## **Double white dwarf binaries** Sunny Wong, Courtney Crawford, Tryston Raecke

Image credit: University of Warwick

NESA DOWNDER

#### Roadmap

mass to a carbon-oxygen white dwarf?

Minilab 1: response of donor and orbit to mass transfer Minilab 2: response of accretor to accretion (Part 1: constant accretion rate) Minilab 3: response of accretor to accretion (Part 2: realistic binary history)

## General question: what happens when a helium white dwarf donates

## AN CVn binaries

- Ultracompact binaries with orbital periods between 5 and 69 minutes
- star
- For review see Solheim 2010, Ramsay+ 2018



#### A white dwarf accretes He-rich matter from semi-degenerate donor

3

#### AM CVn binaries: gravitational wave sources



Kupfer et al. 2024

## White dwarf 101 Supported by electron degeneracy pressure Hydrostatic equilibrium: $\frac{dP}{dr} = -\rho(r)\frac{Gm(r)}{r^2}$ $P \sim \frac{GM^2}{R^4}$ $P \qquad M GM$ $\frac{1}{R} \sim \frac{1}{R^3} \frac{1}{R^2}$

Non-relativistic degeneracy:  $P \propto \rho^{5/3} \propto \frac{M^{5/3}}{2}$  $R^5$ 

 $R \propto M^{-1/3}$ : Massive WDs are smaller



#### Double white dwarf binary: Orbit shrinks due to gravitational waves



Artist illustration

# Less massive WD fills its Roche lobe and starts transferring mass



## Some mass transfer basics Here $M_1$ is donor mass, $M_2$ is accretor mass, $M_{tot} = M_1 + M_2$

Orbital angular momentum

 $J_{\rm orb} = M_1 M_{21} \sqrt{\frac{Ga}{M_{\rm tot}}}$ 

Donor (star 1) is Roche-filling:

$$\frac{R_1}{a} = 0.462 \left(\frac{M_1}{M_{\text{tot}}}\right)^{1/3}$$

 $J_{\rm orb} \propto M_1^{5/6} M_2 M_{\rm tot}^{-1/3} R_1^{1/2}$ 

# Some mass transfer basics $\frac{\dot{J}_{\text{orb}}}{J_{\text{orb}}} = \frac{5}{6} \frac{\dot{M}_1}{M_1} + \frac{\dot{M}_2}{M_2} - \frac{1}{3} \frac{\dot{M}_{\text{tot}}}{M_{\text{tot}}} + \frac{1}{2} \frac{\dot{R}_1}{R_1}$

Conservative mass transfer (no mass loss from system):

$$M_1 = -M_2, M_{\rm tot} = 0$$

## Some mass transfer basics $\frac{\dot{J}_{\text{orb}}}{J_{\text{orb}}} = \frac{\dot{M}_1}{M_1} \left( \frac{5}{6} - \frac{M_1}{M_2} \right) + \frac{1}{2} \frac{\dot{R}_1}{R_1}$ Res

 $=\frac{\dot{M}_{1}}{M_{1}}\left(\frac{5}{6}-\frac{M_{1}}{M_{2}}+\frac{n}{2}\right)$ 

Need  $\frac{M_1}{M_2} < \frac{5}{6} + \frac{n}{2}$  for stable mass transfer

#### Response of donor radius to mass loss

 $R_1 \propto M_1^n$ 



## Some mass transfer basics Need $\frac{M_1}{M_2} < \frac{5}{6} + \frac{n}{2}$ for stable mass transfer

Fully degenerate WDs:

 $n = -1/3 (R_1 \propto M_1^{-1/3})$ 

So need  $\frac{M_1}{M_2} < \frac{2}{3}$ 

(See Marsh et al. 2004 which accounts for spin of the binary components)

# Some mass transfer basics $\frac{\dot{J}_{\text{orb}}}{J_{\text{orb}}} = \frac{\dot{M}_1}{M_1} \left( \frac{5}{6} - \frac{M_1}{M_2} + \frac{n}{2} \right)$

 $\dot{J}_{\text{orb}} = \dot{J}_{\text{gw}} + \dot{J}_{\text{ml}} + \dot{J}_{\text{mb}} + \dot{J}_{\text{ls}}$ 

Gravitational waves Mass loss from system

#### Magnetic braking

Spin-orbit coupling



# $\frac{\dot{J}_{gw}}{J_{orb}} = -\frac{32G^3}{5c^5} \frac{M_1M_2(M_1 + M_2)}{a^4}$



#### Mass-radius relation set by entropy/degeneracy



#### Hotter/ Higher entropy/ Less degenerate

Modified from Wong & Bildsten 2021

See also Deloye+ 2007



#### As donor loses mass, its radius expands and binary orbit widens



#### Hotter/ Higher entropy/ Less degenerate

Modified from Wong & Bildsten 2021

See also Deloye+ 2007



## Most AM CVn donors are not fully degenerate



van Roestel+ 2022







Modified from Wong & Bildsten 2023

Mass transfer with He star



P, min

 $M_{
m He}$  $au_{
m gr}$  $M \sim$ 

Yungelson 2008 (see also Brooks+ 2015, Sarkar+ 2023)



## Binary evolution with MESA

Star 2:  $\gtrsim 0.8 M_{\odot}$ white dwarf accretor (treat as point mass here)

> Keep your history files, needed for Lab 3!



