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Abstract11

Large-scale stream processing systems often follow the dataflow paradigm, which enforces a program12

structure that exposes a high degree of parallelism. The Timely Dataflow distributed system supports13

expressive cyclic dataflows for which it offers low-latency data- and pipeline-parallel stream processing.14

To achieve high expressiveness and performance, Timely Dataflow uses an intricate distributed pro-15

tocol for tracking the computation’s progress. We modeled the progress tracking protocol as a combin-16

ation of two independent transition systems in the Isabelle/HOL proof assistant. We specified and veri-17

fied the safety of the two components and of the combined protocol. To this end, we identified abstract18

assumptions on dataflow programs that are sufficient for safety and were not previously formalized.19
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1 Introduction25

The dataflow programming model represents a program as a directed graph of interconnected26

operators that perform per-tuple data transformations. A message (an incoming datum)27

arrives at an input (a root of the dataflow) and flows along the graph’s edges into operators.28

Each operator takes the message, processes it, and emits any resulting derived messages.29

This model enables automatic and seamless parallelization of tasks on large multiprocessor30

systems and cluster-scale deployments. Many research-oriented and industry-grade systems31

have employed this model to describe a variety of large scale data analytics and processing32

tasks. Dataflow programming models with timestamp-based, fine-grained coordination, also33

called time-aware dataflow [23], incur significantly less intrinsic overhead [25].34

In a time-aware dataflow system, all messages are associated with a timestamp, and35

operator instances need to know up-to-date (timestamp) frontiers—lower bounds on what36

timestamps may still appear as their inputs. When informed that all data for a range of37

timestamps has been delivered, an operator instance can complete the computation on input38

data for that range of timestamps, produce the resulting output, and retire those timestamps.39

A progress tracking mechanism is a core component of the dataflow system. It receives40

information on outstanding timestamps from operator instances, exchanges this information41

with other system workers (cores, nodes) and disseminates up-to-date approximations of the42

frontiers to all operator instances.43

© Matthias Brun, Sára Decova, Andrea Lattuada, and Dmitriy Traytel;
licensed under Creative Commons License CC-BY 4.0

12th International Conference on Interactive Theorem Proving (ITP 2021).
Editors: Liron Cohen and Cezary Kaliszyk; Article No. 18; pp. 18:1–18:21

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:matthias.brun@inf.ethz.ch
mailto:andrea.lattuada@inf.ethz.ch
mailto:traytel@di.ku.dk
https://orcid.org/0000-0001-7982-2768
https://doi.org/10.4230/LIPIcs.ITP.2021.18
https://www.isa-afp.org/entries/Progress_Tracking.html
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


18:2 Verified Progress Tracking for Timely Dataflow

The progress tracking mechanism must be correct. Incorrect approximations of the44

frontiers can result in subtle concurrency errors, which may only appear under certain load45

and deployment circumstances. In this work, we formally model in Isabelle/HOL and prove46

the safety of the progress tracking protocol of Timely Dataflow [1, 25, 26] (Section 2), a47

time-aware dataflow programming model and a state-of-the-art streaming, data-parallel,48

distributed data processor.49

In Timely Dataflow’s progress tracking, worker-local and distributed coordination are50

intertwined, and the formal model must account for this asymmetry. Individual agents51

(operator instances) on a worker generate coordination updates that have to be asynchronously52

exchanged with all other workers, and then propagated locally on the dataflow structure to53

provide local coordination information to all other operator instances.54

This is an additional (worker-local) dimension in the specification when compared to55

well-known distributed coordination protocols, such as Paxos [20] and Raft [27], which focus56

on the interaction between symmetric communicating parties on different nodes. In contrast57

our environment model can be simpler, as progress tracking is designed to handle but not58

recover from fail-stop failures or unbounded pauses: upon crashes, unbounded stalls, or reset59

of a channel, the system stops without violating safety. 1
60

Abadi et al. [4] formalize and prove safety of the distributed exchange component of pro-61

gress tracking in the TLA+ Proof System. We present their clocks protocol through the lens62

of our Isabelle re-formalization (Section 3) and show that it subtly fails to capture behaviors63

supported by Timely Dataflow [25, 26]. We then significantly extend the formalized protocol64

(Section 4) to faithfully model Timely Dataflow’s modern reference implementation [1].65

The above distributed protocol does not model the dataflow graph, operators, and66

timestamps within a worker. Thus, on its own it is insufficient to ensure that up-to-date fron-67

tiers are delivered to all operator instances. To this end, we formalize and prove the safety of68

the local propagation component (Section 5) of progress tracking, which computes and updates69

frontiers for all operator instances. Local propagation happens on a single worker, but oper-70

ator instances act as independent asynchronous actors. For this reason, we also employ a state71

machine model for this component. Along the way, we identify sufficient criteria on dataflow72

graphs, that were previously not explicitly (or only partially) formulated for Timely Dataflow.73

Finally, we combine the distributed component with local propagation (Section 6) and74

formalize the global safety property that connects initial timestamps to their effect on the op-75

erator frontier. Specifically, we prove that our combined protocol ensures that frontiers always76

constitute safe lower bounds on what timestamps may still appear on the operator inputs.77

Related Work78

Data management systems verification Timely Dataflow is a system that supports low-79

latency, high-throughput data-processing applications. Higher level libraries [23, 24] and80

SQL abstractions [2] built on Timely Dataflow support high performance incremental view81

maintenance for complex queries over large datasets. Verification and formal methods efforts82

in the data management and processing space have focused on SQL and query-language83

semantics [6, 10,12] and on query runtimes in database management systems [7, 22].84

Distributed systems verification Timely Dataflow is a distributed, concurrent system: our85

modeling and proof techniques are based on the widely accepted state machine model and86

refinement approach as used, e.g., in the TLA+ Proof System [9] and Ironfleet [15]. Recent87

1 Systems based on Timely Dataflow and progress tracking can recover by re-starting the protocol.
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work focuses on proving consistency and safety properties of distributed storage systems [13,88

14, 21] and providing tools for the implementation and verification of general distributed89

protocols [19,30] leveraging domain-specific languages [29,32] and advanced type systems [16].90

Model of Timely Dataflow Abadi and Isard [3] define abstractly the semantics of a Timely91

Dataflow programming model [25]. Our work is complementary; we concretely compute their92

could-result-in relation (Section 6) and formally model the implementation’s core component.93

2 Timely Dataflow and Progress Tracking94

Our formal model follows the progress tracking protocol of the modern Rust implementation95

of Timely Dataflow [1]. The protocol has evolved from the one reported as part of the classic96

implementation Naiad [25]. Here, we provide an informal overview of the basic notions, for97

the purpose of supporting the presentation of our formal model and proofs.98

Dataflow graph A Timely Dataflow computation is represented by a graph of operators,99

connected by channels. Each worker in the system runs an instance of the entire dataflow100

graph. Each instance of an operator is responsible for a subset, or shard, of the data being101

processed. Workers run independently and only communicate through reliable message102

queues—they act as communicating sequential processes [17]. Each worker alternately103

executes the progress tracking protocol and the operator’s processing logic. Figure 1 shows a104

Timely Dataflow operator and the related concepts described in this section.105

target

target
source

summaries

ports

incoming channel

incoming channel
outgoing channel

Figure 1 A Timely Dataflow operator.

