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Astroseismic Analysis 101
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• Stars are pulsating;

• Different inner structures with 
different oscillation frequencies in 
stars are analogous to different 
sounds from different musical 
instruments;

• Stellar oscillations can be treated 
as the heat engine mechanism: a 
region gains heat by compression 
+ driving oscillation successfully 
à thermal to mechanical energy



Astroseismic Analysis

• Given the measured oscillation 
mode periods, one can compare 
these periods with those predicted 
by models of different mass, 
temperature, etc., to see which 
parameters agree best with the 
data.

• A ton of real astroseismology
experts in the teaching team
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Kurtz, 2022, ARAA



Physics of Stellar Oscillations
• Linearized equations of mass, motion, energy and Poisson Equation (from

fluid dynamics and thermal physics)
• Then the perturbed fluid equations are:

• Continuity

• Equation of motion

• Poisson

• Energy equation
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pressure buoyancy gravity

• Jørgen Christensen-Dalsgaard lecture 
notes “Stellar Oscillations”

• Unno, W.’s book (2nd version):
Nonradial oscillations of stars, 1989
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Next Step…

• The solution to those differential equations are assumed to have 
periodic time dependence
• Separate variables in spherical coordinates
• Combining the continuity equation, equation of motion, and energy 

equation, the equation for the mode radial displacement can be 
rewritten as:
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Evanescent and Propagating Solutions
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Slide credit to: Rich Townsend’s Christy talk at Caltech, 2023



Mode Classification
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p-mode:
g-mode:

Slide credit to: Rich Townsend’s Christy talk at Caltech, 2023



Propagation Diagram of a Given Massive Star

10Base plot credit to: Rich Townsend’s Christy talk at Caltech, 2023
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Application 1: 
Testing if Stellar Evolution Code is Correct
• Surprisingly, the very classical process, helium flash had been 

successfully modeled in recent 15 years, with MESA (Bildsten et al 
2012)

• Three ways to test if code doing physics correctly:
• Result is converged
• Compare with analytical solutions (e.g. polytrope models)
• Compare with observations
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Application 1: 
Testing Helium Flash Model

12(Bildsten et al 2012)



Application 1: 
Testing Helium Flash Model
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• Dashed lines: RGB stars, burning H into He in the shell;
• Solid lines: flashes;
• Dotted lines: helium burning red clump stars.

• Red clump stars, experiences through helium flashes, has longer period spacing

Model: Bildsten et al, 2012; Data: Bedding et al, 2011



Minilab 1 Make a model of KOI-54 star

• Why we used three inlists for running the model?
• Should we call this model as massive or low-mass star? Reason?
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Application 2: 
Constrain the Inner Structure of Stars
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The Astrophysical Journal, 765:102 (8pp), 2013 March 10 Hermes et al.

Table 2
Frequency Solution for SDSS J111215.82+111745.0

ID Period Frequency Amplitude S/N
(s) (µHz) (mma)

f1 2258.528 ± 0.003 442.7662 ± 0.0007 7.49 ± 0.08 26.5
f2 2539.695 ± 0.005 393.7480 ± 0.0007 6.77 ± 0.09 23.0
f3 1884.599 ± 0.004 530.6170 ± 0.0011 4.73 ± 0.08 16.9
f4 2855.728 ± 0.010 350.1734 ± 0.0013 3.63 ± 0.09 11.5
f5 1792.905 ± 0.005 557.7542 ± 0.0017 3.31 ± 0.08 11.9
f6 134.275 ± 0.001 7447.388 ± 0.010 0.44 ± 0.08 4.4
f7 107.56 ± 0.04 9297.4 ± 3.6 0.38 ± 0.14 4.1

Note. 1 mma = 0.1% relative amplitude.

Period04 (Lenz & Breger 2005). The signal-to-noise calculation
is based on the amplitude of the variability as compared to the
average amplitude of a 1000 µHz box centered around that
variability, after pre-whitening by the five highest-amplitude
periodicities.

A simultaneous linear least-squares fit, fixing these five
periods, shows that this variability is quite stable in both
amplitude and phase. The f1 periodicity is especially stable in
phase, with an rms scatter of less than 7 s between our four
months of data—better than 3% of the 2258.5 s period. The
phase stability of J1112 is reminiscent of hot DAVs such as
G117-B15A (Kepler et al. 2005), and could be monitored long-
term for periodic deviations in arrival times to constrain any
possible circumbinary planets (Mullally et al. 2008). There is
slightly more scatter about the amplitudes measured from month
to month, which are more sensitive to variations in photometric
conditions. The only periodicity with a consistently decreasing
amplitude is f2, which showed an amplitude of 0.7184% ±
0.0098% in 2012 January decrease to 0.573% ± 0.016% in
2012 April.

