, d_prime=1.5)

# put into a dataframe for plotting
d <- data.frame(confidence, x, tar_pres, resp_yes)

# check which simulated responses are correct
d$correct <- ifelse((d$tar_pres==1 & d$resp_yes==1)|(d$tar_pres==0 & d$resp_yes==0),1,0)

# plot
d$tar <- ifelse(d$tar_pres==1,"signal present","signal absent")
d$correct <- ifelse(d$correct==1," correct response","wrong response")
ggplot(d,aes(x=confidence,group=correct,color=correct,fill=correct))+
geom_histogram(position = 'dodge',aes(y=..density..), binwidth=0.05,alpha=0.9)+
facet_grid(.~tar)+
scale_color_manual(values=c("dark green","red"),name="")+
scale_fill_manual(values=c("dark green","red"),name="")+
labs(x="confidence level")+
theme_classic()

#> Warning: The dot-dot notation (`..density..`) was deprecated in
#> ggplot2 3.4.0.
#> i Please use `after_stat(density)` instead.
#> This warning is displayed once every 8 hours.
#> Call `lifecycle::last_lifecycle_warnings()` to see where
#> this warning was generated.

signal absent signal present

0.6 0.8 1.0 0.6 0.8 1.0

0

1

2

3

confidence level

de
ns

ity

 correct response

wrong response



10.2. BAYESIAN CONFIDENCE IN EQUAL-VARIANCE SDT 71

The distribution of confidence is - as expected - different from correct and wrong
response: it is peaked near 1 for correct responses, and peaked near 0.5 for er-
rors. Importantly, the separation between confidence distributions in correct
and wrong responses is similar in both signal absent (left panel) and signal
present (right panel) trials. This suggest that metacognitive sensitivity - the
ability to discriminate between correct and incorrect responses - should not
change across signal present and signal absent answers. This can be visualized
with Type-2 ROC (Receiver Operating Characteristic) curves, which are ob-
tained by plotting the proportion of “type-2 hits” as a function of the “type-2
false alarms” - these are the fraction of correct and wrong responses that are
classified as correct for each possible threshold setting on the confidence distri-
bution. The term “Type-2” is used to indicate that is a metacognitive task - a
decision about a decision(Galvin et al., 2003).
# functions to compute true and false positive rates
TPR <- function(d,th){ sum(d$tar_pres==1 & d$x>th) / sum(d$tar_pres==1)}
FPR <- function(d,th){ sum(d$tar_pres==0 & d$x>th) / sum(d$tar_pres==0)}

# use all the sorted values are possible threshods
thresholds <- sort(d$x)

roc <- data.frame(y=sapply(thresholds, function(th){TPR(d[d$resp_yes==1,],th)}),
x=sapply(thresholds, function(th){FPR(d[d$resp_yes==1,],th)}) )

roc0 <- data.frame(y=sapply(thresholds, function(th){TPR(d[d$resp_yes==0,],th)}),
x=sapply(thresholds, function(th){FPR(d[d$resp_yes==0,],th)}) )

ggplot(roc,aes(x,y))+geom_point(color="blue")+theme_classic()+labs(y="Type-2 hits", x="Type-2 FA") +geom_abline(intercept=0,slope=1,lty=2)+geom_point(data=roc0,color="dark red")+ggtitle("Equal-variance SDT, Type 2 sensitivity")



72 CHAPTER 10. SIGNAL DETECTION THEORY

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
Type−2 FA

Ty
pe

−
2 

hi
ts

Equal−variance SDT, Type 2 sensitivity

The ROC curve derived from confidence ratings discriminate equally well correct
vs wrong responses (in the plot, blue is the curve for target present responses)
- thus indicating similar metacognitive or “type-2” sensitivity. However, em-
piricaly it has been found that metacognitive sensitivite seems to be worse for
signal absent responses - e.g. see (Mazor et al., 2020). As we see below, this
finding can be accomodated by relaxing the assumption that signal and noise
distribution have the same standard deviation, and assuming instead that the
standard deviation of the signal present distribution is larger.

10.3 Unequal-variance SDT
Signal detection theory can be extended to account for cases in which signal
and noise distribution have a different variance. For many types of random
processes, the mean and the variance are related such that signals with higher



10.3. UNEQUAL-VARIANCE SDT 73

mean have also higher variance (the firing rate of neurons is an example). Thus
the signal distribution is now given by

𝑓𝑆(𝑥) = 1
𝜎

√
2𝜋 𝑒− (𝑥−𝑑′)2

2𝜎2

with the variance 𝜎2 ≠ 1.