Pointstamps A pointstamp represents a datum at rest at an operator, or in motion on one106

of the channels. A pointstamp pl, tq refers to a location l in the dataflow and a timestamp t.107

Timestamps encode a semantic (causal) grouping of the data. For example, all data resulting108

from a single transaction can be associated with the same timestamp. Timestamps are usually109

tuples of positive integers, but can be of any type for which a partial order ⪯ is defined.110

Locations and summaries Each operator has an arbitrary number of input and output ports,111

which are locations. An operator instance receives new data through its input ports, or target112

locations, performs processing, and produces data through its output ports, or source locations.113

A dataflow channel is an edge from a source to a target. Internal operator connections are114

edges from a target to a source, which are additionally described by one or more summaries:115

the minimal increment to timestamps applied to data processed by the operator.116

Frontiers Operator instances must be informed of which timestamps they may still receive117

from their incoming channels, to determine when they have a complete view of data associated118

with a certain timestamp. The progress tracking protocol tracks the system’s pointstamps119

and summarizes them to one frontier per operator port. A frontier is a lower bound on the120

timestamps that may appear at the operator instance inputs. It is represented by an antichain121

F indicating that the operator may still receive any timestamp t for which Dt1 P F. t1 ⪯ t.122

ITP 2021
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b.1

b.2

b.3

b: labelprop

c.1c.2

c: feedback

a: input

a.1

+(0,1) B

C

A
Figure 2 A timely dataflow that computes weakly connected components.

Progress tracking Progress tracking computes frontiers in two steps. A distributed compon-123

ent exchanges pointstamp changes (Sections 3 and 4) to construct an approximate, conservat-124

ive view of all the pointstamps present in the system. Workers use this global view to locally125

propagate changes on the dataflow graph (Section 5) and update the frontiers at the operator in-126

put ports. The combined protocol (Section 6) asynchronously executes these two components.127

▶ Running Example (Weakly Connected Components by Propagating Labels). Figure 2 shows128

a dataflow that computes weakly connected components (WCC) by assigning integer labels129

to vertices in a graph, and propagating the lowest label seen so far by each vertex to all its130

neighbors. The input graph is initially sent by operator a as a stream of edges (s,d) with131

timestamp (0,0). Each input port has an associated sharding function to determine which132

data should be sent to which operator instance: port b.2 shards the incoming edges (s,d) by s.133

The input operator a will continue sending additional edges in the graph as they appear,134

using increasing timestamps by incrementing one coordinate: (1,0), (2,0), etc. The compu-135

tation is tasked with reacting to these changes and performing incremental re-computation to136

produce correct output for each of these input graph versions. The first timestamp coordinate137

represents logical consistency boundaries for the input and output of the program. We will use138

the second timestamp coordinate to track the progress of the unbounded iterative algorithm.139

The operator a starts with a pointstamp (a.1, (0,0)) on port a.1, representing its intent140

to send data with that timestamp through the connected channel. When it sends messages141

on channel A, these are represented by pointstamps on the port b.2 ; e.g., (b.2, (0,0)) for the142

initial timestamp (0,0). When it ceases sending data for a certain timestamp, e.g., (0,0), op-143

erator a drops the corresponding pointstamp on port a.1. The frontier at b.2 reflects whether144

pointstamps with a certain timestamp are present at either a.1 or b.2 : when they both become145

absent (when all messages are delivered) each instance of b notices that its frontier has ad-146

vanced and determines it has received its entire share of the input (the graph) for a timestamp.147

Each instance of b starts with a pointstamp on b.3 at timestamp (0,0); when it has148

received its entire share of the input, for each vertex with label x and each of its neighbors149

n, it sends (n,x) at timestamp (0,0). This stream then traverses operator c, that increases150

the timestamp associated to each message by (0,1), and reaches port b.1, which shards the151

incoming tuples (n,x) by n. Operator b inspects the frontier on b.1 to determine when it152

has received all messages with timestamp (0,1). These messages left b.3 with timestamp153

(0,0). The progress tracking mechanism will correctly report the frontier at b.1 by taking154

into consideration the summary between c.1 and c.2.155

Operator b collects all label updates from b.1 and, for those vertices that received a value156

that is smaller than the current label, it updates internal state and sends a new update via b.3157

with timestamp (0,1). This process then repeats with increasing timestamps, (0,2), (0,3),158

etc., for each trip around the loop, until ultimately no new update message is generated on159

port b.3 by any of the operator instances, for a certain family of timestamps (t1,t2) with160
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a fixed t1 corresponding to the input version being considered. Operator b determines it has161

correctly labeled all connected components for a given t1 when the frontier at b.1 does not162

contain a pt1, t2q such that t2 ⪯ the graph’s diameter. In practice, once operator b determines163

it has computed the output for a given t1, the operator would also send the output on an164

additional outgoing channel to deliver it to the user. Later, operator b continues processing165

for further input versions, indicated by increasing t1, with timestamps (t1,0), (t1,1), etc. ◀166

3 The Clocks Protocol167

In this section, we present Abadi et al.’s approach to modeling the distributed component168

of progress tracking [4], termed the clocks protocol. Instead of showing their TLA+ Proof169

System formalization, we present our re-formalization of the protocol in Isabelle. Thereby,170

this section serves as an introduction to both the protocol and the relevant Isabelle constructs.171

The clocks protocol is a distributed algorithm to track existing pointstamps in a dataflow.172

It models a finite set of workers. Each worker stores a (finite) multiset of pointstamps as seen173

from its perspective and shares updates to this information with all other workers. The pro-174

tocol considers workers as black boxes, i.e., it does not model their dataflow graph, locations,175

and timestamps. We extend the protocol to take these components into account in Section 5.176

In Isabelle, we use the type variable 'w :: finite to represent workers. We assume that177

'w belongs to the finite type class, which assures that 'w’s universe is finite. Similarly, we178

model pointstamps abstractly by 'p :: order . The order type class assumes the existence of a179

partial order ď :: 'p ñ 'p ñ bool (and the corresponding strict order ă).180

We model the protocol as a transition system that acts on configurations given as follows:181

record p'w :: finite, 'p :: orderq conf “
rec :: 'p zmset
msg :: 'w ñ 'w ñ 'p zmset list
temp :: 'w ñ 'p zmset
glob :: 'w ñ 'p zmset

182

Here, rec c denotes the global multiset of pointstamps (or records) that are present in a183

system’s configuration c. We use the type 'p zmset of signed multisets [8]. An element184

M :: 'p zmset can be thought of as a function of type 'p ñ int, which is non-zero only for185

finitely many values. (In contrast, an unsigned multiset M :: 'p mset corresponds to a function186

of type 'p ñ nat.) Signed multisets enjoy nice algebraic properties; in particular, they form a187

group. This significantly simplifies the reasoning about subtraction. However, rec c will always188

store only non-negative pointstamp counts. The other components of a configuration c are189

the progress message queues msg c w w1, which denote the progress update messages sent190

from worker w to worker w1 (not to be confused with data messages, which are accounted191

for in rec c but do not participate in the protocol otherwise);192

the temporary changes temp c w in which worker w stores changes to pointstamps that it193

might need to communicate to other workers; and194

the local approximation glob c w of rec c from the perspective of worker w (we use Abadi195

et al. [4]’s slightly misleading term glob for the worker’s local view on the global state).196

In contrast to rec, these components may contain a negative count ´i for a pointstamp p,197

which denotes that i occurrences of p have been discarded.198

The following predicate characterizes the protocol’s initial configurations. We write t#uz199

for the empty signed multiset and M#z p for the count of pointstamp p in a signed multiset M.200

ITP 2021



18:6 Verified Progress Tracking for Timely Dataflow

definition Init :: p'w, 'pq conf ñ bool where
Init c “ p@p. rec c #z p ě 0q ^ p@w w1. msg c w w1 “ r sq ^

p@w. temp c w “ t#uzq ^ p@w. glob c w “ rec cq

201

In words: all global pointstamp counts in rec must be non-negative and equal to each worker’s202

local view glob; all message queues and temporary changes must be empty.203

Referencing our WCC example described in Section 2, the clocks protocol is the component204

in charge of distributing pointstamp changes to other workers. When one instance of the205

input operator a ceases sending data for a certain family of timestamps (t1,0) it drops the206

corresponding pointstamp: the clocks protocol is in charge of exchanging this information207

with other workers, so that they can determine when all instances of a have ceased producing208

messages for a certain timestamp. This happens for all pointstamp changes in the system,209

including pointstamps that represent messages in-flight on channels.210

The configurations evolve via one of three actions:211

perf_op: A worker may perform an operation that causes a change in pointstamps. Changes212

may remove certain pointstamps and add others. They are recorded in rec and temp.213

send_upd: A worker may broadcast some of its changes stored in temp to all other workers.214

recv_upd: A worker may receive an earlier broadcast and update its local view glob.215

