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1 Introduction
The goal of this document is to summarize the equations of dynamics of a brush-
less motor. Specifically, we are here looking at so-called PMSM (permanent
magnet synchronous machine) - basically a brushless motor without cogging,
i.e. with sinusoidal back-EMF.

These equations are derived from the following PhD thesis and books:
- [1] Nicolas Henwood, Estimation en ligne de paramètres de machines élec-

triques pour véhicule en vue d’un suivi de la température de ses composants
- [2] L. Chédot, Contribution à l’étude des machines synchrones à aimants

permanents internes à large espace de fonctionnement. Application à l’alterno-
démarreur

- [3] J. Chiasson. Modeling and High-Performance Control of Electric Ma-
chines. IEEE Press, 2005.

We use slightly different variables at some times, as will be outlined in what
follows.
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2 Model equations

2.1 Fundamental equations
We consider a star-shaped 3 phase brushless motor, with sinusoidal back-EMF.
This motor is intrinsically characterized by only 4 fundamental constants:

• n, the number of poles ; we denote np , n
2 the number of pole pairs.

• R, the per-phase resistance

• L, the per-phase inductance

• φ, the rotor magnetic flux generated by the np pole pairs - or equivalently,

the back-EMF constant ke ,
√

2
3 (see [3, p.452]). Because we will be

working with current-invariant Clarke-Park transforms, we will use ke over
φ.

Two other extrinsic limitations are present in a given setup:

• Ubat, a maximum voltage, due to power supply’s voltage

• Im, a maximum RMS current: this current comes from thermal or power
limitations.

We denote θ the mechanical angle of the motor, θe , θ
np

is the electrical

angle. Let ω , θ̇.
Using Faraday’s law of induction, the voltage across each phase writes:

Ua = Ria + L
d

dt
ia − keω sin θe

Ub = Rib + L
d

dt
ib − keω sin(θe −

2π

3
)

Uc = Ric + L
d

dt
ic − keω sin(θe +

2π

3
)

(1)

Notice that ke already takes into account the number of poles (i.e. there is
no np term in front). The

√
3/2 factor is explained in [8, p.452]

Note furthermore that this equation (with sinusoidal back-EMF) implies that
the motor has no saliency, i.e. no cogging: this simplifies a bit the equations
found in these theses, as Ld = Lq.

2.2 From fixed to rotation frame: the Clark-Park
The second Kirchhoff law states that ia = ib = ic: thus, a PMSM is described
by only two equations. Furthermore, a steady-state formulation can be obtained
when working in the rotating frame, attached to the rotor: this is expressed by
the Clarke and Park transform.

Note that, unlike Nicolas Henwood, we use current-invariant Clarke-Park
transform, and not power-invariant. This is because motor controllers like
Ingenia or Elmo use this current-invariant form ; this however introduces a
scaling effect in the formulas.
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The direct, current-invariant transform, thus defines a quadrature and direct
current as:

(
iq
iq

)
=

2

3

(
cos θe sin θe
− sin θe cos θe

)(
1 −1

2 − 1
2

0
√
3
2 −

√
3
2

)iaib
ic

 (2)

One can easily show that, when id = 0, in sinusoidal regime the amplitude
of iq and ia,b,c is the same, hence the name of current-invariant transform.
Conversely, for power computation we have:

i2a + i2b + i2c =
3

2
(i2q + i2d) (3)

The inverse transform conversely writes:iaib
ic

 =
3

2


2
3 0

− 1
3

√
3
3

− 1
3 −

√
3
3

(cos θ − sin θ
sin θ cos θ

)(
id
iq

)
(4)

The same transform can be applied to the voltages as well, to define a direct
and quadrature voltage:

(
uq
uq

)
=

2

3

(
cos θe sin θe
− sin θe cos θe

)(
1 −1

2 − 1
2

0
√
3
2 −

√
3
2

)UaUb
Uc

 (5)

2.3 Torque Equation
To compute the torque, [8, p.454] performs a direct computation of the Lorenz
force applied by the rotor onto the coils, to obtain the following relationship:

τ =

√
3

2
keiq (6)

2.4 Obtaining the electric differential equation
To obtain a minimal representation of the system’s dynamics, the idea is to use
the Clarke-Park transform on the phase dynamics (1).