None of these periods are an integer harmonic of the
4.13952 hr (14902.27 ± 0.86 s) orbital period. Given our cited
uncertainties, f3, the closest, is more than 8σ from 8×forb. Thus,
tidally induced pulsations cannot properly explain the observed
multi-periodic variability. Instead, we conclude that these are
global, non-radial g-mode pulsations driven to observability by
the same mechanism at work in classical DAVs (Brickhill 1991).
The timescale of this variability is considerably longer than
for the pulsations seen in C/O-core DAVs. However, it is con-
sistent with the expectation that the periods of pulsation modes
roughly scale with the dynamical timescale for the whole star,
Π ∝ ρ−1/2, and are thus much longer for the low-surface-gravity
ELM WDs.

2.3. Potential p-mode Pulsations

In addition to the relatively high-amplitude, long-period vari-
ability observed in J1112, we see evidence for low-amplitude
variability on much shorter timescales. These periodicities are
included at the bottom of Table 2 in decreasing order of S/N.
This S/N value is conservative: we have not pre-whitened by the
variability in question for this calculation, which effectively con-
siders some signal as noise in this estimate. We have identified
all of the periodicities with S/N > 4.0, and italicize these S/N
values to indicate that they were calculated in a different way.

We have also computed the probability that each of the
short-period detections is real by computing the false alarm
probability, using the formalism described in Kepler (1993). We
find that f6 and f7 have a FAP > 99.9%. (There is an additional
peak at 119.552 s with S/N = 3.7 and a FAP of 99.8%. However,

this periodicity is sufficiently close to the 119.667 s periodic
drive error of the 2.1 m Otto Struve telescope that we will not
include it in our formal frequency solution.) Figure 3 shows a
zoomed-in portion of the FT around 134.3 s and 107.6 s using
our entire data set.

This variability is coherent enough to reach significant am-
plitude over four months of observations. Some of our longest
individual runs also evidence this variability, such as the 6.5 hr
run on 2012 January 27 (with a 1.24 ± 0.36 mma signal at
134.2 ± 2.2 s) and the 3.5 hr run on 2012 February 1 (with
a 1.17 ± 0.40 mma signal at 107.9 ± 1.8 s). These two peaks
are also fairly significant if we use just our 2012 January data:
the 134.275 s mode has 0.55 ± 0.17 mma amplitude (>99.9%
FAP) while the 107.557 s mode has 0.46±0.14 mma amplitude
(98.2% FAP).

This variability is too short to be explained as g-mode
pulsations without invoking implausibly high values of the
spherical harmonic degree. A recent non-adiabatic pulsation
analysis relevant to low-mass WDs by Córsico et al. (2012)
found that g-modes of low radial order (and thus the shortest
period) are stable to pulsations and should not be driven to
observability. Their calculations found that unstable g-modes in
a 0.17 M⊙ WD have radial orders k ! 9 and periods longer than
1100 s. Even if we ignore their conclusion that an ℓ = 1, k = 1
mode is stable, they find that this lowest radial order mode has
a period ∼249.5 s. Similarly, Steinfadt et al. (2010) also found
that an ℓ = 1, k = 1 g-mode for a 0.17 M⊙ WD has a ∼245 s
period.

The short-period variability seen in J1112 is also inconsistent
with nonlinear combination frequencies present in the non-
sinusoidal light curves of many classical DAVs (Brickhill 1992).
For one, the light curve of J1112 is extremely sinusoidal.
Additionally, the short-period variability is not a multiple of
any of the five low-frequency modes, nor is it a combination of
different modes.

Instead, we propose that this variability is caused by acoustic
or pressure (p-mode) pulsations driven to observability in
J1112. Córsico et al. (2012) find that low-order p-modes are
pulsationally unstable, and have periods ranging from 109 to
7.5 s for their 1 < k < 29 models of a 0.17 M⊙ He-core
WD. The 134.3 s period we observe in J1112 is slightly longer
than this predicted range, which suggests some uncertainty in
identifying the true nature of these instabilities. Still, should
these hold up as acoustic modes, this would mark the first
detection of p-mode pulsations in any WD. We discuss the
impact of this discovery in Section 4.