Overall, the clocks protocol aims to establish that glob is a safe approximation for rec.216

Safe means here that no pointstamp in rec is less than any of glob’s minimal pointstamps.217

To achieve this property, the protocol imposes a restriction on which new pointstamps may218

be introduced in rec and which progress updates may be broadcast. This restriction is the219

uprightness property that ensures that a pointstamp can only be introduced if simultaneously220

a smaller (supporting) pointstamp is removed. Formally, a signed multiset of pointstamps221

is upright if every positive entry is accompanied by a smaller negative entry:222

definition supp :: 'p zmset ñ 'p ñ bool where supp M p “ pDp1 ă p. M #z p1 ă 0q223

definition upright :: 'p zmset ñ bool where upright M “ p@p. M #z p ą 0 ÝÑ supp M pq224

Abadi et al. [4] additionally require that the pointstamp p1 in supp’s definition satisfies225

@p2 ď p1. M #z p2 ď 0. The two variants of upright are equivalent in our formalization226

because signed multisets are finite and thus minimal elements exist even without ď being227

well-founded. The extra assumption on p1 is occasionally useful in proofs.228

In practice, uprightness means that operators are only allowed to transition to pointstamps229

forward in time, and cannot re-introduce pointstamps that they relinquished. This is necessary230

to ensure that the frontiers always move to later timestamps and remain a conservative approx-231

imation of the pointstamps still present in the system. An advancing frontier triggers computa-232

tion in some of the dataflow operators, for example to output the result of a time-based aggreg-233

ation: this should only happen once all the relevant incoming data has been processed. This234

is the intuition behind the safety property of the protocol, Safe, discussed later in this section.235

Figure 3 defines the three protocol actions formally as transition relations between an old236

configuration c and a new configuration c1 along with the definition of the overall transition237

relation Next, which in addition to performing one of the actions may stutter, i.e., leave c1 “ c238

unchanged. The three actions take further parameters as arguments, which we explain next.239

The action perf_op is parameterized by a worker w and two (unsigned) multisets ∆neg and240

∆pos, corresponding to negative and positive pointstamp changes. The action’s overall effect241

on the pointstamps is thus ∆ “ ∆pos´∆neg. Here and elsewhere, subtraction expects signed242

multisets as arguments and we omit the type conversions from unsigned to signed multisets243

(which are included in our Isabelle formalization). The action is only enabled if its parameters244
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definition perf_op ::'w ñ 'p mset ñ 'p mset ñ p'w, 'pq conf ñ p'w, 'pq conf ñ bool where
perf_op w ∆neg ∆pos c c1 “ let ∆ “ ∆pos´∆neg in p@p. ∆neg #p ď rec c#z pq^upright ∆^

c1 “ cLrec “ rec c`∆, temp “ ptemp cqpw :“ temp c w`∆qM
definition send_upd :: 'w ñ 'p set ñ p'w, 'pq conf ñ p'w, 'pq conf ñ bool where

send_upd w P c c1 “ let γ “ t#p P#z temp c w. p P P#u in
γ ‰ t#uz ^ upright ptemp c w´ γq ^
c1 “ cLmsg “ pmsg cqpw :“ λw1. msg c w w1 ¨ rγsq, temp “ ptemp cqpw :“ temp c w´ γqM

definition recv_upd :: 'w ñ 'w ñ p'w, 'pq conf ñ p'w, 'pq conf ñ bool where
recv_upd w w1 c c1 “ msg c w w1 ‰ rs ^

c1 “ cLmsg “ pmsg cqpw :“ pmsg c wqpw1 :“ tl pmsg c w w1qqq,

glob “ pglob cqpw1 :“ glob c w1 ` hd pmsg c w w1qqM
definition Next :: p'w, 'pq conf ñ p'w, 'pq conf ñ bool where

Next c c1 “ pc “ c1q _ pDw ∆neg ∆pos. perf_op w ∆neg ∆pos c c1q _

pDw P. send_upd w P c c1q _ pDw w1. recv_upd w w1 c c1q

Figure 3 Transition relation of Abadi et al.’s clocks protocol

satisfy two requirements. First, only pointstamps present in rec may be dropped, and thus the245

counts from ∆neg must be bounded by the ones from rec. (Arguably, accessing rec is problem-246

atic for distributed workers. We rectify this modeling deficiency in Section 4.) Second, ∆ must247

be upright, which ensures that we will never introduce a pointstamp that is lower than any248

pointstamp in rec. If these requirements are met, the action can be performed and will update249

both rec and temp with ∆ (expressed using Isabelle’s record and function update syntax).250

The action send_upd is parameterized by a worker (sender w) and a set of pointstamps251

P, the outstanding changes to which, called γ, we want to broadcast. The key requirement252

is that the still unsent changes remain upright. Note that it is always possible to send all253

changes or all positive changes in temp, because any multiset without a positive change is254

upright. The operation enqueues γ in all message queues that have w as the sender. We255

model first-in-first-out queues as lists, where enqueuing means appending at the end (_ ¨ r_s).256

Finally, the action recv_upd is parameterized by two workers (sender w and receiver w1).257

Given a non-empty queue msg c w w1, the action dequeues the first message (head hd gives258

the message, tail tl the queue’s remainder) and adds it to the receiver’s glob.259

An execution of the clocks protocol is an infinite sequence of configurations. Infinite260

sequences of elements of type 'a are expressed in Isabelle using the coinductive datatype261

(short codatatype) of streams defined as codatatype 'a stream “ Stream 'a p'a streamq.262

We can inspect a stream’s head and tail using the functions shd :: 'a stream ñ 'a and263

stl :: 'a stream ñ 'a stream. Valid protocol executions satisfy the predicate Spec, i.e., they264

start in an initial configuration and all neighboring configurations are related by Next:265

definition Spec :: p'w, 'pq conf stream ñ bool where
Spec s “ now Init s^ alw prelates Nextq s

266

The operators now and relates lift unary and binary predicates over configurations to exe-267

cutions by evaluating them on the first one or two configurations respectively: now P s “268

P pshd sq and relates R s “ R pshd sq pshd pstl sqq. The coinductive operator alw resembles269

a temporal logic operator: alw P s holds if P holds for all suffixes of s.270

coinductive alw :: p'a stream ñ boolq ñ 'a stream ñ bool where
P s ÝÑ alw P pstl sq ÝÑ alw P s

271

We use the operators now, relates, and alw not only to specify valid execution, but also272

ITP 2021



18:8 Verified Progress Tracking for Timely Dataflow

to state the main safety property. Moreover, we use the predicate vacant to express that a273

pointstamp (and all smaller pointstamps) are not present in a signed multiset:274

definition vacant :: 'p zmset ñ 'p ñ bool where vacant M p “ p@p1 ď p. M #z p1 “ 0q275

Safety states that if any worker’s glob becomes vacant up to some pointstamp, then that276

pointstamp and any lesser ones do not exist in the system, i.e., are not present in rec (and will277

remain so). Thus, safety allows workers to learn locally, via glob, something about the system’s278

global state rec, namely that they will never encounter certain pointstamps again. Formally:279

definition Safe :: p'w, 'pq conf stream ñ bool where
Safe s “ p@w p. now pλc. vacant pglob c wq pq s ÝÑ alw pnow pλc. vacant prec cq pq sqq

lemma safe: Spec s ÝÑ alw Safe s

280

Proof Sketch. We prove safety following Abadi et al. [4]. First, we establish three invariants281

by showing that Next preserves them:282

1. rec only contains positive entries283

2. rec is the sum of any worker w’s glob and its incoming information info c w “
ř

w1ptemp c w1`284
ř

MPset pmsg c w1 wq Mq, that is the sum of all workers’ temp and all msg directed towards w285

