
Multi-Agent Intention Progression with Black-Box Agents

Michael Dann1∗ , Yuan Yao2 , Brian Logan3 and John Thangarajah1

1RMIT University
2Zhejiang University of Technology

3Utrecht University
{michael.dann, john.thangarajah}@rmit.edu.au, yaoyuan@zjut.edu.cn, b.s.logan@uu.nl

Abstract
We propose a new approach to intention progres-
sion in multi-agent settings where other agents are
effectively black boxes. That is, while their goals
are known, the precise programs used to achieve
these goals are not known. In our approach, agents
use an abstraction of their own program called a
partially-ordered goal-plan tree (pGPT) to sched-
ule their intentions and predict the actions of other
agents. We show how a pGPT can be derived
from the program of a BDI agent, and present
an approach based on Monte Carlo Tree Search
(MCTS) for scheduling an agent’s intentions using
pGPTs. We evaluate our pGPT-based approach in
cooperative, selfish and adversarial multi-agent set-
tings, and show that it out-performs MCTS-based
scheduling where agents assume that other agents
have the same program as themselves.

1 Introduction
A key problem for an autonomous intelligent agent with mul-
tiple goals is ‘what to do next’: which goal the agent should
be trying to achieve, and which means it should use to achieve
it. In the popular Belief-Desire-Intention (BDI) approach
to agents [Rao and Georgeff, 1992], this problem is termed
the intention progression problem (IPP) [Logan et al., 2017].
BDI agents are characterised by the concepts of beliefs, goals
and plans. Beliefs represent the information an agent has
about itself, the environment and about other agents. Goals
are states the agent would like to bring about. Plans are
recipes for achieving goals, and are composed of primitive
actions that directly change the state of the environment, and
subgoals which are achieved by their own plans. An intention
is formed when the agent commits to achieving a (top-level)
goal utilising a particular plan. A key feature of BDI agents
is their ability to simultaneously pursue multiple intentions.
In order to do so, at each deliberation cycle, the agent must
select which of its multiple intentions it should progress (i.e.,
intention selection) and, if the next step within the selected
intention is a subgoal, select the best plan to achieve it (i.e.,
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plan selection). These two choices together form the intention
progression problem.

A number of approaches to various aspects of the inten-
tion progression problem have been proposed in the litera-
ture, including summary-information-based (SI) [Thangara-
jah et al., 2003; Thangarajah and Padgham, 2011], coverage-
based (CB) [Waters et al., 2014; Waters et al., 2015] and
Monte-Carlo Tree Search-based (MCTS) [Yao et al., 2014;
Yao and Logan, 2016; Yao et al., 2016c] approaches. Much
of this work has focussed on the single agent setting, where
the key challenge is the interleaving of steps in plans in dif-
ferent intentions to avoid conflicts, i.e., when the execution
of a step in one plan makes the execution of a step in another
concurrently executing plan impossible. Recently, Dann et
al. [2020] extended the MCTS-based approach in [Yao and
Logan, 2016] to a multi-agent setting. In the multi-agent set-
ting, how an agent progresses its intentions has implications
for both the achievement of its own goals and the achieve-
ment of the goals of other agents, e.g., if the agent selects
a plan that consumes a resource necessary for another agent
to achieve its goal. While the ‘intention-aware’ approach in
[Dann et al., 2020] was shown to out-perform non-intention-
aware scheduling such as [Yao and Logan, 2016], it assumes
that agents have access to the plans comprising the other
agents’ programs for achieving their goals. This is reason-
able in multi-agent systems where the agents are co-designed,
but is less plausible for agents that are not co-designed, i.e.,
where each agent may have no information about the plans
used by other agents.

One way of overcoming this limitation is for an agent to
assume that the programs of other agents are the same as its
own when progressing its intentions. However, such “ego-
centric” scheduling can give rise to conflicts if the plans used
by other agents achieve subgoals in a different order, or order
primitive actions differently. For example, an agent a1 whose
plan to achieve the goal of doing the household chores con-
tains subgoals to do the laundry, vacuum, and wash the dishes
(in that order) may assume that another agent, a2, tasked with
doing the chores will wash the dishes last. This may result in
a conflict when a1 tries to use the sink to prepare lunch, if the
program of a2 has washing the dishes as the first subgoal.

A more reasonable assumption to make is that the other
agents use a similar program, but may order some subtasks
differently. In this paper, we propose a new approach to in-
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tention progression in a multi-agent setting, in which agents
schedule their intentions and predict the actions of other
agents based on an abstraction of their own program called a
partially-ordered goal-plan tree (pGPT). A partially-ordered
goal-plan tree is an alternating and-or tree that captures only
the execution order implied by the dependency relationships
inherent in the agent’s program. We show how a pGPT can
be derived from the program of a BDI agent, and how the
MCTS-based approach in [Dann et al., 2020] can be extended
and adapted to schedule an agent’s intentions using pGPTs
in multi-agent settings. As in [Dann et al., 2020], we evalu-
ate our approach in cooperative, selfish and adversarial multi-
agent settings. Our results indicate that pGPT-based schedul-
ing out-performs MCTS-based scheduling where agents as-
sume that other agents behave in the same way as themselves.