#### Star 1: helium white dwarf / helium star donor

Fully conservative mass transfer (i.e.,  $\dot{M}_{tot} = 0$ )

 $J_{\rm orb}$  solely due to gravitational wave







A semi-degenerate donor star expands as it loses mass

Orbit expands and *M* drops

A higher entropy (less degenerate) donor fills its Roche lobe at longer orbital periods. Peak M is lower

He star donor ceases burning when its mass  $\leq 0.32 M_{\odot}$ 

He

Tgr









#### Hot / high-entropy WDs initially evolve adiabatically, but can eventually lose entropy and shrink



\*\*\*Caveat: no reliable radiative opacity for warm dense He with metals\*\*\*

Modified from Wong & Bildsten 2021



#### Roadmap

mass to a carbon-oxygen white dwarf?

Minilab 1: response of donor and orbit to mass transfer Minilab 2: response of accretor to accretion (Part 1: constant accretion rate) Minilab 3: response of accretor to accretion (Part 2: realistic binary history)

## General question: what happens when a helium white dwarf donates

## **Compression heats up He envelope**



![](_page_24_Figure_1.jpeg)

![](_page_25_Figure_1.jpeg)

![](_page_26_Figure_1.jpeg)

![](_page_27_Figure_1.jpeg)

![](_page_28_Figure_1.jpeg)

![](_page_29_Figure_1.jpeg)

![](_page_30_Figure_1.jpeg)

![](_page_31_Figure_1.jpeg)

![](_page_32_Figure_1.jpeg)

![](_page_33_Figure_1.jpeg)

![](_page_34_Figure_1.jpeg)

![](_page_35_Figure_1.jpeg)

# $M_{WD} = 1.034 M_{\odot}$ Outcome 1(low M): "y Accretor gets reheated and cools subsequently $(P_{orb^{\circ}} \gtrsim 30 \text{ min})$

 $10^{7}$ 

 $10^{19}$ 

 $10^{21}$ 

 $s_{\rm c}/(N_{\rm A} k_{\rm B}) = 3.1$ 

 $10^{23}$ 

![](_page_36_Figure_1.jpeg)

![](_page_37_Figure_0.jpeg)

**Condition for dynamical He flash** 

![](_page_38_Figure_1.jpeg)

# Surface Helium detonation sends a shock wave into the Carbon core, causing detonation of Carbon

![](_page_39_Figure_1.jpeg)

Simulation by Sam Boos See Boos+ 2021

# Strength of helium flash set by helium shell mass

#### Helium shell mass set by accretion rate

## **NCO** reaction chain

The following electron capture reaction happens for  $\rho \gtrsim 1.25 \times 10^6 \,\mathrm{g \, cm^{-3}}$ : 1 / 1 /

$$^{14}N + e^- \rightarrow {}^{14}C + \nu_e$$

And recall that during core H burning, the CNO chain mostly yields  $^{14}N$ 

Bauer+ 2017

## NCO reaction chain

The freshly produced  $^{14}C$  undergoes  $\alpha$ -capture:  $^{14}C + ^{4}He \rightarrow ^{18}O + \gamma$ 

which releases 6.2 MeV per <sup>14</sup>C consumed

Accounting for the NCO chain can reduce the He shell mass at ignition

#### Higher M, more efficient compressional heating, thinner He shell at ignition

NCO chain matters for low M

But thicker He shell is better for detonations  $3\alpha$  Only

![](_page_43_Figure_3.jpeg)

#### Test suites are a great place to learn how to use MESA

(base) mesa@169-231-122-108 custom\_rates % cd \$MESA\_DIR/star/test\_suite/custom\_rates (base) mesa@169-231-122-108 custom\_rates % ls README.rst history\_columns.list inlist\_cool\_header make TRho-unmodified.data inlist\_NCO\_flash inlist\_core mk inlist\_NCO\_flash\_header before\_flash.mod inlist\_core\_header nco.net inlist\_make\_he\_wd inlist\_NCO\_hashimoto ck profile\_columns.list inlist\_NCO\_hashimoto\_header inlist\_make\_he\_wd\_header clean re inlist\_cool inlist\_pgstar docs rn

#### Roadmap

mass to a carbon-oxygen white dwarf?

