MESA Down Under, Sydney, 17-21 June 2024

Joey Mombarg

Email: jmombarg@irap.omp.eu Website: https://jmombarg.github.io/PersonalWebsite/index.html

Exercises: https://mesa-best-practises-sydney2024.readthedocs.io/en/latest/index.html

IS IT OKAYP

IT IS. ACCEPTABLE

Starting a project

- You're advised to use the newest MESA release.
- Check for any known bugs on the MESA docs.
- Check out the test suite for examples.
- not always what you need! You can find these in \$MESA_DIR/star/defaults/*.defaults
- Do convergence tests.

Study the defaults files. MESA always makes a choice for physics, which is

Converged model

The SSE equations are solved within the tolerances used by MESA.

The relevant physical quantities (observables) do not significantly change when increasing the resolution.

MESA Down Under June 2024

When is an iteration accepted?

- The goodness of the Newton iteration is verified by the residuals. This is the difference between the LHS and RHS of the equation.
- MESA monitors the norm (average) and max residuals.
- 3 stages of gold tolerances

gold_tol_residual_norm1 gold_tol_max residual1 gold_iter_for_resid_tol2 = 5 gold_tol_residual_norm2 gold_tol_max_residual2 gold iter for resid tol3 = 10gold_tol_residual_norm3 gold_tol_max_residual3


```
= 1d - 11
= 1d-9
= 1d - 8
= 1d-6
= 1d-6
= 1d-4
```


Verify the resolution is sufficient

Start for example with the default settings, and increase resolution until further increase no longer significantly changes the result.

Think about required precision on the physical quantities you are interested in.

If that's not the case, be aware of the numerical precision you can achieve.

MESA Best Practices

Microlab 1

- Front-row tables: meshing, back-row tables: time stepping
- other one to 0.5. Coordinate with your table to have different values.
- How are the number of cells (zones) or time steps influenced?
- Which physical quantities are affected?
- What resolution would be sufficient?

Pick a value for mesh_delta_coeff (0.2-2) or time_delta_coeff (0.05-2), set the

Brunt-Väisälä frequency $N^{2} = g\left(\frac{1}{\Gamma_{1}}\frac{\mathrm{d}\ln P}{\mathrm{d}r} - \frac{\mathrm{d}\ln\rho}{\mathrm{d}r}\right)$

MESA Best Practices

Microlab 1 Setup

- Copy \$MESA_DIR/star/test_suite/1.5M_with_diffusion
- In the &star_job section of inlist_1.5M_with_diffusion, add

write_profile_when_terminate = .true. filename_for_profile_when_terminate = 'LOGS/mdcX_tdcY_nomaxdt/ profile mdcX tdcY nomaxdt Xc010.data'

In the &controls section of inlist_1.5M_with_diffusion, add

log_directory = 'LOGS/mdcX_tdcY_nomaxdt' set_min_D_mix = .true. ! only for time_delta_coeff time_delta coeff = Y $xa_central_lower_limit_species(1) = 'h1'$ $xa_central_lower_limit(1) = 0.1$

Change

 $D_mix_ignore_diffusion = 1d10$ $mesh_delta_coeff = X$ max_years_for_timestep = 0 $max_model_number = -1$

What does * delta coeff do?

<pre>mesh_delta_coeff</pre>	<pre>time_delta_coeff</pre>	# of cells	model number
0.5	2.0	1673	48
0.5	1.0	1677	74
0.5	0.7	1654	99
0.5	0.1	1665	638
0.5	0.05	1665	1281
<pre>mesh_delta_coeff</pre>	<pre>time_delta_coeff</pre>	# of cells	model number
<pre>mesh_delta_coeff</pre>	<pre>time_delta_coeff</pre>	# of cells 438	model number 145
<pre>mesh_delta_coeff</pre>	<pre>time_delta_coeff</pre>	# of cells 438 867	model number 145 144
<pre>mesh_delta_coeff</pre>	time_delta_coeff 0.5 0.5	# of cells 438 867 1725	model number 145 144 148
mesh_delta_coeff 2.0 1.0 0.5 0.3	time_delta_coeff 0.5 0.5 0.5 0.5	# of cells 438 867 1725 3078	model number 145 144 148 148

<pre>mesh_delta_coeff</pre>	<pre>time_delta_coeff</pre>	# of cells	model number
0.5	2.0	1673	48
0.5	1.0	1677	74
0.5	0.7	1654	99
0.5	0.1	1665	638
0.5	0.05	1665	1281
<pre>mesh_delta_coeff</pre>	<pre>time_delta_coeff</pre>	# of cells	model number
<pre>mesh_delta_coeff</pre>	<pre>time_delta_coeff</pre>	# of cells 438	model number 145
<pre>mesh_delta_coeff 2.0 1.0</pre>	<pre>time_delta_coeff</pre>	# of cells 438 867	model number 145 144
<pre>mesh_delta_coeff</pre>	time_delta_coeff 0.5 0.5 0.5	# of cells 438 867 1725	model number 145 144 148
<pre>mesh_delta_coeff</pre>	time_delta_coeff 0.5 0.5 0.5 0.5	# of cells 438 867 1725 3078	model number 145 144 148 148