3. any worker w’s incoming information is upright286

We then show that whenever rec becomes vacant up to some pointstamp p, then it forever stays287

vacant up to p. Thus, we can eliminate the “inner” occurrence of alw from the definition of288

Safe. The remaining property follows by contradiction, i.e., by assuming a non-zero count for289

some pointstamp p in rec, up to which some worker w’s glob is vacant. Invariants 1 and 2 imply290

that w’s incoming information has a positive count for p. Because it is upright by invariant 3,291

w’s incoming information must also contain a smaller pointstamp q ă p with a negative count.292

But w’s glob count for q must be zero (recall that w’s glob is vacant up to p), which together293

with invariant 2 implies that rec has a negative count at q. This contradicts invariant 1. ◀294

Having established safety, we also prove a second important property of glob formalized295

by Abadi et al.: monotonicity. This property states that once glob becomes vacant upto296

some pointstamp p, it will forever stay so:297

definition Mono :: p'w, 'pq conf ñ p'w, 'pq conf ñ bool where
Mono c c1 “ p@w p. vacant pglob c wq p ÝÑ vacant pglob c1 wq pq

lemma mono: Spec s ÝÑ alw prelates Monoq s

298

Establishing glob’s monotonicity is significantly more difficult than proving the same299

property for rec, which we have used in the proof of safety. New positive entries in rec can only300

be introduced in the perf_op transition, where they are guarded by smaller negative changes301

due to the uprightness requirement. In contrast, glob is altered in the recv_upd transition,302

where it is far less clear a priori why this step cannot introduce pointstamps up to which303

glob is vacant. The key idea, again due to Abadi et al., to establish glob’s monotonicity is to304

generalize the notion of uprightness and show that all individual messages from msg satisfy the305

generalized notion. Abadi et al. call the generalized notion beta uprightness. It allows positive306

pointstamp entries from a message M :: 'p zmset to be supported not only by smaller negative307

pointstamp entries in M itself, but also by negative entries in another multiset N :: 'p zmset.308

definition beta_upright :: 'p zmset ñ 'p zmset ñ bool where
beta_upright M N “ p@p. M #z p ą 0 ÝÑ pDp1 ă p. M #z p1 ă 0_ N #z p1 ă 0qq

309
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We do not describe in detail how beta uprightness helps with monotonicity, but the main310

step is to establish the invariant that all messages M from msg are beta upright with respect311

to N being the sum of messages following M in msg and the sender’s temp.312

Overall, we have replicated the formalization of Abadi et al.’s clocks protocol and proofs of313

its safety and the monotonicity of glob, each worker’s approximated view of the system’s point-314

stamps. Their protocol accurately models the implementation of the progress tracking pro-315

tocol’s distributed component in Timely Dataflow’s original implementation Naiad with one316

subtle exception. The Naiad API (OnNotify, SendBy) allows an operator to repeatedly send317

data messages through its output port, which generates pointstamps at the receiver, without318

requiring that a pointstamp on the output port is decremented. This can result in a perf_op319

transition that is not upright.2 Additionally, the modern reference implementation of Timely320

Dataflow in Rust is more expressive than Naiad, and permits multiple operations that result in321

non-upright changes. We address and correct this limitation of the clocks protocol in Section 4.322

One example of an operator that expresses behavior that results in non-upright changes323

is the input operator a in the WCC example. This operator may be reading data from an324

external source, and as soon as it receives new edges, it can forward them with the current325

pointstamp (a.1, (t1,0)). This operator may be invoked multiple times, and perform this326

action repeatedly, until it determines from the external source that it should mark a certain327

timestamp as complete by dropping the pointstamp. All of these intermediate actions that328

send data at (t1,0) are not upright, as sending messages creates new pointstamps on the329

message targets, without dropping a smaller pointstamp that can support the postive change.330

4 Exchanging Progress331

As outlined in the previous section, the clocks protocol is not flexible enough to capture332

executions with non-upright changes, which are desired and supported by concrete imple-333

mentations of Timely Dataflow. At the same time, the protocol captures behaviors that are334

not reasonable in practice. Specifically, the clocks protocol does not separate the worker-local335

state from the system’s global state. The perf_op transition, which is meant to be executed336

by a single worker, uses the global state to check whether the transition is enabled and337

simultaneously updates the global state rec as part of the transition. In particular, a single338

perf_op transition allows a worker to drop a pointstamp that in the real system “belongs”339

to a different worker w and simultaneously consistently updates w’s state. In concrete340

implementations of Timely Dataflow, workers execute perf_op’s asynchronously, and thus341

can only base the transition on information that is locally available to them.342

Our modified model of the protocol, called exchange, resolves both issues. As the first step,343

we split the rec field into worker-local signed multisets caps of pointstamps, which we call344

capabilities as they indicate the possibility for the respective worker to emit these pointstamps.345

Workers may transfer capabilities to other workers. To do so, they asynchronously send346

capabilities as data messages to a central multiset data of pairs of workers (receivers) and347

pointstamps. We arrive at the following updated type of configurations:348

2 We refer here to locations as presented in Section 2. The model in Naiad is slightly different: there is no
notion of ports, and pointstamp locations are either operators or edges. A straightforward translation
of the Naiad model interprets pointstamps on operators as pointstamps on their source port, and
pointstamps on edges become pointstamps on the associated target ports.
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definition recv_cap :: 'w ñ 'p ñ p'w, 'pq conf ñ p'w, 'pq conf ñ bool where
recv_cap w p c c1 “ pw, pq P# data c^

c1 “ cLcaps “ pcaps cqpw :“ caps c w` t#p#uzq, data “ data c´ t#pw, pq#uM
definition perf_op :: 'w ñ 'p mset ñ p'w ˆ 'pq mset ñ 'p mset ñ

p'w, 'pq conf ñ p'w, 'pq conf ñ bool where
perf_op w ∆neg ∆data ∆self c c1 “

p∆data ‰ t#u _∆self ´∆neg ‰ t#uzq ^ p@p. ∆neg # p ď caps c w #z pq ^
p@pw1, pq P# ∆data. Dp1 ă p. caps c w #z p1 ą 0q ^
p@p P# ∆self . Dp1 ď p. caps c w #z p1 ą 0q ^
c1 “ cLcaps “ pcaps cqpw :“ caps c w`∆self ´∆negq, data “ data c`∆data,

temp “ ptemp cqpw :“ temp c w` psnd ‘# ∆data `∆self ´∆negqqM

definition send_upd :: 'w ñ 'p set ñ p'w, 'pq conf ñ p'w, 'pq conf ñ bool where
send_upd w P c c1 “ let γ “ t#p P#z temp c w. p P P#u in
γ ‰ t#uz ^ justified pcaps c wq ptemp c w´ γq ^
c1 “ cLmsg “ pmsg cqpw :“ λw1. msg c w w1 ¨ rγsq, temp “ ptemp cqpw :“ temp c w´ γqM

definition recv_upd :: 'w ñ 'w ñ p'w, 'pq conf ñ p'w, 'pq conf ñ bool where
recv_upd w w1 c c1 “ msg c w w1 ‰ rs ^

c1 “ cLmsg “ pmsg cqpw :“ pmsg c wqpw1 :“ tl pmsg c w w1qqq,

glob “ pglob cqpw1 :“ glob c w1 ` hd pmsg c w w1qqM
definition Next :: p'w, 'pq conf ñ p'w, 'pq conf ñ bool where