The derivative of (2) yields

d

dt

(
iq
iq

)
= npω

(
iq
−id

)
+

2

3

(
cos θe sin θe
− sin θe cos θe

)(
1 −1

2 − 1
2

0
√
3
2 −

√
3
2

)
d

dt

iaib
ic

 (7)

Then multiplying by L using (1) we get

L
d

dt

(
iq
iq

)
= npLω

(
iq
−id

)
+

2

3

(
cos θe sin θe
− sin θe cos θe

)(
1 −1

2 − 1
2

0
√
3
2 −

√
3
2

) Ua −Ria + keω sin θe
Ub −Rib + keω sin(θe − 2π

3 )
Uc −Ric + keω sin(θe +

2π
3 )


= npLω

(
iq
−id

)
+

(
uq
ud

)
−R

(
iq
id

)
+ keω

(
0
−1

)
(8)
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2.5 Electrical bounds
We now need to take into account the fact that current and voltage are both
limited.

For the current, the relationship is simple: from (3) we get the following
inequality

i2q + i2d ≤ 2Im (9)

Concerning the voltage, the limit arises from the fact that, at any given time,
the phase-to-phase voltage must be less than the input battery voltage U . This
writes:

|Ua − Ub| ≤ Ubat
|Ua − Uc| ≤ Ubat
|Ub − Uc| ≤ Ubat

(10)

Using the inverse Park-Clarke transform (4), this yields:
√
3| cos θeuq + sin θeud| ≤ Ubat

√
3| cos(θe +

2π

3
)uq + sin(θe +

2π

3
)ud| ≤ Ubat

√
3| cos(θe −

2π

3
)uq + sin(θe −

2π

3
)ud| ≤ Ubat

(11)

We thus obtain inequalities that depend on θ. A sufficient condition is
thus for this inequality to work for every θe. Computing the maximum of this
function over θe, we get the following inequality

u2q + u2d ≤
U2
bat

3
(12)

2.6 Summary
To sum up, a PMSM, seen as a torque source, is described by

• Two differential equations describing the evolution of the electrical states

• An algebraic equation giving the torque as a function of the current

• Two inequalities for the current and voltage limit.

This model thus writes
L
did
dt

= −Rid + npωLiq + ud

L
diq
dt

= −Riq − ω(npLid + ke) + uq

τ =
3

2
keiq

with:


i2q + i2d ≤ 2Im

2

u2q + u2d ≤
U2
bat

3

(13)
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3 Model analysis
Having derived the equations of the PMSM, we now analyze them to understand
the motor’s behavior, characteristics and limits.

More precisely, we consider a motor with a gearbox of ratio ρ, and redefine
τ and ω as the output (articular) parameters, such that (13) becomes

L
did
dt

= −Rid + npρωLiq + ud

L
diq
dt

= −Riq − ρω(npLid + ke) + uq

τ =
3

2
ρkeiq

with:


i2q + i2d ≤ 2Im

2

u2q + u2d ≤
U2
bat

3

(14)

3.1 Directly derived constants
Here, we compute a bunch of simple constants, which are often present in motor
datasheet, and give some information about the motor’s behavior:

• Back EMF constant, phase to phase: this constant is useful as it
directly gives the no-load maximum speed:

kppe ,
√
3ke

V

rad/s
(15)

• Maximum (no load) speed (articular): more details is given in Sec-
tion 3.2

ωnl ,
Ubat
ρkppe

=
Ubat√
3ρke

rad/s (16)

• Torque constant (articular): proportionality ratio between quadrature
current and torque:

kqt ,
3

2
ρke

Nm

A
(??) (17)

• Motor constant(articular): this indicates how much heat is dissipated
for a given torque: indeed, the thermal power is Pth = R(i2a + i2b + i2c) ,
1
K2

m
τ - this yields

Km ,

√
2

3

kqt√
R

=

√
3

2

ρke√
R

Nm√
W

(18)

• Maximum torque (articular):

τm ,
ktq√
2
Im =

3

2
√
2
ρkeIm Nm (19)

• Defluxing ratio: in French réaction d’induit, this ratio is an approxima-
tion of how much the speed can be increased by defluxing.

rdflux ,
npLIm√

2ke
(20)

5



3.2 Maximum speed and defluxing
The motor speed is limited by the input voltage: indeed, induction forces and
resistive loss limit the voltage at high velocity and high torque.

To obtain the limit velocity, the idea is to neglect the L d
dt term in (14),

to obtain the point where, at constant torque, the motor may operate. L is
indeed very small ; more importantly, we are here talking about the quadrature
current, not the phase current (which oscillates rapidly).