One important consequence of the different noise level, is that now the log-
likelihood ratio is a quadratic function of the signal x

log ( 𝑓𝑆(𝑥)
𝑓𝑁(𝑥)) = − 1

2𝜎2 [(1 − 𝜎2) 𝑥2 − 2𝑑′𝑥 + 𝑑′2 + 2𝜎2 log 𝜎]

As a result, the log-likelihood ratio crosses zero in 2 points, thus yielding 2
decision criteria - see next figure.
# settings
d_prime <- 3
sigmaS <- 2
sigmaN <- 1 # fixed
alpha <- 0.5

# calculate optimal UEV-SDT criterion
UVGSDTcrit <- function(dp, sig, logbeta=0){
TwoSigSq <- 2 * sig^2

minLam <- optimize(function(X, dp, sig){-((1 - sig^2) * X^2 - 2 * dp * X + dp^2 + TwoSigSq * log(sig))/TwoSigSq}, c(-10, 10), dp = dp, sig = sig)$objective

if(logbeta < minLam){ warning("complex roots")}

cf <- -c(dp^2 + TwoSigSq * log(sig) + logbeta * TwoSigSq,-2 * dp, 1 - sig^2)/TwoSigSq

proot <- polyroot(cf)

return(sort(Re(proot)))
}

#
UE_c <- UVGSDTcrit(d_prime, sigmaS)

# simulate 2*10^3 trials and calculate the confidence
N_trials <- 2*10^3
tar_pres <- c(rep(0,N_trials/2),rep(1,N_trials/2))

# simulate X by adding Gaussian noise (function rnorm())



74 CHAPTER 10. SIGNAL DETECTION THEORY

# first generate internal responses
x <- rep(NA,length(tar_pres))
x[tar_pres==0] <- rnorm(N_trials/2, mean=0,sd=1)
x[tar_pres==1] <- rnorm(N_trials/2, mean=d_prime,sd=sigmaS)

# plot unequal variance and criterion
Xi <- seq(-6,10,length.out=500)
fS = dnorm(Xi,mean=d_prime,sd=sigmaS)
fN = dnorm(Xi,mean=0,sd=1)
plot(Xi,fN,type="l",col="grey",lwd=3,ylab="density",xlab="X")
lines(Xi,fS,lwd=3)
abline(v=UE_c,col="red",lwd=2)

−5 0 5 10

0.
0

0.
1

0.
2

0.
3

0.
4

X

de
ns

ity

The reason why there are two criteria may be seen more clearly if we plot the
logarithm of the probability density, as this makes it evident that there are
two regions, to the left and the right of the noise distribution, in which the
probability of signal present is larger than that of no-signal (i.e noise only).
# plot unequal variance and criterion
Xi <- seq(-6,10,length.out=500)
fS = dnorm(Xi,mean=d_prime,sd=sigmaS)
fN = dnorm(Xi,mean=0,sd=1)
plot(Xi,fN,type="l",col="grey",lwd=3,ylab="density",xlab="X", log="y")
lines(Xi,fS,lwd=3)
abline(v=UE_c,col="red",lwd=2)



10.3. UNEQUAL-VARIANCE SDT 75

−5 0 5 10

1e
−

22
1e

−
14

1e
−

06

X

de
ns

ity

10.3.1 Optimal confidence in unequal-variance SDT
The confidence can be computed in the same way (applying Bayes rule).
# now apply decision rule
if(length(UE_c)==1){

resp_yes <- ifelse(x > UE_c,1,0)
}else{
resp_yes <- ifelse((x <= UE_c[1])|(x>UE_c[2]),1,0)

}

# define a custom function to calculate confidence
confidenceSDT1 <- function(x,resp,dp=d_prime, alpha=0.5){

conf <- ifelse(
resp==1,
dnorm(x,mean=dp,sd=sigmaS)/(dnorm(x,mean=dp,sd=sigmaS)+dnorm(x,mean=0,sd=1)),
dnorm(x,mean=0,sd=1)/(dnorm(x,mean=dp,sd=sigmaS)+dnorm(x,mean=0,sd=1))

)
return(conf)

}

# calculate confidence
confidence <- confidenceSDT1(x, resp_yes)

# put into a dataframe for plotting
d <- data.frame(confidence, x, tar_pres, resp_yes)



76 CHAPTER 10. SIGNAL DETECTION THEORY

# check which simulated responses are correct
d$correct <- ifelse((d$tar_pres==1 & d$resp_yes==1)|(d$tar_pres==0 & d$resp_yes==0),1,0)