Next c c1 “ pc “ c1q _ pDw p. recv_cap w p c c1q _

pDw ∆neg ∆data ∆self . perf_op w ∆neg ∆data ∆self c c1q _

pDw P. send_upd w P c c1q _ pDw w1. recv_upd w w1 c c1q

Figure 4 Transition relation of the exchange protocol

record p'w :: finite, 'p :: orderq conf “
caps :: 'w ñ 'p zmset
data :: p'w ˆ 'pq mset
msg :: 'w ñ 'w ñ 'p zmset list
temp :: 'w ñ 'p zmset
glob :: 'w ñ 'p zmset

349

Including this fine-grained view on pointstamps will allow workers to make transitions based350

on worker-local information. The entirety of the system’s pointstamps, rec, which was351

previously part of the configuration and which the protocol aims to track, can be computed352

as the sum of all the workers’ capabilities and data’s in-flight pointstamps.353

definition rec :: p'w, 'pq conf ñ 'p zmset where rec c “ p
ÿ

w
caps c wq ` snd ‘# data c354

Here, the infix operator ‘# denotes the image of a function over a multiset with resulting355

counts given by p f ‘# Mq# x “
ř

yPtyP#M| f y“xu M # y.356

The exchange protocol’s initial state allows workers to start with some positive capabilities.357

Each worker’s glob must correctly reflect all initially present capabilities.358

definition Init :: p'w, 'pq conf ñ bool where
Init c “ p@w p. caps c w #z p ě 0q ^ data c “ t#u ^
p@w w1. msg c w w1 “ r sq ^ p@w. temp c w “ t#uzq ^ p@w. glob c w “ rec cq

359

The transition relation of the exchange protocol, shown in Figure 4, is similar to that of the360

clocks protocol. We focus on the differences between the two protocols. First, the exchange361
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protocol has an additional transition recv_cap to receive a previously sent capability. The362

transition removes a pointstamp from data and adds it to the receiving worker’s capabilities.363

The perf_op transition resembles its homonymous counterpart from the clocks protocol.364

Yet, the information flow is more fine grained. In particular, the transition is parameterized365

by a worker w and three multisets of pointstamps. As in the clocks protocol, the multiset366

∆neg represents negative changes to pointstamps. Only pointstamps for which w owns a367

capability in caps may be dropped in this way. The other two multisets ∆data and ∆self368

represent positive changes. The multiset ∆data represents positive changes to other workers’369

capabilities—the receiving worker is stored in ∆data. These changes are not immediately370

applied to the other worker’s caps, but are sent via the data field. The multiset ∆self371

represents positive changes to w’s capabilities, which are applied immediately applied to372

w’s caps. The separation between ∆data and ∆self is motivated by different requirements373

on these positive changes to pointstamps that we prove to be sufficient for safety. To send374

a positive capability to another worker, w is required to hold a positive capability for a375

strictly smaller pointstamp. In contrast, w can create a new capability for itself, if it is376

already holding a capability for the very same (or a smaller) pointstamp. In other words,377

w can arbitrarily increase the multiset counts of its own capabilities. Note that, unlike in the378

clocks protocol, there is no requirement of uprightness and, in fact, workers are not required379

to perform negative changes at all. Of course, it is useful for workers to perform negative380

changes every now and then so that the overall system can make progress.381

The first condition in perf_op, namely ∆data ‰ t#u _∆self ´∆neg ‰ t#uz, ensures that382

the transition changes the configuration. In the exchange protocol, we also include explicit383

stutter steps in the Next relation (c “ c1) but avoid them in the individual transitions.384

Sending (send_upd) and receiving (recv_upd) progress updates works precisely as in the385

clocks protocol except for the condition on what remains in the sender’s temp highlighted386

in gray in Figure 4. Because we allowed perf_op to perform non-upright changes, we can387

no longer expect the contents of temp to be upright. Instead, we use the predicate justified,388

which offers three possible justifications for positive entries in the signed multiset M (in389

contrast to upright’s sole justification of being supported in M):390

definition justified :: 'p zmset ñ 'p zmset ñ bool where
justified C M “ p@p. M#z p ą 0 ÝÑ supp M p_pDp1 ă p. C#z p1 ą 0q_M#z p ă C#z pq

391

Thus, a positive count for pointstamp p in M may be either392

supported in M, i.e., in particular every upright change is justified, or393

justified by a smaller pointstamp in C, which we think of as the sender’s capabilities, or394

justified by p in C, with the requirement that p’s count in M is smaller than p’s count in C.395

The definitions of valid executions Spec and the safety predicate Safe are unchanged com-396

pared to the clocks protocol. Also, we prove precisely the same safety property safe following a397

similar proof structure. The main difference is that uprightness invariant 3 is replaced by the398

statement that every worker’s incoming information is justified with respect to pointstamps399

present in rec, i.e. @w. justified prec cq pinfo c wq. It is more tedious to reason about point-400

stamps being justified compared with being upright due to the three-way case distinction that401

is usually necessary. These case distinctions occur when establishing the above invariant, but402

also in the contradiction proof establishing safety. The contradiction proof proceeds as before403

by assuming a non-zero count for some pointstamp p in rec, up to which some worker w’s glob is404

vacant. Crucially, p is now additionally and without loss of generality assumed to be a minimal405

pointstamp with this property. By invariants 1 and 2, we deduce that w’s incoming informa-406

tion has a positive count for p. Because it is justified by the new invariant 3, we perform the407
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locale graph “
fixes weights :: p'vtx :: finiteq ñ 'vtx ñ p'lbl :: torder , monoid_adduq antichain
assumes pl :: 'lblq ě 0 and pl1 :: 'lblq ď l3 ÝÑ l2 ď l4 ÝÑ l1 ` l2 ď l3 ` l4
and weights l l “ tu

locale dataflow “ graph summary
for summary :: p'l :: finiteq ñ 'l ñ p'sum :: torder , monoid_adduq antichain `
fixes h :: p't :: orderq ñ 'sum ñ 't
assumes th 0 “ t and pth sqh s1 “ thps` s1q and t ď t1 ÝÑ s ď s1 ÝÑ th s ď t1h s1

and path l l xs ÝÑ xs ‰ r s ÝÑ t ă t h p
ÿ

xsq

Figure 5 Locales for graphs and dataflows

case distinction on the justification. If p is supported in w’s incoming information, we proceed408

as in the clocks protocol. If p is justified by a positive count for a strictly smaller pointstamp409

in rec, we obtain a contradiction to p’s minimality. Finally, if p’s multiplicity in w’s incoming410

information is strictly smaller than p’s multiplicity in rec, invariant 2 tells us that p must411

have a positive count in glob, which contradicts the assumption of glob being vacant up to p.412

We prove glob’s monotonicity for the exchange protocol, too. The proof resembles the413

one for the clocks protocol; it requires a generalization of justified, called justified_with, to414

account for positive entries in every in-flight progress message M. The generalization has the415

same three disjuncts as justified, but relaxes the first and third disjunct to take into account416

an additional multiset N of justifying pointstamps. Usages of justified_with instantiate N417

with the sum of messages following M in msg and the sender’s temp.418

definition justified_with :: 'p zmset ñ 'p zmset ñ 'p zmset ñ bool where
justified_with C M N “ p@p. M #z p ą 0 ÝÑ
pDp1 ă p. M #z p1 ă 0_N #z p1 ă 0q_pDp1 ă p. C #z p1 ą 0q_pM ` Nq#z p ă C #z pq

419

We also derive the following additional property of glob, which shows that any in-flight420

progress updates to a pointstamp p, positive or negative, have a corresponding positive421

count for some pointstamp less or equal than p in the receiver’s glob. We will use this422

property when combining in Section 6 the exchange protocol with the worker-local progress423

propagation, which we cover next in Section 5.424

lemma glob: Spec s ÝÑ alw pnow pλc. @w w1 p.
pDM P set pmsg c w w1q. p P#z Mq ÝÑ pDp1 ď p. glob c w1 #z p1 ą 0qqq s

