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Astroseismic Analysis 101

 Stars are pulsating;

* Different inner structures with
different oscillation frequencies in
stars are analogous to different
sounds from different musical
Instruments;

 Stellar oscillations can be treated
as the heat engine mechanism: a
region gains heat by compression
+ driving oscillation successfully
—> thermal to mechanical energy
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» Jorgen Christensen-Dalsgaard lecture

Physics of Stellar Oscillations o selarOscitiions”

e Unno, W.’s book (2nd version):
Nonradial oscillations of stars, 1989
* Linearized equations of mass, motion, energy and Poisson Equation (from
fluid dynamics and thermal physics)

* Then the perturbed fluid equations are:
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Physics of Stellar Oscillations

* Linearized equations of mass, motion, energy and Poisson Equation (from
fluid dynamics and thermal physics)

* Then the perturbed fluid equations are:

° Contlnu1ty p p 0 | fﬁ.%ﬁf&sen_ﬁ?alsgaard ho
9287 I Asteroseismology

* Equation of motion Po Yo (U v —Vp' + pog’ + p'g,

* Poisson Vi@ = 4nGp’
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* Energy equation  p' + 07 - Vp =



Physics of Stellar Oscillations MES A

* Linearized equations of mass, motion, energy and Poisson Equation (from
fluid dynamics and thermal physics)

* Then the perturbed fluid equations are:
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Next Step...

* The solution to those differential equations are assumed to have
periodic time dependence p’, P/, ... x €'

» Separate variables in spherical coordinates y'(r) = 3(r) Y7'(8, @)

* Combining the continuity equation, equation of motion, and energy
equation, the equation for the mode radial displacement can be

rewritten as:
d%y
— + F(r, )y =0



Evanescent and Propagating Solutions
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Evanescent solutlons

Slide credit to: Rich Townsend’s Christy talk at Caltech, 2023
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Mode Classification p-mode: o” > N"and 0" > 5;
g-mode: 42 < N2 and o < S?

square of Lamb frequency square of Brunt-Vaisala frequency
sound wave frequency buoyancy frequency

1dinP, dlnp,
y dr

Slide credit to: Rich Townsend’s Christy talk at Caltech, 2023



Propagation Diagram of a Given Massive Star
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Application 1:
Testing if Stellar Evolution Code is Correct

* Surprisingly, the very classical process, helium flash had been

successfully modeled in recent 15 years, with MESA (Bildsten et al
2012)

* Three ways to test 1f code doing physics correctly:
* Result 1s converged
* Compare with analytical solutions (e.g. polytrope models)
* Compare with observations
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Minilab 1 Make a model of KOI-54 star

* Why we used three inlists for running the model?
e Should we call this model as massive or low-mass star? Reason?



Application 2:
Constrain the Inner Structure of Stars

_ _ . . TRV W 3. o7 * Spectroscopic data
1 : " \.
Observation found 7 pul-satmg perl.ods of this | SRR QRO i (all surface
extremely low-mass white dwarfs in the J1112 5 ;| ) 24 information):
i , |
system, two of them are possible p-modes! ,  logg=59cm/s?
Table 2 - Teff = 9400 K
Frequency Solution for SDSS J111215.82+111745.0 “z 18
s
ID Period Frequency Amplitude S/N = e Best-fit model:
(s) (uHz) (mma) . 15~
a0 He — 0.146 M@
f 2258.528 £+ 0.003 442.7662 £ 0.0007 7.49 +0.08 26.5 -

|, myp=0.014 Mg
(10% hydrogen!)
’ v Mot = 0 160 M@

log

bi) 2539.695 + 0.005 393.7480 + 0.0007 6.77 £0.09 23.0
bE) 1884.599 + 0.004 530.6170 £ 0.0011 4.73 £0.08 16.9
Ja 2855.728 £0.010 350.1734 £ 0.0013 3.63 £0.09 11.5
fs 1792.905 +£ 0.005 557.7542 £ 0.0017 3.31 £0.08 11.9

f6 134.275 4+ 0.001 7447.388 4+ 0.010 0.44 4+ 0.08 4.4
fi 107.56 £+ 0.04 92974+ 3.6 0.38 +0.14 4.1
_ . R =0.08 R (big
Note. 1 mma = 0.1% relative amplitude. (Hermes et al 2013) al a . i . radiuS!)
0.135 0.140 0.145 0.150 0.155 0.160
MHe corel M)
: (Sun & Arras, 2018)
Color: rms difference between the 7 measured 15’

and the model periods (my unpublished plot)