2 Preliminaries
In this section, we introduce and define the basic elements
of our approach to intention progression, including beliefs,
goals, actions and plans.

Beliefs and Goals. The agent’s beliefs represent the informa-
tion an agent has about itself, the environment and about other
agents. The agent’s belief base B is a finite set of ground lit-
erals (proposition p or its negation ¬p):

B = {b1, . . . , bn}

B is updated at each cycle to incorporate the agent’s current
percepts. We assume that B is consistent, i.e., there is no
p such that p,¬p ∈ B. The agent’s top-level goals repre-
sent states of affairs that the agent wants to bring about. The
agent’s goal base G is a finite set of ground literals:

G = {g1, . . . , gm}

G does not need to be consistent, e.g., conflicting goals may
be achieved at different times.

Actions and Plans. An agent can perform a set of primitive
actions in the environment, A = {a1, . . . , ak}. The precon-
ditions of an action ai are a set of literals φ = pre(ai) that
must be true before the execution of the action, and the post-
conditions of the action are a set of literals ψ = post(ai) that
are true after the execution of the action. We assume that ac-
tions are deterministic: if the preconditions of an action hold,
then the postconditions of the action hold after executing the
action. An action is executable given the agent’s beliefs B if
B |= φ. If the agent attempts to execute an action whose pre-
conditions do not hold, the action fails (cannot be executed).

To achieve the agent’s goals, actions are organised into
plans. Each goal g is associated with a set of plans π1, . . . , πn
that achieve g. Each plan πi is of the form g : χ ←
s1; . . . ; sm, where χ = pre(πi) is a set of literals specify-
ing the context condition which must be true for πi to begin
execution, and s1; . . . ; sm is a sequence of steps which are ei-
ther actions or subgoals. A plan can be executed if its context
condition holds, the precondition of each of its action steps
holds when the step is reached, and each of its subgoal steps
has an executable plan when the subgoal is reached. Note
that, for many agent plans, it is only necessary that B |= χ

for the plan to be executable, as the postcondition of an ac-
tion step or achievement of a subgoal si may establish the
precondition of an action step sj or the context condition of
plans for a subgoal step sj , i < j. This is termed a p-effect
(preparatory effect) in [Thangarajah et al., 2003].

A goal g is considered achieved (and any intention with
g as top-level goal is dropped) if (and only if) all the steps
in a plan πi for g are successfully executed. We abuse no-
tation slightly, and define the preconditions of a goal, g, as
the union of the context conditions of the plans to achieve
g, i.e., pre(g) =

⋃
πi

pre(πi) (this is a technical device and
only one of the plans for g must be executable for g to be
“executable”). The postcondition of a goal, g, is g itself, i.e.,
g = post(g). We denote by P the set of plans comprising the
agent’s program.

3 Partially-Ordered Goal-Plan Trees
In much of the work on intention progression in BDI agents,
the relationships between the plans, actions and subgoals that
can be used to achieve a goal are represented by a hierarchical
structure termed a goal-plan tree (GPT) [Thangarajah et al.,
2003; Thangarajah and Padgham, 2011; Yao et al., 2016a].
The root of a goal-plan tree is a goal-node representing a top-
level goal, and its children are plan nodes representing the
potential plans to achieve the top-level goal. The agent only
needs to execute one of these plans to achieve the goal, hence,
the goal nodes are viewed as or-nodes. The children of a plan
node are the action and subgoal nodes corresponding to the
steps in the plan body. The agent needs to execute all of the
child nodes to achieve the goal. Thus, plan nodes are viewed
as ordered and-nodes. Each subgoal node has its associated
plans as children, giving rise to a tree structure representing
all possible ways an agent can achieve the top-level goal.

While goal-plan trees have been shown to be effective for
single-agent scheduling [Yao et al., 2016c; Yao and Logan,
2016] and multi-agent scheduling where the program(s) of
the other agents are known [Dann et al., 2020], they are less
appropriate in multi-agent settings where the agents are not
co-designed. We therefore propose a new approach to multi-
agent intention progression in which agents schedule their in-
tentions based on abstractions of their own programs which
we call partially-ordered goal-plan trees (pGPT). A partially-
ordered goal-plan tree is an alternating and-or tree that cap-
tures only the execution order implied by the p-effects in the
agent’s program, rather than strictly adhering to the textual
order of steps specified by the developer. More precisely:
Definition 1 (Partially-Ordered Goal-Plan Tree) A pGPT
T = (G,P,A, g0, children, {≺π: π ∈ P}) is an alternat-
ing and-or tree where:

• elements ofG∪A are or-nodes (goals and actions)1 and
elements of P are and-nodes (plans);

• g0 ∈ G is the root (top-level goal);
• children : G ∪ P −→ 2G∪P∪A is a function assigning

a (non-empty) set of children to (non-leaf) nodes in the
tree;

1Viewing action nodes as or-nodes without children is a technical
device to simplify the definition.