Under this condition, ud and uq are algebraically given as a function of the
current:

ud = Rid − npρωLiq
uq = Riq + ρω(npLid + ke)

(21)

3.2.1 Maximum speed when not defluxing

When no defluxing is in effect, id = 0. Then the voltage inequality in (14)
translate into:

(npρωLiq)
2 + (Riq + ρωke)

2 ≤ U2
bat

3
(22)

We thus obtain a second-order polynomial: aω2 + bω + c = 0, with

a = ρ2((npLiq)
2 + k2e) b = 2ρRkeiq c = (Riq)

2 − U2
bat

3
(23)

This polynomial typically has two real roots. One of them is negative, and
has little practical interest: it corresponds to the moment where, in generator
mode, the phase voltage is equal to the battery voltage, while the motor is
braking at maximum torque. This will never happen - unless an excessively
large load is able to so thoroughly over-power the motor. Note that for high
currents, the roots might be imaginary: again this is non-physical. Indeed,
before the discriminant becoming negative, at one point the maximum velocity
will become negative. This indicates that the motor is no longer able to turn -
physically, it’s probably because the voltage drop in the phase resistor becomes
as large as the battery voltage itself.

Thus, the maximum velocity at a given torque is given by the positive root
of this equation. Note that for iq = 0, this simplifies into: ω = Ubat√

3ρke
= Ubat

ρkpp
e
.

3.2.2 Defluxing

As we have seen in the previous section, the velocity limit arises due to a voltage
limit, cause by the induction term ωke. The idea of defluxing is to send a neg-
ative direct current id: this current will not modify the torque, but will reduce
the induction term ω(npLiq + ke). This will effectively reduce the quadrature
voltage uq, but, due to the resistor R, will also increase the direct voltage ud:
this limits the defluxing capability of a given motor.

Another limit is the current limit, which implies that it is not always possible
to completely cancel out the flux rotor ke. The so-called defluxing ratio (réaction
d’induit) rdflux , npLIm√

2ke
indicates this capacity. A motor will a defluxing ratio

smaller than one cannot completely cancel out the magnetic flux, even at zero
torque, and thus has a finite maximum velocity. By contrast, a motor with a
defluxing ratio larger than or equal to one can do it - and in theory has an infinite
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velocity at zero torque (thus a finite mechanical power nonetheless). Note of
course that in practice, mechanical friction will limit the effective velocity.

Defluxing current Given a target quadrature current iq (i.e. target torque)
and a target velocity ω, we compute the required defluxing current as the current
that satisfies the voltage inequality:

(Rid − npρωLiq)2 + (Riq + ρω(npLid + ke))
2 =

U2
bat

3
(24)

Once again, we get a second-order polynomial in id, with coefficients

a = R2 + (ρωnpL)
2 b = 2npLke(ρω)

2

c = (ρωnpLiq)
2 + 2Riqkeρω +R2i2q + (keρω)

2 − U2
bat

3

(25)

We typically obtain two real roots. If the largest is positive, this indicates
that there is no need to perform defluxing: indeed, to reach the maximum
voltage we need to add positive direct current. This is of course not the point
(at is would only contribute to increasing the power dissipation), thus in that
case we do not deflux. If both roots are negative, this gives a range of applicable
defluxing current - there again, we take the largest root (smallest in absolute
value) to avoid unnecessary power loss. It is however worth mentioning that
this presence of multiple solution means that the deflux current is not unique:
rather, it is only a minimum. In typical cases this only means that we need to
put at least this much current for the motor to spin at the desired speed - but
we can put more. This is a nice property, given that we have some uncertainty
on the actual parameters of a given motor: this shouldn’t impact our capacity
to deflux it.

To summarize, the defluxing current needed to reach a given torque and
speed writes:

id = min

(
0,
−b+

√
b2 − 4ac

2a

)
(26)

Maximum speed In practice, the defluxing current cannot be as large as we
want, as we must still satisfy the current inequality in (14). Thus, considering
a given torque, thus a given iq, a velocity limit is still present.

We can obtain a closed-form solution of this maximum velocity by noticing
that, in (24), the right hand side is minimal when id = − ke

npL
1. Thus, we can

compute the maximum defluxing current as

id = max

(
− ke
npL

,−
√
2I2m − i2q

)
(27)

Then, given id and iq, (24) is again a second-order polynomial in ω, whose
positive root gives the maximum velocity. Its coefficients are:

1This is clear if id < 0 ; considering that on a real motor, R < ρωnpL, the voltage also
increases when applying a positive direct current.
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a = (ρnpLiq) + ρ2(npLid + ke)
2 b = 2ρRiqke

c = R2(i2d + i2q)−
U2
bat

3

e (28)
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