Tidal Physics



Post-Main Sequence Evolution of Binaries:
3 Effects

1. On the Red Giant and Asymptotic Giant Branches, Stars Expand to
>]1AU radius

* All close-1n planets and stars are engulfed by the expanding star



Post-Main Sequence Evolution of Binaries:
3 Effects

2. Orbital Decay Due to Tides Brings the Companion inward to Meet the
star, Rather than Waiting for the Star to Expand to the Orbit



Post-Main Sequence Evolution of Binaries:
3 Effects

3. Due to the Strong Wind of the Stars, the Orbits Expand

* All close-1n planets and stars are survived from merger or mass transfer



Previous Work on Engulfment of the Secondary
by Evolved Stars

Mustill, A. J., & Villaver, E. 2012, ApJ, 761, 121
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Basic Idea of How Tides Change the Orbit

G. Darwin’s theory of tides: Friction causes the tidal bulge to lag behind the companion.

* The spin angular momentum of the star
increases and the orbital angular momentum

decreases
* The orbit will shrink
* The lag time 1s a free parameter

- a [ m ; m R ; { Q2
“= (\ M )\ n

Force decreases the orbital angular
momentum

Hut P. (1981), A&A, 99, 126



Two Possible Regimes of the Tidal Evolution

Low mass companion High mass companion

* (Can’t synchronize the stellar spin  Can synchronize the stellar spin
* Orbit decay * Orbital decay slows down to the nuclear
e Merger evolution timescale of the primary



Summary of
How tides
change the orbit
of a two body
system

Slide Credit: Phil Arras (KITP talk:
Tides and Nonlinear Waves in Solar
Like Stars, 2011/10/28)

Tidal evolution effects

Circularization of orbits:

Orbital decay

Synchronization of spin

Alignment of spin



Physics of Tidal Flow

convection
L0 radiative zone zone * Add in the tidal acceleration in the momentum
Ch - equation for nonadiabatic oscillations
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: m m \ : * Compute linear response to the tidal force
1070 & m E
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Numerical
solution is to
deal .Wlth the (tjidal potential N ) P e—iwt
lag tlme angle ue to companion:

Origin of Secular Tidal Evolution

¢ = strength of tide

density perturbation 5 7 (5 . wt) lag time = 0 /w
response to tide: ¢ R I due to dissipation
external potential nearer bump wins

from this density ’L(O _wt)
perturbation acts 5¢ il o~ |

back on companion:

out-of-phase /'S .
force on companion f ~ 2 (5) L e
Slide Credit: Phil Arras (KITP talk; ~ leading to secular € Sl ) 4

Tides and Nonlinear Waves in Solar evolution: \ .
Like Stars, 2011/10/28) —



Turbulent Viscosity Damping in Convective Zones

. . tiny!
Molecular viscosity . l
N : o 2
Test particle ’ T Fihear = PVmol V “Utide
casc: l During this process, a shear force is generated, and
Y this corresponds to an Energy Dissipation Rate
convection zone J\
Viurh = ¢ eddy Veddy
.. ' 1 - 2 Fluid
]Sztiﬂzs in @ E ~ :\[ Vturb | VUtlde dynamics

Turbulent viscosity

R S
NN SN

The rate of change in orbital parameters
(observable) are from this Energy Dissipation
Rate

Verbunt, F., Phinney, E. S. 1995, A&A, 296, 709



Radiative Diffusion Damping

N\
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é Non-
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e x = heat diffusion coefficient Radius fraction = r/R;

« P=2n/0= wave period

e Heat diffused distance in time P is d = (XP)I n A high order internal gravity wave mode with strong

radiative damping. The nonadiabatic solution is close to

o . the equilibrium tide solution (no oscillatory feature).
» If diffusion distance d > wavelength

=> the wave will be strongly damped by radiative damping 27



Nonlinear Damping in Water Waves

* Ocean i1s shallower near the shore
* The wave height increases near the shore

 The criterion for wave braking is wave height > wavelength

6'Height 7%
of breaking 4
wave

DEEP WATER WAVES WAVE PUSHED UPWARD WAVE BREAKS SURF

28



Nonlinear Damping for the Dynamical Tides

« QGravity wave steepen towards the center of the star, & ~1/r°
* Wave braking when the wave amplitude > wavelength
» After the wave breaking, the wave energy deposits as heat

convective

4Waye amplitude > wavelength .
core radius

2 i
e The radiative core allows \/
the dynamical tide to grow 0t

Wave ampllitude << wavelength

to large amplitude and break IE
o /
« Gravity waves are ! .
0yl

evanescent in a convective
core, giving small amplitude _6l
and no wave breaking

103 102 101 100
T/RQ



Minilab 2: Take Home Points

Table 2: Astroseismic Mode Properties

Name Analogous Restoring Dispersion Relation between# nodes Amplitude

to Force Relation and Wave Frequency Property
p-mode sound /acoustic wave pressure (Vp') o2 = 2(k* + k) increase &> 6
- > surlace gravity/deep water wave Tavity — —
f-mode surface gravity/deep water wave ravity ,