425

5 Locally Propagating Progress426

The previous sections focused on the progress-relevant communication between workers and427

abstracted over the actual dataflow that is evaluated by each worker. Next, we refine this428

abstraction: we model the actual dataflow graph as a weighted directed graph with vertices429

representing operator input and output ports, termed locations. We do not distinguish430

between source and target locations and thus also not between internal and dataflow edges.431

Each weight denotes a minimum increment that is performed to a timestamp when it con-432

ceptually travels along the corresponding edge from one location to another. On a single433

worker, progress updates can be communicated locally, so that every operator learns which434

timestamps it may still receive in the future. We formalize Timely Dataflow’s approach for435

this local communication: the algorithm gradually propagates learned pointstamp changes436

along dataflow edges to update downstream frontiers.437
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Figure 5 details our modeling of graphs and dataflows, which uses locales [5] to capture438

our abstract assumptions on dataflows and timestamps. A locale lets us fix parameters (types439

and constants) and assume properties about them. In our setting, a weighted directed graph440

is given by a finite (class finite) type 'vtx of vertices and a weights function that assigns each441

pair of vertices a weight. To express weights, we fix a type of labels 'lbl, which we assume to442

be partially ordered (class order) and to form a monoid (class monoid_add) with the monoid443

operation ` and the neutral element 0. We assume that labels are non-negative and that444

` on labels is monotone with respect to the partial order ď. A weight is then an antichain445

of labels, that is a set of incomparable (with respect to ď) labels, which we model as follows:446

typedef p't :: orderq antichain “ tA :: 't set. finite A^ p@a P A. @b P A. a ­ă b^ b ­ă aqu447

We use standard set notation for antichains and omit type conversions from antichains to448

(signed) multisets. The empty antichain tu is a valid weight, too, in which case we think449

of the involved vertices as not being connected to each other. Thus, the graph locale’s final450

assumption expresses the non-existence of self-edges in a graph.451

Within the graph locale, we can define the predicate path :: 'vtx ñ 'vtx ñ 'lbl list ñ bool.452

Intuitively, path v w xs expresses that the list of labels xs is a valid path from v to w (the453

empty list being a valid path only if v “ w and any weight l P weights u v can extend a valid454

path from v to w to a path from u to w). We omit path’s formal straightforward inductive455

definition. Note that even though self-edges are disallowed, cycles in graphs are possible456

(and desired). In other words, path v v xs can be true for a non-empty list xs.457

The second locale, dataflow, has two purposes. First, it refines the generic graph termino-458

logy from vertices and labels to locations ('l) and summaries ('sum), which is the correspond-459

ing terminology used in Timely Dataflow. Second, it introduces the type for timestamps 't,460

which is partially ordered (class order) and an operation h (read as “results in”) that applies461

a summary to a timestamp to obtain a new timestamp. We chose the asymmetric symbol for462

the operation to remind the reader that its two arguments have different types, timestamps463

and summaries. The locale requires the operation h to be well-behaved with respect to the464

available vocabulary on summaries (0, `, and ď). Moreover, it requires that proper cycles xs465

have a path summary
ř

xs (defined by iterating `) that strictly increments any timestamp t.466

Now, consider a function P :: 'l ñ 't zmset that assigns each location a set of timestamps467

that it currently holds. We are interested in computing a lower bound of timestamps (with468

respect to the order ď) that may arrive at any location for a given P. Timely Dataflow calls469

antichains that constitute such a lower bound frontiers. Formally, a frontier is the set of470

minimal incomparable elements that have a positive count in a signed multiset of timestamps.471

definition antichain_of :: 't set ñ 't set where antichain_of A “ tx P A. ␣Dy P A. y ă xu472

lift_definition frontier :: 't zmset ñ 't antichain is λM. antichain_of tt. M #z t ą 0u473

Our frontier of interest, called the implied frontier, at location l can be computed directly474

for a given function P by adding, for every location l 1, every (minimal) possible path summary475

between l 1 and l, denoted by the antichain path_summary l 1 l, to every timestamp present at476

l 1 and computing the frontier of the result. Formally, we first lift h to signed multisets and477

antichains. Then, we use the lifted operator
È

to define the implied frontier.478

definition
è

:: 't zmset ñ 'sum antichain ñ 't zmset where
M

è

A “
ÿ

sPA
pλt. t h sq ‘#z M

479

definition implied_frontier :: p'l ñ 't zmsetq ñ 'l ñ 't antichain where
implied_frontier P l “ frontier p

ÿ

l1
pposz pP l1q

è

path_summary l1 lqq
480
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definition change_multiplicity :: 'l ñ 't ñ int ñ p'l , 'tq conf ñ p'l , 'tq conf ñ bool where
change_multiplicity l t n c c1 “ n ‰ 0^ pDt1 P frontier pimplications c lq. t1 ď tq ^

c1 “ cLpts “ ppts cqpl :“ pts c l ` replicate n tq,
work “ pwork cqpl :“ work c l ` frontier ppts c1 lq ´ frontier ppts c lqqM

definition propagate :: 'l ñ 't ñ p'l , 'tq conf ñ p'l , 'tq conf ñ bool where
propagate l t c c1 “ t P#z work c l ^ p@l 1. @t1 P#z work c l 1. ␣t1 ă tq ^

c1 “ cLimp “ pimp cqpl :“ imp c l ` replicate pwork c l #z tq t,
work “ λl 1. if l “ l 1 then t#t1 P#z work c l . t1 ‰ t#u

else work c l 1 ` ppfrontier pimp c1 lq ´ frontier pimp c lqq
è

summary l l 1qM

definition Next :: p'l , 'tq conf ñ p'l , 'tq conf ñ bool where
Next c c1 “ pc “ c1q _ pDl t n. change_multiplicity l t n c c1q _ pDl t. propagate l t c c1q

Figure 6 Transition relation of the local progress propagation

Above and elsewhere, given a signed multiset M, we write f ‘#z M for the image (as a signed481

multiset) of f over M and posz M for the signed multiset of M’s positive entries.482

Computing the implied frontier for each location in this way (quadratic in the number of483

locations) would be too inefficient, especially because we want to frequently supply operators484

with up-to-date progress information. Instead, we follow the optimized approach implemented485

in Timely Dataflow: after performing some work and making some progress, operators start486

pushing relevant updates only to their immediate successors in the dataflow graph. The487

information gradually propagates and eventually converges to the implied frontier. Despite488

this local propagation not being a distributed protocol as such, we formalize it for a fixed489

dataflow in a similar state-machine style as the earlier exchange protocol.490

Local propagation uses a configuration consisting of three signed multiset components.491

record p'l :: finite, 't :: tmonoid_add , orderuq conf “
pts :: 'l ñ 't zmset
imp :: 'l ñ 't zmset
work :: 'l ñ 't zmset

492

Following Timely Dataflow terminology, pointstamps pts are the present timestamps grouped493

by location (the P function from above). The implications imp are the output of the local494

propagation and contain an over-approximation of the implied frontier (as we will show). Fi-495

nally, the worklist work is an auxiliary data structure to store not-yet propagated timestamps.496

Initially, all implications are empty and worklists consist of the frontiers of the pointstamps.497

definition Init :: p'l , 'tq conf ñ bool where
Init c “ p@l . imp c l “ t#uz ^ work c l “ frontier ppts c lqq