# plot
d$tar <- ifelse(d$tar_pres==1,"signal present","signal absent")
d$correct <- ifelse(d$correct==1," correct response","wrong response")
ggplot(d,aes(x=confidence,group=correct,color=correct,fill=correct))+
geom_histogram(position = 'dodge',aes(y=..density..), binwidth=0.05,alpha=0.9)+
facet_grid(.~tar)+
scale_color_manual(values=c("dark green","red"),name="")+
scale_fill_manual(values=c("dark green","red"),name="")+
labs(x="confidence level")+
theme_classic()+
ggtitle("Unequal-variance SDT")

signal absent signal present

0.6 0.8 1.0 0.6 0.8 1.0

0

5

10

confidence level

de
ns

ity

 correct response

wrong response

Unequal−variance SDT

As can be seen from the ROC curve, confidence levels (even estimated opti-
mally using Bayes rule) reveals an asymmetry (again, target present responses
are represented by the blue curve). That is, the unequal-variance signal detec-
tion theory model predict worse metacognitive sensitivity for “signal absent”
responses.
# functions to compute true and false positive rates
TPR <- function(d,th){ sum(d$tar_pres==1 & d$x>th) / sum(d$tar_pres==1)}
FPR <- function(d,th){ sum(d$tar_pres==0 & d$x>th) / sum(d$tar_pres==0)}

# use all the sorted values are possible threshods
thresholds <- sort(d$x)

roc <- data.frame(y=sapply(thresholds, function(th){TPR(d[d$resp_yes==1,],th)}),
x=sapply(thresholds, function(th){FPR(d[d$resp_yes==1,],th)}) )

roc0 <- data.frame(y=sapply(thresholds, function(th){TPR(d[d$resp_yes==0,],th)}),
x=sapply(thresholds, function(th){FPR(d[d$resp_yes==0,],th)}) )



10.3. UNEQUAL-VARIANCE SDT 77

ggplot(roc,aes(x,y))+geom_point(color="blue")+theme_classic()+labs(y="Type-2 hits", x="Type-2 FA") +geom_abline(intercept=0,slope=1,lty=2)+geom_point(data=roc0,color="dark red")+ggtitle("Unequal-variance SDT, Type 2 sensitivity")

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
Type−2 FA

Ty
pe

−
2 

hi
ts

Unequal−variance SDT, Type 2 sensitivity



78 CHAPTER 10. SIGNAL DETECTION THEORY



Chapter 11

Fitting Zipf’s law to word
frequency data

Zipf’s law predicts that the frequency of any word is inversely proportional to its
rank in the frequency table. This phenomenon is observed across many natural
languages and can be described by the Zipf-Mandelbrot law. Here I demonstrate
how to apply maximum likelihood estimation and the binomial split approach,
as described by Piantadosi (Piantadosi, 2014), to fit Zipf’s law to the word
frequency data of “Moby Dick”.

11.1 Background
Zipf’s law can be mathematically represented as:

𝑃(𝑟) ∝ 1
𝑟𝑎

where 𝑃 (𝑟) is the probability of the 𝑟-th most common word, and 𝑎 is a param-
eter that typically lies close to 1 for natural language.

An extension of this is the Zipf-Mandelbrot law, which introduces a parameter
𝑠 to account for a finite-size effect:

𝑃(𝑟) ∝ 1
(𝑟 + 𝑠)𝑎

where 𝑠 is a positive parameter that shifts the rank.

79



80 CHAPTER 11. FITTING ZIPF’S LAW TO WORD FREQUENCY DATA

11.2 Data preparation

We use the word frequency data from “Moby Dick” available in the languageR
package. First, we load and clean the data:
# Clean environment and set working directory
rm(list=ls())

# Load necessary libraries
library(tidyverse)
#> -- Attaching core tidyverse packages ---- tidyverse 2.0.0 --
#> v dplyr 1.1.2 v readr 2.1.4
#> v forcats 1.0.0 v stringr 1.5.0
#> v ggplot2 3.4.2 v tibble 3.2.1
#> v lubridate 1.9.2 v tidyr 1.3.0
#> v purrr 1.0.2
#> -- Conflicts ---------------------- tidyverse_conflicts() --
#> x dplyr::filter() masks stats::filter()
#> x dplyr::lag() masks stats::lag()
#> i Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
library(languageR)

# Load and prepare Moby Dick word frequency data
data(moby)
words <- moby[which(moby != "")]

# create a table with word frequencies
word_freq <- table(words)
word_freq_df <- as.data.frame(word_freq, stringsAsFactors=FALSE)
names(word_freq_df) <- c("word", "frequency")
head(word_freq_df)
#> word frequency
#> 1 - 3
#> 2 -west 1
#> 3 -wester 1
#> 4 -Westers 1
#> 5 [A 1
#> 6 [SUDDEN 1