R 20+1
N2

—mod . nal oravity w: ] o e / 2 - lecreas
g-mode internal gravity wave »uoyancy (p'go) decrease LG

T 14 k2R

With WKB analysis:

High order p-mode has constant frequency spacing
High order g-mode has constant period spacing

30



Introducing GYRE-TIDES: a New Open-
Source Code to Model Stellar/Binary Tides

Sun, M., Townsend R. H. D., Guo Z. 2023, ApJ, 945, 43

Regular GYRE: free oscillation (natural mode of the star); GYRE-tides: forced oscillation;

Traditional way of calculating tidal dissipation rate i1s incorrect;

GYRE-tides: no approximation, fully numerical;

Wide applications: from massive binaries (tidal induced oscillations) to planetary systems (orbital decay).
Code is available at https://gyre.readthedocs.i0/en/stable/user-guide/frontends/gyre tides.html



Tides in Massive Stars — the Heartbeat Phenomenon

Caused by the Equilibrium tides .
The Heartbeat features are usually observed in:

* high eccentricities binaries (0.3 <e <0.9);

* intermediate-mass stars (1.2 M o <M<25M G));

* have also recently been reported in high-mass
stars (up to 30 M G)).

—9¢ —69 -39 3d 6d 9d

T T 1
KIC 8719324
P=10.2326 d

2000 4000

The Kepler mission found 173 heartbeat stars
(Kirk et al 2016), almost all of these stars are A-
and F-type main sequence stars;

0

Rel. Flux (ppm)

Other space and ground-base observations found
heartbeat phenomenon for O and B type stars.

—4000 —-2000

Caused by the Dynamical tides

33

Thompson et al. (2012), ApJ, 753, 86



The Heartbeat Stars from the Eccentric Binaries

from secondary
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Modeling the Heartbeat Star KOI-54

Sun, M., Townsend R. H. D., Guo Z. 2023, ApJ, 945, 43
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Forcing Frequency

1 Surface displacement and flux versus forcing frequency for KOI-54 system, forced by a fixed-strength potential.

* The two stars in KOI-54 have similar mass, 2.32 M j and 2.38 M with an orbital period of 42 days. The system is
highly eccentric with e=0.83.

* Atlow forcing frequency (left of the figure), the solution is dominated by the equilibrium tides; At high forcing
frequency, the spikes correspond to the excitation of the internal gravity waves (also known as the dynamical tides).



Tides in Changing the Orbital
Elements of the Binary Systems

log([te|/yr)
——

2.0 2.5 3.0 3.5 4.0 45 5.0
Orbital Period in days

—> the rate-of-change in eccentricity as a function of orbital period, predicted by GYRE-tide for an eccentric 1.4 solar mass
neutron star raising tides on a 5 solar mass main-sequence primary.

* Generally, these timescales are smaller for short orbital periods, and larger for long periods (the strong dependence of tidal

strength on orbital separation).
36
* The spikes can be seen where the timescales become very short (caused by dynamical tides).



log|Tse:/(GM”/R)|

~10 ¢
—12}

—14 .:.

—16

—20 f

Stellar Torque on KOI-54 Primary Star
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< tidal torque on the primary star as a
function of the star’s rotation rate; to calculate
the torque on the KOI-54 primary star, we use
gyre tides to evaluate the response of the
KOI-54 primary star model in the tidal
potential for 25,000 rotation frequencies in the
interval 0 <rotation frequency < 1 day”-1.

* we are significantly sampling the dense
forest of resonances;

* atorque that’s generally a positive torque at
small rotation frequencies, and negative at
high frequencies;



Tidal Physics Summary

* Traditional theory of tides: rely on parameterized equations
* Numerical solution of tidal response: equilibrium tides + dynamical tides
* Damping mechanism: convective damping, radiative damping

* New tool for understanding tides: open-source code GYRE-tides, no more
parameterized equations, applicable to massive binaries



Minilab 3: Take-aways of the Theory of Tides

Table 1. Properties of the equilibrium and the dynamical tides

Properties Equilibrium tide Dynamical tide (internal gravity wave)
Mode Excitation Time varying gravitational potential of the secondary object
Numerical Solution is nonwave-like wave-like
Mode Damping (non-adiabatic) Convective damping Radiative and nonlinear damping
Radial Amplitude Strong at Surface convective zone Inner radiative zone
Tidal Dissipation Rate Depends on P,y P = By ) e
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