3. SDSS J1518+0658

3.1. Spectroscopic Observations

Brown et al. (2012) present the spectroscopic discovery data
for this g0 = 17.5 mag WD from the Blue Channel Spectrograph
on the 6.5 m MMT. They use 41 separate spectra over more than
a year to determine the system parameters, and find that J1518
is in a 14.624 ± 0.001 hr (52646.4 ± 3.6 s) orbital period binary
with a K = 172 ± 2 km s−1 radial velocity semi-amplitude.

We have fit their 41 phased and co-added spectra with the
extended stellar atmosphere models of Tremblay & Bergeron
(2009), as described in Section 2.1.1. This fit formally yields
Teff = 9900 ± 140 K and log g = 6.80 ± 0.05 for J1518, which
corresponds to a mass of ∼0.23 M⊙ (Panei et al. 2007). Given
the mass function (f = 0.322±0.005 M⊙), the minimum mass
of the unseen companion is M2 > 0.61 M⊙, making it most
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Color: rms difference between the 7 measured 
and the model periods (my unpublished plot)

Observation found 7 pulsating periods of this 
extremely low-mass white dwarfs in the J1112 
system, two of them are possible p-modes!

(Hermes et al 2013)

• Spectroscopic data 
(all surface 
information): 

log g = 5.9 cm/s2

Teff = 9400 K

• Best-fit model:
mHe = 0.146 M¤

mH = 0.014 M¤     
(10% hydrogen!)
mtot = 0.160 M¤

R = 0.08 R¤ (big 
radius!)

(Sun & Arras, 2018)



Tidal Physics
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Post-Main Sequence Evolution of Binaries: 
3 Effects

1. On the Red Giant and Asymptotic Giant Branches, Stars Expand to
>1AU radius
• All close-in planets and stars are engulfed by the expanding star

2. Orbital Decay Due to Tides Brings the Companion inward to Meet the
star, Rather than Waiting for the Star to Expand to the Orbit

3. Due to the Strong Wind of the Stars, the Orbits Expand
• All close-in planets and stars are survived from merger

17
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Previous Work on Engulfment of the Secondary
by Evolved Stars

Mustill, A. J., & Villaver, E. 2012, ApJ, 761, 121

Earth mass companionJupiter mass companion

20

AGB star radius

merger

survived



• The spin angular momentum of the star
increases and the orbital angular momentum
decreases

• The orbit will shrink
• The lag time is a free parameter

G. Darwin’s theory of tides: Friction causes the tidal bulge to lag behind the companion.

m

M

“lagging tidal bulge” m

M-2𝞵 𝞵
𝞵 Force decreases the orbital angular 

momentum
Hut P. (1981), A&A, 99, 126

Basic Idea of How Tides Change the Orbit

21



Two Possible Regimes of the Tidal Evolution
Low mass companion High mass companion

• Can’t synchronize the stellar spin
• Orbit decay
• Merger

• Can synchronize the stellar spin
• Orbital decay slows down to the nuclear

evolution timescale of the primary
22

Synchronization
radius



Summary of
How tides
change the orbit
of a two body
system

23

Slide Credit: Phil Arras (KITP talk:
Tides and Nonlinear Waves in Solar
Like Stars, 2011/10/28)



Physics of Tidal Flow
radiative zone

convection 
zone

gravity wave 
“dynamical tide”

“equilibrium tide” 
in convection zone 
not oscillating

• Add in the tidal acceleration in the momentum 
equation for nonadiabatic oscillations

• Compute linear response to the tidal force

• Equilibrium tide approximation: set ω=0 to get
non-resonant response due to tides.

• Dynamical tide approximation: resonant 
excitation of internal gravity waves.

24



Numerical
solution is to
deal with the
lag time angle

25

Slide Credit: Phil Arras (KITP talk:
Tides and Nonlinear Waves in Solar
Like Stars, 2011/10/28)



Molecular viscosity

Turbulent viscosity

tiny!

Turbulent Viscosity Damping in Convective Zones

Verbunt, F., Phinney, E. S. 1995, A&A, 296, 709
26

During this process, a shear force is generated, and
this corresponds to an Energy Dissipation Rate

The rate of change in orbital parameters
(observable) are from this Energy Dissipation
Rate

Fluid
dynamics

Test particle
case:

Eddies in
stellar
convection
zone:
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• 𝟀 = heat diffusion coefficient
• P = 2π/ω =  wave period
• Heat diffused distance in time P is d ≈ (𝟀P)1/2

• If diffusion distance d ≥ wavelength 
=> the wave will be strongly damped by radiative damping

Compressed region hot

Rarefied region cold

heat
 
diffusion

A high order internal gravity wave mode with strong 
radiative damping. The nonadiabatic solution is close to
the equilibrium tide solution (no oscillatory feature).