We then rank the words by frequency
ranked_words <- word_freq_df %>%
arrange(desc(frequency)) %>%
mutate(word = factor(word, levels = word),

rank = rank(-frequency, ties.method = "random"))



11.3. ESTIMATION 81

11.3 Estimation
We define custom functions for the binomial split, the negative log-likelihood,
and the Zipf–Mandelbrot law probability mass function:
# Binomial split - randomly split the corpus to ensure independence of rank and frequencies estimates
binomial_split <- function(data, p=0.5){
f1 <- rep(NA, nrow(data))
f2 <- rep(NA, nrow(data))
for(i in 1:nrow(data)){
f1[i] <- rbinom(1, size=data$frequency[i], prob=p)
f2[i] <- data$frequency[i] - f1[i]

}
data_split <- data.frame(
word = data$word,
frequency = f1,
rank = rank(-f2, ties.method = "random")

)
return(data_split)

}

# negative log-likelihood function (for optimization)
neglog_likelihood <- function(params, data) {
s <- params[1]
a <- params[2]

N <- length(data$frequency)
M <- sum(data$frequency)
logP_data <- M*log(sum(((1:N)+s)^(-a)))+a*sum(data$frequency[data$rank]*log(data$rank+s))
return(logP_data)

}

# probability mass function for Zipf–Mandelbrot law
# as defined in: https://en.wikipedia.org/wiki/Zipf%E2%80%93Mandelbrot_law
dzipf <- function(rank, params, N){
s <- params[1]
a <- params[2]
p <- ((rank + s)^(-a))/(sum((rank + s)^(-a)))
return(p)

}

We then fit the model using the optim function:
# Initial parameter values for optimization
init_params <- c(s = 1, a = 1)

# Fitting model to the data



82 CHAPTER 11. FITTING ZIPF’S LAW TO WORD FREQUENCY DATA

fit_zipf <- optim(par = init_params,
fn = neglog_likelihood,
data = ranked_words,
method = "L-BFGS-B",
lower = c(0, 0),
upper = c(100, 100),
hessian = TRUE)

11.4 Results
Here are the estimated values of the parameters 𝑠 and 𝑎
print(fit_zipf$par)
#> s a
#> 1.817667 1.072602

We can get standard errors of the parameters estimates from the Hessian matrix:
sqrt(diag(solve(fit_zipf$hessian)))
#> s a
#> 0.032707787 0.001272293

Note that these standard errors do not take into account the additional sampling
variability due to the binomial split. In order to take this into account we
can re-estimate the model for multiple random splits, and examine how much
parameters vary across spits.

11.5 Visualization
Finally, we can visualize the fitted model against the actual data in the classical
rank-frequency plot:
#computed predicted probabilities
ranked_words$probability_predicted <- dzipf(rank=ranked_words$rank,

params=fit_zipf$par,
N=length(ranked_words$frequency))

# Make rank-frequency plot using ggplo2
ggplot() +
geom_point(data=ranked_words, pch=21, size=0.6,

aes(x = rank, y = frequency/sum(frequency))) +
geom_line(data=ranked_words,

aes(x = rank,y = probability_predicted),
color="blue") +

scale_x_log10() +
scale_y_log10() +



11.5. VISUALIZATION 83

theme_bw() +
labs(
title = "Moby Dick",
x = "Rank (log scale)",
y = "Probability (log scale)"

)

1e−05

1e−04

1e−03

1e−02

1e−01

1 10 100 1000 10000
Rank (log scale)

P
ro

ba
bi

lit
y 

(lo
g 

sc
al

e)

Moby Dick



84 CHAPTER 11. FITTING ZIPF’S LAW TO WORD FREQUENCY DATA



Chapter 12

Workshops

Either click on the links or click on the embedded slides and press ‘F’ to go full
screen. Advance through slides with arrow keys, and press ‘O’ for an overview
of all slides.