Minilab 1: response of donor and orbit to mass transfer Minilab 2: response of accretor to accretion (Part 1: constant accretion rate) Minilab 3: response of accretor to accretion (Part 2: realistic binary history)

## General question: what happens when a helium white dwarf donates

Explicit :

At start of step k, compute  $M_k$ 

Take time step  $\Delta t$  and update orbital parameters:

$$M_{1,k+1} = M_{1,k} + \dot{M}_k \Delta t$$

Requires small time steps for numerical stability

![](_page_46_Figure_5.jpeg)

-6-10-12

Implicit : At time t, guess M Take time step  $\Delta t$  and update orbital parameters:  $M_{1,k+1} = M_{1,k} + \dot{M}\Delta t$ small

If not, reiterate with different M

#### Compute $\dot{M}_{1,k+1}$ at end of step, and check if $|(\dot{M} - \dot{M}_{k+1})/\dot{M}_{k+1}|$ is

![](_page_47_Picture_5.jpeg)

Implicit :

Great for numerical stability, but requires solving both stars for several times *per time step* 

![](_page_48_Figure_2.jpeg)

(This is fine since what the accretor does doesn't matter to the donor; not fine if we account for spin evolution or if there is mass loss)

\*\*\* This is only for the sake of time don't be afraid of evolve\_both\_stars = .true. \*\*\*

#### Evolve accretor alone, but use the M in binary\_history.data from Lab 1

#### A He star donor leads to a thicker He shell at ignition due to its lower $\dot{M} \sim 10^{-8} M_{\odot}$

Similar effects with a higher entropy (hotter) He WD donor

#### The double detonation mechanism was proposed since the 1980s (e.g., Nomoto+ 1982, Woosley+ 1986)

## The binary scenario was CO WD accretor + He star donor $\dot{M} \sim 10^{-8} M_{\odot} \,\mathrm{yr}^{-1}$ ,

and He shell mass at ignition  $\approx 0.15 - 0.20 M_{\odot}$ 

As it turns out, thick He shells  $\gtrsim 0.1 M_{\odot}$  produce iron-group elements during the He detonation

These heavy elements lead to line-blanketing in the UV, and the resulting explosion does not resemble a normal type la supernova (See De+ 2019 & Polin+ 2019) So for a long time, the double detonation mechanism was not favored

![](_page_52_Picture_5.jpeg)

## In the late 2000s, it was realized that He WD donors can lead to

![](_page_53_Figure_1.jpeg)

higher  $\dot{M}$  which reduces the He shell mass at ignition to  $\leq 0.05 M_{\odot}$ 

#### Thinner He shell masses, but still detonable

Shen & Bildsten 2009

#### Around 2010, it was realized that double detonation can also happen during unstable mass transfer after $\approx 0.01 M_{\odot}$ of He is accreted

![](_page_54_Figure_1.jpeg)

Primary

Guillochon et al. 2010

![](_page_54_Picture_5.jpeg)

# After accretor explodes, the donor is flung off at $v_{\rm orb} \approx 1000 - 2000 \, \rm km/s$

![](_page_55_Picture_1.jpeg)

 $\approx v_{\rm orb}$ 

## Hypervelocity WDs

![](_page_56_Figure_1.jpeg)

![](_page_56_Figure_2.jpeg)

Shen et al. 2018 (See also El-Badry+ 2023)

## Hypervelocity WDs

![](_page_57_Figure_1.jpeg)

![](_page_57_Figure_2.jpeg)

![](_page_57_Figure_3.jpeg)

## $M_{\rm ej} = 1.00 M_{\odot}, E_{\rm KE} = 1.2 \times 10^{51} \, {\rm erg}, M_{\rm He} = 0.126 \, M_{\odot}$

![](_page_58_Figure_2.jpeg)

t = 0.00 s (0.00 code unit)

## $M_{\rm ej} = 1.00 M_{\odot}, E_{\rm KE} = 1.2 \times 10^{51} \, {\rm erg}, M_{\rm He} = 0.126 \, M_{\odot}$

t = 36.46 s (3.00 code unit)

![](_page_59_Figure_2.jpeg)

## $M_{\rm ej} = 1.00 M_{\odot}, E_{\rm KE} = 1.2 \times 10^{51} \, {\rm erg}, M_{\rm He} = 0.126 \, M_{\odot}$

t = 194.43 s (16.00 code unit)

![](_page_60_Figure_2.jpeg)

![](_page_61_Picture_0.jpeg)