Radiative Diffusion Damping
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Nonlinear Damping in Water Waves

• Ocean is shallower near the shore
• The wave height increases near the shore
• The criterion for wave braking is wave height > wavelength

28



Nonlinear Damping for the Dynamical Tides
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• Gravity wave steepen towards the center of the star, ξr ~1/r2
• Wave braking when the wave amplitude > wavelength
• After the wave breaking, the wave energy deposits as heat

Wave amplitude > wavelength

Wave amplitude << wavelength

• The radiative core  allows 
the dynamical tide to grow 
to large amplitude and break

• Gravity waves are 
evanescent in a convective
core, giving small amplitude 
and no wave breaking

convective 
core radius
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Minilab 2: Take Home Points

30

With WKB analysis:
• High order p-mode has constant frequency spacing
• High order g-mode has constant period spacing



Introducing GYRE-TIDES: a New Open-
Source Code to Model Stellar/Binary Tides

Sun, M., Townsend R. H. D., Guo Z. 2023, ApJ, 945, 43

• Regular GYRE: free oscillation (natural mode of the star); GYRE-tides: forced oscillation;
• Traditional way of calculating tidal dissipation rate is incorrect;
• GYRE-tides: no approximation, fully numerical;
• Wide applications: from massive binaries (tidal induced oscillations) to planetary systems (orbital decay).
• Code is available at https://gyre.readthedocs.io/en/stable/user-guide/frontends/gyre_tides.html
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Tides in Massive Stars – the Heartbeat Phenomenon

Thompson et al. (2012), ApJ, 753, 86

Caused by the Equilibrium tides

Caused by the Dynamical tides

The Heartbeat features are usually observed in:
• high eccentricities binaries (0.3 < e < 0.9);
• intermediate-mass stars (1.2 M⨀ < M < 2.5 M⨀);
• have also recently been reported in high-mass 

stars (up to 30 M⨀).

The Kepler mission found 173 heartbeat stars
(Kirk et al 2016), almost all of these stars are A- 
and F-type main sequence stars;

Other space and ground-base observations found
heartbeat phenomenon for O and B type stars.

33



The Heartbeat Stars from the Eccentric Binaries

Movie credit:
Rich Townsend
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Modeling the Heartbeat Star KOI-54

↑ Surface displacement and flux versus forcing frequency for KOI-54 system, forced by a fixed-strength potential.

• The two stars in KOI-54 have similar mass, 2.32 M⨀ and 2.38 M⨀ with an orbital period of 42 days. The system is 
highly eccentric with e=0.83.

• At low forcing frequency (left of the figure), the solution is dominated by the equilibrium tides; At high forcing
frequency, the spikes correspond to the excitation of the internal gravity waves (also known as the dynamical tides).

Sun, M., Townsend R. H. D., Guo Z. 2023, ApJ, 945, 43

35

Forcing Frequency



Tides in Changing the Orbital
Elements of the Binary Systems

à the rate-of-change in eccentricity as a function of orbital period, predicted by GYRE-tide for an eccentric 1.4 solar mass 
neutron star raising tides on a 5 solar mass main-sequence primary. 

• Generally, these timescales are smaller for short orbital periods, and larger for long periods (the strong dependence of tidal 
strength on orbital separation).

• The spikes can be seen where the timescales become very short (caused by dynamical tides).
36
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Stellar Torque on KOI-54 Primary Star

ß tidal torque on the primary star as a 
function of the star’s rotation rate; to calculate
the torque on the KOI-54 primary star, we use 
gyre_tides to evaluate the response of the 
KOI-54 primary star model in the tidal 
potential for 25,000 rotation frequencies in the 
interval 0 ≤ rotation frequency ≤ 1 day^-1.

• we are significantly sampling the dense 
forest of resonances;

• a torque that’s generally a positive torque at 
small rotation frequencies, and negative at 
high frequencies;

Slow rotation
Positive Torque

Fast rotation
Negative Torque
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Tidal Physics Summary

• Traditional theory of tides: rely on parameterized equations

• Numerical solution of tidal response: equilibrium tides + dynamical tides

• Damping mechanism: convective damping, radiative damping

• New tool for understanding tides: open-source code GYRE-tides, no more
parameterized equations, applicable to massive binaries

38



Minilab 3: Take-aways of the Theory of Tides
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