12.1 Linear multilevel models (LMM) workshop
(9th Sept 2022)

Part 1 (link)

Part 2 (link)

Practicals

Exercises with solution (link)

12.2 Introduction to meta-analyses in R
22nd February 2023

(link)

12.3 Power analyses via data simulation
15th November 2023

Links: (slides), (script)

85

https://mlisi.xyz/files/workshops/LMM101/LMM_part1.html
https://mlisi.xyz/files/workshops/LMM101/LMM_part2.html
https://mlisi.xyz/files/workshops/LMM101/exercises/exercises_questions.html
https://mlisi.xyz/files/workshops/meta_analyses/meta_analyses_slides.html
https://mlisi.xyz/files/workshops/power_analyses/power_analyses.html
https://mlisi.xyz/files/workshops/power_analyses/power_analysis_workshop_script.R


86 CHAPTER 12. WORKSHOPS

12.4 Introduction to Bayesian data analysis us-
ing R and Stan

29th November 2023

Link: (slides),

See this Github repository for code examples and datasets: https://github.com
/mattelisi/intro-Bayes.

12.5 Introduction to linear algebra
Lecture for MSc module PS5210 (version from: 7th December 2022)

Part 2 (link)

https://mlisi.xyz/files/workshops/intro_bayes/intro-Bayes.html
https://github.com/mattelisi/intro-Bayes
https://github.com/mattelisi/intro-Bayes
https://mlisi.xyz/files/workshops/numerical_skills_lecture/slides_numerical_skills_part2.html


Chapter 13

Useful links & resources

13.1 Statistical theory
13.1.1 Map of univariate statistical distributions

87

http://www.math.wm.edu/~leemis/chart/UDR/UDR.html


88 CHAPTER 13. USEFUL LINKS & RESOURCES



Bibliography

Galvin, S. J., Podd, J. V., Drga, V., and Whitmore, J. (2003). Type 2 tasks in
the theory of signal detectability: Discrimination between correct and incor-
rect decisions. Psychonomic Bulletin & Review, 10(4):843–876.

Harrer, M., Cuijpers, P., A, F. T., and Ebert, D. D. (2021). Doing Meta-Analysis
With R: A Hands-On Guide. Chapman & Hall/CRC Press, Boca Raton, FL
and London, 1st edition.

Hubble, E. (1929). A relation between distance and radial velocity among extra-
galactic nebulae. Proceedings of the National Academy of Sciences, 15(3):168–
173.

Liddell, T. M. and Kruschke, J. K. (2018). Analyzing ordinal data with metric
models: What could possibly go wrong? Journal of Experimental Social
Psychology, 79:328–348.

Little, R. J. A. (1988). A test of missing completely at random for multivariate
data with missing values. Journal of the American Statistical Association,
83(404):1198–1202.

Mazor, M., Friston, K. J., and Fleming, S. M. (2020). Distinct neural contri-
butions to metacognition for detecting, but not discriminating visual stimuli.
eLife, 9:e53900.

McCullagh, P. (1980). Regression models for ordinal data. Journal of the Royal
Statistical Society: Series B (Methodological), 42(2):109–127.

McElreath, R. (2020). Statistical Rethinking, A Course in R and Stan. Chapman
& Hall/CRC Press, 2nd edition.

Piantadosi, S. T. (2014). Zipf’s word frequency law in natural language: A crit-
ical review and future directions. Psychonomic Bulletin & Review, 21:1112–
1130.

RUBIN, D. B. (1976). Inference and missing data. Biometrika, 63(3):581–592.

van Buuren, S. (2018). Flexible imputation of missing data. Chapman &
Hall/CRC Press, 2nd edition.

89



90 BIBLIOGRAPHY

Williams, D. R., Rast, P., and Bürkner, P. C. (2018). Bayesian meta-analysis
with weakly informative prior distributions.

Wood, S. (2017). Generalized Additive Models: An Introduction with R. Chap-
man & Hall/CRC Press, 2nd edition.


	About
	Departmental survey about statistical methods
	March 2022

	Introduction to R
	Installing R
	First steps
	Resources for learning R

	Correlations
	Comparing correlations
	Polychoric and polyserial correlations
	Partial correlations

	Linear models
	Simple linear regression

	Models for count data
	Poisson model
	Negative binomial model
	Examples

	Models for ordinal data
	Ordered logistic regression

	Meta-analyses
	Missing data
	Types of missing data
	Deciding whether the data are MCAR
	Causal analysis and Bayesian imputation

	Signal Detection Theory
	Equal-variance Gaussian SDT
	Bayesian confidence in equal-variance SDT
	Unequal-variance SDT

	Fitting Zipf's law to word frequency data
	Background
	Data preparation
	Estimation
	Results
	Visualization

	Workshops
	Linear multilevel models (LMM) workshop (9th Sept 2022)
	Introduction to meta-analyses in R
	Power analyses via data simulation
	Introduction to Bayesian data analysis using R and Stan
	Introduction to linear algebra

	Useful links & resources
	Statistical theory