498

The propagation proceeds by executing one of two actions shown in Figure 6. The action499

change_multiplicity constitutes the algorithm’s information input: The system may have500

changed the multiplicity of some timestamp t at location l and can use this action to notify501

the propagation algorithm of the change. The change value n is required to be non-zero and502

the affected timestamp t must be witnessed by some timestamp in the implications. Note503

that the latter requirement prohibits executing this action in the initial state. The action504

updates the pointstamps according to the declared change. It also updates the worklist,505

but only if the update of the pointstamps affects the frontier of the pointstamps at l and506

moreover the worklists are updated merely by the change to the frontier.507

The second action, propagate, applies the information for the timestamp t stored in the508

worklist at a given location l, to the location’s implications (thus potentially enabling the first509
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action). It also updates the worklists at the location’s immediate successors in the dataflow510

graph. Again the worklist updates are filtered by whether they affect the frontier (of the511

implications) and are adjusted by the summary between l and each successor. Importantly,512

only minimal timestamps (with respect to timestamps in worklists at all locations) may be513

propagated, which ensures that any timestamp will eventually disappear from all worklists.514

The overall transition relation Next allows us to choose between these two actions and a515

stutter step. Together with Init, it gives rise to the predicate describing valid executions in516

the standard way: Spec s “ now Init s^ alw prelates Nextq s.517

We show that valid executions satisfy a safety invariant. Ideally, we would like to show that518

for any t with a positive count in pts at location l and for any path summary s between l and519

some location l1, there is a timestamp in the (frontier of the) implications at l1 that is less than520

or equal to th s. In other words, the location l1 is aware that it may still encounter timestamp521

t h s. Stated as above, the invariant does not hold, due to the not-yet-propagated progress522

information stored in the worklists. If some timestamp, however, does not occur in any worklist523

(formalized by the below work_vacant predicate), we obtain our desired invariant Safe.524

definition work_vacant :: p'l , 'tq conf ñ 't ñ bool where
work_vacant c t “ p@l l1 s t1. t1 P#z work c l ÝÑ s P path_summary l l1 ÝÑ t1 h s ę tq

525

definition Safe :: p'l , 'tq conf stream ñ bool where
Safe c “ p@l l1 t s. pts c l #z t ą 0^ s P path_summary l l1 ^ work_vacant c pt h sq ÝÑ
pDt1 P frontier pimp c l1q. t1 ď t h sqq

526

lemma safe: Spec s ÝÑ alw pnow Safeq s527

In our running WCC example, Safe is for example necessary to determine once operator b528

has received all incoming updates for a certain round of label propagation, which is encoded529

as a timestamp (t1,t2). If a pointstamp at port b.3 was not correctly reflected in the frontier530

at b.1 the operator may incorrectly determine that it has seen all incoming labels for a531

certain graph node and proceed to the next round of propagation. Safe states, that this532

cannot happen and all pointstamps are correctly reflected in relevant downstream frontiers.533

The safety proof relies on two auxiliary invariants. First, implications have only positive534

entries. Second, the sum of the implication and the worklist at a given location l is equal to the535

sum of the frontier of the pointstamps at l and the sum of all frontiers of the implications of536

all immediate predecessor locations l1 (adjusted by the corresponding summary summary l1 l).537

While the above safety property is sufficient to prove safety of the combination of the538

local propagation and the exchange protocol in the next section, we also establish that the539

computed frontier of the implications converges to the implied frontier. Specifically, the two540

frontiers coincide for timestamps which are not contained in any of the worklists.541

lemma implied_frontier: Spec s ÝÑ alw pnow pλc. work_vacant c t ÝÑ
p@l. t P frontier pimp c lq ÐÑ t P implied_frontier ppts cq lqqq s

542

6 Progress Tracking543

We are now ready to combine the two parts presented so far: the between-worker exchange544

of progress updates (Section 4) and the worker-local progress propagation (Section 5). The545

combined protocol takes pointstamp changes and determines per-location frontiers at each546

operator on each worker. It operates on configurations consisting of a single exchange protocol547

configuration (referred to with the prefix E) and for each worker a local propagation configura-548

tion (prefix P) and a Boolean flag indicating whether the worker has been properly initialized.549
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definition recv_cap :: 'w ñ 'l ˆ 't ñ p'w, 'l , 'tq conf ñ p'w, 'l , 'tq conf ñ bool where
recv_cap w p c c1 “ E.recv_cap w p pexch cq pexch c1q ^ prop c1 “ prop c^ init c1 “ init c

definition perf_op :: 'w ñ p'l ˆ 'tq mset ñ p'w ˆ p'l ˆ 'tqq mset ñ p'l ˆ 'tq mset ñ
p'w, 'l , 'tq conf ñ p'w, 'l , 'tq conf ñ bool where

perf_op w ∆neg ∆data ∆self c c1 “ E.perf_op w ∆neg ∆data ∆self pexch cq pexch c1q ^

prop c1 “ prop c^ init c1 “ init c

definition send_upd :: 'w ñ p'l ˆ 'tq set ñ p'w, 'l , 'tq conf ñ p'w, 'l , 'tq conf ñ bool where
send_upd w P c c1 “ E.send_upd pexch cq pexch c1q w P^ prop c1 “ prop c^ init c1 “ init c

definition cm_all :: p'l , 'tq P .conf ñ p'l ˆ 'tq zmset ñ p'l , 'tq P .conf where
cm_all c ∆ “ Set.fold pλpl, tq c. SOME c1. P.change_multiplicity c c1 l t p∆ #z pl, tqqq c
tpl, tq. pl, tq P#z ∆u

definition recv_upd :: 'w ñ 'w ñ p'w, 'l , 'tq conf ñ p'w, 'l , 'tq conf ñ bool where
recv_upd w w1 c c1 “ init c w1 ^ E.recv_upd w t pexch cq pexch c1q ^

prop c1 “ pprop cqpw1 :“ cm_all pprop c w1q phd pE.msg pexch cqqqq ^ init c1 “ init c

definition propagate :: 'w ñ p'w, 'l , 'tq conf ñ p'w, 'l , 'tq conf ñ bool where
propagate w c c1 “ exch c1 “ exch c^ init c1 “ pinit cqpw :“ Trueq ^
pSome ˝ prop c1q “ pSome ˝ prop cqpw :“ while_option
pλc. Dl. P.work c l ‰ t#uzq pλc. SOME c1. Dl t. P.propagate l t c c1q pprop c wqq

definition Next :: p'w, 'l , 'tq conf ñ p'w, 'l , 'tq conf ñ bool where
Next c c1 “ pc “ c1q _ pDw p. recv_cap w p c c1q _

pDw ∆neg ∆data ∆self . perf_op w ∆neg ∆data ∆self c c1q _

pDw P. send_upd w P c c1q _ pDw w1. recv_upd w w1 c c1q _ pDw. propagate w c c1q

Figure 7 Transition relation of the combined progress tracker

record p'w :: finite, 'l :: finite, 't :: tmonoid_add , orderuq conf “
exch :: p'w, 'l ˆ 'tq E .conf
prop :: 'w ñ p'l , 'tq P .conf
init :: 'w ñ bool

550

As pointstamps in the exchange protocol, we use pairs of locations and timestamps. To order551

pointstamps, we use the following could-result-in relation, inspired by Abadi and Isard [3].552

definition ďcri where pl, tq ďcri pl1, t1q “ pDs P path_summary l l1. t h s ď t1q553

As required by the exchange protocol, this definition yields a partial order. In particular,554

antisymmetry follows from the assumption that proper cycles have a non-zero summary and555

transitivity relies on the operation h being monotone. Intuitively, ďcri captures a notion of556

reachability in the dataflow graph: as timestamp t traverses the graph starting at location l, it557

could arrive at location l1, being incremented to timestamp t1. (In Timely Dataflow, an edge’s558

summary represents the minimal increment to a timestamp when it traverses that edge.)559