MESA Best Practices

Spatial resolution

MESA Down Under June 2024

MESA Best Practices

Spatial resolution

MESA Down Under June 2024

MESA Best Practices

Joey Mombarg

11

Iemporal resolution

MESA Down Under June 2024

MESA Best Practices

Temporal resolution

MESA Down Under June 2024

MESA Best Practices

Comparing with observations

Converting mass fractions to [X/H]. Mention what solar composition you use.

 $[C/H] = log(X_C/X_H) - log(A_C/A_H) - log \epsilon_{C,O} + 12$

 $GN93_element_zfrac(e_C)=8.55d0$ GN93_element_zfrac(e_N)=7.97d0 GN93_element zfrac(e C)=8.87d0

Values of $\log \epsilon_{X,\odot}$ can be found in \$MESA_DIR/chem/public/chem_def.f90

MESA Best Practices

Microlab 2

Best practices for coding in MESA

- Define double precision variables as
- Numerical expressions as double

37.0_dp (or 37d0)

Exponents

powN(x), or pow(x, A) (and not $x \times N$)

Allocate array

real(dp), allocatable :: arr(:) allocate(arr(N))

real(dp) :: your_variable ! (and not double precision :: your_variable)

deallocate(arr) ! local arrays are automatically deallocated

MESA Best Practices

Face and cell quantities

Examples of quantities defined at the face: m_k, r_k, L_k, v_k

Examples of quantities defined at the cell: $\rho_k, T_k, X_{i,k}, P_k, \nabla_{\mathrm{ad},k}, \mathrm{d}m_k$

MESA Best Practices

ShMESA

To enable, add PATH=\$PATH: \$MESA_DIR/scripts/shmesa to ~/.bash_profile (or ~/.bashrc). shmesa work copy the work directory to the current location shmesa change change a parameter in the given inlist shmesa defaults copy the history/profile defaults to the current location shmesa cp copy a MESA directory without copying LOGS, photos, etc. search the MESA source code for a given string shmesa grep shmesa extras fill in the full run_star_extras.f90 template prepare a MESA directory for sharing shmesa zip shmesa help display options

Microlab 2

residual

- Save the max residual of the model to a new history column "hydrostat_res". (Don't forget to update how <u>many</u> extra <u>history</u> columns!) Some useful functions are maxval(), abs() and pow4().
- In the **&controls** section of inlist_1.5M_with_diffusion add

trace_history_value_name(3) = 'hydrostat_res'

- > ./clean; ./mk; ./rn
- To what precision is hydrostatic equilibrium satisfied?

In data_for_extra_history_columns of the run_star_extras.f90, write a routine to compute the

MESA Best Practices

Joey Mombarg

19

Microlab 2: result

allocate(residuals(s% nz))

do k = 2, s% nz residuals(k) = (abs(lhs - rhs)) / abs(lhs)end do

max residuals = MAXVAL(residuals) names(1) = 'max_residuals' vals(1) = max_residuals

Max residuals should be of order 10⁻⁷ - 10⁻⁹.

lhs = (s% Peos(k-1) - s% Peos(k)) / ((s% dm(k-1) + s% dm(k)) / 2.0 dp)rhs = standard_cgrav * s% m(k) / (4.0_dp * pi * pow4(s% r(k)))

MESA Best Practices

When is an iteration accepted?

- The goodness of the Newton iteration is verified by the residuals. This is the difference between the LHS and RHS of the equation.
- MESA monitors the norm (average) and max residuals.
- 3 stages of gold tolerances

gold_tol_residual_norm1 gold_tol_max residual1 gold_iter_for_resid_tol2 = 5 gold_tol_residual_norm2 gold_tol_max_residual2 gold iter for resid tol3 = 10gold_tol_residual_norm3 gold_tol_max_residual3


```
= 1d - 11
= 1d-9
= 1d - 8
= 1d-6
= 1d-6
= 1d-4
```


Microlab 3

<image>

Opacities in MESA

MESA Down Under June 2024

Fig. 2 in MESA Paper I, Paxton et al. (2011)

MESA Best Practices

What is a mixture?

Rosseland mean opacity

are fixed (to those of the Sun).

These tables are then interpolated in X and Z.

MESA has precomputed opacity tables assuming the relative metals fractions

MESA Best Practices

Opacities in MESA

- will not complain about inconsistencies!
- By default Type 1 tables use Zbase as the reference metallicity when Z > Z base. (Type 2 always does.) Set Z base to the initial metallicity.