In an initial combined configuration, all workers are not initialized and all involved560

configurations are initial. Moreover, the local propagation’s pointstamps coincide with561

exchange protocol’s glob, which is kept invariant in the combined protocol.562

definition Init :: p'w, 'l , 'tq conf ñ bool where
Init c “ p@w. init c w “ Falseq ^ E.Init pexch cq ^ p@w. P.Init pprop c wqq ^

p@w l t. P.pts pprop c wq l #z t “ E.glob pexch cq w #z pl, tqq

563

Figure 7 shows the combined protocol’s transition relation Next. Most actions have564

identical names as the exchange protocol’s actions and they mostly perform the correspond-565

ing actions on the exchange part of the configuration. In addition, the recv_upd action566
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also performs several change_multiplicity local propagation actions: the receiver updates567

the state of its local propagation configuration for all received timestamp updates. The568

action propagate does not have a counterpart in the exchange protocol. It iterates, using569

the while_option combinator from Isabelle’s library, propagation on a single worker until all570

worklists are empty. The term while_option b c s repeatedly applies c starting from the initial571

state s, until the predicate b is satisfied. Overall, it evaluates to Some s1 satisfying ␣b s1 and572

s1 “ c p¨ ¨ ¨ pc sqq with the least possible number of repetitions of c and to None if no such573

state exists. Thus, it is only possible to take the propagate action, if the repeated propagation574

terminates for the considered configuration. We believe that repeated propagation terminates575

for any configuration, but we do not prove this non-obvious3 fact formally. Timely Dataflow576

also iterates propagation until all worklists of a worker become empty. This gives us additional577

empirical evidence that the iteration terminates on practical dataflows. Moreover, even578

if the iteration were to not terminate for some worker on some dataflow (both in Timely579

Dataflow and in our model), our combined protocol can faithfully capture this behavior by580

not executing the propagate action, but also not any other action involving the looping worker,581

thus retaining safety for the rest of the workers. Finally, any worker that has completed at582

least one propagation action is considered to be initialized (by setting its init flag to True).583

The Init predicate and the Next relation give rise to the familiar specification of valid584

executions Spec s “ now Init s^ alw prelates Nextq s. Safety of the combined protocol can be585

described informally as follows: Every initialized worker w has some evidence for the existence586

of a timestamp t at location l at any worker w1 in the frontier of its (i.e., w’s) implications at all587

locations l1 reachable from l. Formally, E.rec contains the timestamps that exist in the system:588

definition Safe :: p'w, 'l , 'tq conf stream ñ bool where
Safe c “ p@w l l1 t s. init c w^ E.rec pexch cq#z pl, tq ą 0^ s P path_summary l l1 ÝÑ

pDt1 P frontier pP.imp pprop c wq l1q. t1 ď t h sq

589

Our main formalized result is the statement that the above predicate is an invariant.590

lemma safe: Spec s ÝÑ alw pnow Safeq s591

The proof proceeds by lifting (and then combining) the safety statements and some auxiliary592

invariants of the exchange protocol and the local propagation to the combined execution.593

The lifting step is feasible, because we included stutter steps in the modeling of these594

components. In particular, the projection of a valid execution to the exchange configurations595

results in a valid execution of the exchange protocol: the propagate step constitutes a stutter596

step for the exchange configuration. In contrast, the projection to the local propagation597

configuration does not result in a valid execution of the local propagation, but in an execution598

that takes steps according to the reflexive transitive closure of the local propagation’s599

transition relation P.Next: the steps propagate and recv_upd can take an arbitrary number600

of local propagation steps (whereas other transitions stutter from the point of view of local601

propagation). Fortunately, safety properties are easy to lift to such “big-step” executions.602

In the combined progress tracking protocol, safety guarantees that if a pointstamp is603

present at an operator’s port, it is correctly reflected at every downstream port. In the604

WCC example, when deployed on two workers, each operator is instantiated twice, once on605

3 Because propagation must operate on a globally minimal timestamp and because loops in the dataflow
graph have a non-zero summary, repeated propagation will eventually forever remove any timestamp
from any worklist. However, it is not as obvious why it eventually will stop introducing larger and
larger timestamps in worklists. The termination argument must rely on the fact that only timestamps
that modify the frontier of the implications are ever added to worklists.
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each worker. If a pointstamp (b.3, (3,0)) is present on port b.3 of one of the instances of606

operator b, the frontier at c.1 on all workers must contain a t such that t ⪯ p3, 0q. Due to the607

summary between c.1 and c.2, frontiers at c.2 and b.1 must contain a t such that t ⪯ p3, 1q.608

As an example, this ensures that operator b waits for each of its instances to complete the609

first round propagation of all labels before it chooses the lowest label for the next round.610

7 Discussion611

We have presented an Isabelle/HOL formalization of Timely Dataflow’s progress tracking612

protocol, including the verification of its safety. Compared to an earlier formalization by613

Abadi et al. [4], our protocol is both more general, which allows it to capture behaviors614

present in the implementations of Timely Dataflow and absent in Abadi et al.’s model, and615

more detailed in that it explicitly models the local propagation of progress information.616

Our formalization spans about 7 000 lines of Isabelle definitions and proofs. These are617

roughly distributed as follows over the components we presented: basic properties of graphs618

and signed multisets (1 000), exchange protocol (3 100), local propagation (1 700), combined619

protocol (1 200). This is comparable in size to the TLA+ Proof System formalization by Abadi620

et al., even though we formalized a significantly more detailed, complex, and realistic variant of621

the progress tracking protocol. Ground to this claim is the fact that we had actually started our622

formalization by porting significant parts of the TLA+ Proof System formalization to Isabelle.623

We completed the proofs of their two main safety statement within one person-week in about624

1 000 lines of Isabelle (not included above). Our use of Isabelle’s library for linear temporal625

logic on streams (in particular, the coinductive predicate alw) allowed us to copy directly a vast626

majority of the TLA+ definitions. Additionally, Isabelle’s mature proof automation allowed us627

to apply a fairly mechanical porting process to many of the proofs. Most ported lemmas could628

be proved either directly by Sledgehammer [28] or by sketching an Isar [31] proof skeleton629

of the main proof steps and discharging most of the resulting subgoals with Sledgehammer.630

In the subsequent development of the combined protocol, Isabelle’s locales [5] were an631

important asset. By confining the exchange protocol and the local propagation each to their632

own local assumptions, we were able to develop them in parallel and in their full generality.633

Thus, we obtain formal models not only of the combined protocol itself but also of these two634

subsystems in a generality that goes beyond what is needed for the concrete combined instance.635

For example, although the combined protocol uses the could-result-in order, the exchange636

protocol works for any partial order on pointstamps. Moreover, the combined protocol always637

propagates until all worklists are empty, even though the local propagation’s safety supports638

small-step propagation, resulting in a more fine-grained safety property via work_vacant.639

In our formalization, we make extensive use of signed multisets [8]. The alternative (used in640

the TLA+ Proof System formalization), would be to use integer-valued functions instead. The641

signed multiset type additionally captures a finite domain assumption, which it was convenient642

not to carry around explicitly and in particular simplified reasoning about summations. The643

expected downside of having separate types for function-like (mset) and set-like (antichain)644

objects was the need to insert explicit type conversions and to transfer properties across these645

conversions. Both complications were to some extent alleviated by Lifting and Transfer [18].646

Progress tracking is only a small, albeit arguably the most intricate part of Timely Data-647

flow. Verifying its safety is an important first step towards our long-term goal of developing a648

verified, executable variant of Timely Dataflow and using it as a framework for the verification649

of efficient and scalable stream processing algorithms. More modest next steps are to prove650

the local propagation algorithm’s termination and to make our formalization executable. We651



M. Brun and S. Decova and A. Lattuada and D. Traytel 18:19

have made first steps towards the latter goal, by creating a functional, executable variant652

of the local propagation’s transition relation [11]. This allowed us to compare our formalized653

propagation algorithm to the one implemented in Rust. We found that their input–output654

behavior coincides on all example dataflows accompanying the Rust implementation, con-655

firming our model’s faithfulness. We are working on including the exchange protocol in this656

comparative testing, which poses a challenge because of the protocol’s distributed nature.657
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