&kap kap_file_prefix = 'gs98' kap_lowT_prefix = 'lowT_fa05_gs98' kap_C0_prefix = 'gs98_co' Zbase = 0.02/ ! end of kap namelist

Tables assume a specific mixture. It is best to be consistent with initial_zfracs. MESA

MESA Best Practices

Restarting

- A model can be restarted from a _mod file or a photo.
- Results can differ between model and photo restarts.
- 20M_pre_ms_to_core_collapse test_suite: Model restart ($_{rn}$): final Fe core mass of 1.6816 M_{\odot} Photo restart (/ rn_all): final Fe core mass of 1.5986 ${
 m M}_{\odot}$
- Example of photo restart:

./rn_nomodfiles inlist_start_header ./re_nomodfiles . inlist_to_end_core_h_burn_header <pre_nomodfiles _ inlist_to_start_he_core_flash_header</pre>

Microlab 3

- Copy \$MESA_DIR/star/test_suite/1M_pre_ms_to_wd

kap lowT prefix = '' ! Either lowT_fa05_gn93, lowT_fa05_gs98, or lowT_fa05_a09p

In &star_job of inlist_start add

initial_zfracs = ... !2 = GN93, 3 = GS98, 6 = A09

(full references can be found in \$MESA_DIR/chem/public/chem_def.f90

In &kap of inlist_start, inlist_to_end_core_h_burn and inlist_to_start_he_flash change

kap_file_premix = '' ! Either gn93, gs98, a09, OP_gs98, or OP_a09_nans_removed_by_hand

MESA Best Practices

Microlab 3: result

The choice of mixture affects the star's position in the HRD. Know how the choice affects your science case.

MESA Down Under June 2024

Joey Mombarg

MESA Best Practices

Microlab 3: result

are using.

MESA Down Under June 2024

To intersect the Sun, also use the appropriate Y and Z for the mixture that you

MESA Best Practices

The effect of Zbase

MESA Down Under June 2024

MESA Best Practices

HPC with MESA

- Generate a set of inlists and file with the paths
 - config=../paths_to_inlists.txt
- Run a specific inlist with ./star inlist name
- Job array

sbatch job ——array 0-99

Make sure your work dir is on the **\$SCRATCH** disk.

inlist=\$(awk -v ArrayTaskID=\$SLURM_ARRAY_TASK_ID '\$1 ArrayTaskID {print \$2}' \$config)

MESA Best Practices

HPC with **MESA**

MESA Best Practices

Publishing with MESA

- Paxton et al. (2011, 2013, 2015, 2018, 2019); Jermyn et al. (2023)
- Also consider citing the relevant microphysics

The MESA EOS is a blend of the OPAL \citep{Rogers2002}, SCVH \citep{Saumon1995}, FreeEOS \citep{Irwin2004}, HELM \citep{Timmes2000}, PC \citep{Potekhin2010}, and Skye \citep{Jermyn2021} E0Ses.

Radiative opacities are primarily from OPAL \citep{Iglesias1993, Iglesias1996}, with low-temperature data from \citet{Ferguson2005} and the high-temperature, Compton-scattering dominated regime by \citet{Poutanen2017}. Electron conduction opacities are from \citet{Cassisi2007} and \citet{Blouin2020}.

Nuclear reaction rates are from JINA REACLIB \citep{Cyburt2010}, NACRE \citep{Angulo1999} and additional tabulated weak reaction rates \citet{Fuller1985, Oda1994, Langanke2000}. Screening is included via the prescription of \citet{Chugunov2007}. Thermal neutrino loss rates are from $\mathbf{titet}{Itoh1996}$.

Always cite all MESA instrument papers at the time of your MESA version

MESA Best Practices

Publishing with MESA

Relevant citations for included tools

ADIPLS	Christensen-Dalsg
GYRE	Townsend et al. (20
RSP	Smolec & Moskalik
STELLA	Blinnikov et al. (200

Cite any MESA Zenodo Community material that you use. You can also cite the MESA SDK that way.

- aard (2008)
- 013, 2018); Goldstein & Townsend (2020)
- (2008)
- 04, 2006), Baklanov et al. (2005)

Publishing with MESA

- Provide all material necessary to reproduce your results. MESA SDK version.
 - Also consider providing computed models (profiles, history).
- A useful storage service is Zenodo. Permanent DOI, uploads to up 50Gb. MESA Zenodo Community

shMESA zip for sharing a work directory.

This includes inlist, run_star_extras/run_binary_extras, MESA version, and

"Science doesn't have to be correct, but reproducible."

MESA Best Practices

MESA-users mailing list

https://lists.mesastar.org/mailman/listinfo/mesa-users

- If your question concerns an error or unexpected behaviour, provide a complete work directory that reproduces the problem.
- Mention the release number, MESA SDK, and machine/OS.
- Always respond to the entire mailing list.

Use MESA Github for reporting bugs/issues, use the mailing list for assistance.