• or-nodes only have children in P : for g ∈ G,
children(g) ⊆ P ;

• and-nodes only have children in G ∪ A: for π ∈
P, children(π) ⊆ G ∪A; and

• the set children(π) for each π ∈ P is partially ordered
by ≺π .

An execution of a pGPT is a traversal of the tree starting at
the root, g0. If visiting an or-node, the next step in the traver-
sal is to pick any child and visit it; if in an and-node, visit
each child in an order consistent with ≺π of the children. A
pGPT T is executable if there is a traversal of T that is exe-
cutable (given pre- and post conditions of plans and actions)
from some initial state of the environment, i.e., if we start in
this initial state and update it with the postconditions of each
visited action, then the pre-conditions of the next action or
context condition of the next plan in the traversal hold in the
updated state.

A pGPT T for a top-level goal g0 and agent program Π =
{π1, . . . , πn} can be built recursively as follows. Set g0 to be
the root of the tree (or-node) and add as children(g0) and-
nodes pi for each plan πi = gi : χi ← si1; . . . ; sim where
gi = g0. For each plan and-node, pi, add as children(pi) or-
nodes for the each of the steps of πi, si1; . . . ; sim. To establish
the ordering ≺πi

of the or-nodes representing the steps in πi,
we proceed as follows:

• for each pair of steps sij , s
i
k, 1 ≤ j < k ≤ m, if a

literal l ∈ post(sij) ∩ pre(sik) then sij ≺πi
sik, i.e., if

sij establishes a precondition for sik, we add an ordering
constraint that sij must be executed before sik (if sik is a
subgoal, before any step in whichever plan is selected to
achieve sik);

• if there is a step sic, 1 ≤ c < j (or k < c ≤ m) where the
complementary literal ∼ l ∈ post(sic), we add sic ≺πi

sij (respectively sik ≺πi
sic) to ≺πi

to ensure that the
execution of sic does not clobber l.

Finally, for each or-node where the corresponding step sj
is a (sub)goal, gj , we recurse, i.e., we add as children(gj)
and-nodes for each plan to achieve gj , and so on.

For example, given the agent program Π = {π0, π1, π2}:
π0 : g0 : χ0 ← g1; a0; a1

π1 : g0 : χ1 ← a3; a4; a5

π2 : g1 : χ2 ← a2
where χ0 = c0 ∧ c2, χ1 = c1, χ2 = c2, pre(a0) = c0,
pre(a1) = c3 ∧ c4, pre(a2) = c2, pre(a3) = c1, pre(a4) =
c1, pre(a5) = c6, post(a0) = c3, post(a1) = c5, post(a2) =
c4, post(a3) = c6, post(a4) = c7, post(a5) = c8, we can
generate the pGPT shown in Figure 1. In Figure 1, solid ar-
rows connect goal nodes to the plan nodes that achieve the
goal, e.g., p0 and p1 are two plan nodes to achieve the goal
node g0; dashed arrows connect plan nodes to their execu-
tion steps, e.g., g1, a0, a1 are the execution steps of plan node
p0; and double arrows indicate the partial ordering relation-
ship between steps in a plan, e.g., action a0 must be executed
before action a1, as one of the preconditions of a1 (c3) is es-
tablished by the postcondition of a0.

g0

p0

g1 a0a1

p2

a2

p1

a4a3a5

Figure 1: An example of a pGPT.

4 Scheduling Approach
We now present a new approach to multi-agent intention
scheduling based on pGPTs, which we call IB . We adapt and
extend Dann et al.’s [2020] Monte-Carlo Tree Search-based
approach, IA, which was shown to outperform several com-
peting methods in a multi-agent setting. We first briefly recall
the approach of Dann et al. before explaining how we adapt
it to handle partial ordering.

4.1 Intention Scheduling with MCTS
The Monte Carlo Tree Search (MCTS) algorithm is a well-
known heuristic search algorithm which has been shown to be
successful in many multiplayer games [Browne et al., 2012].
The algorithm works by building a search tree incrementally
through simulation. Starting at the root node, a tree policy
is used to navigate to a leaf node. The tree policy strives to
achieve a balance between exploration (traversing nodes that
have rarely been visited) and exploitation (favouring steps
that previously led to strong returns). The leaf node is then
expanded, and a rollout policy is used to simulate steps until
a terminal state is reached. Each node visited during the tree
policy phase then has its average return updated based on the
outcome of the simulation.

Early work on applying MCTS to intention scheduling
[Yao et al., 2014; Yao et al., 2016c; Yao and Logan, 2016]
focussed on the single-agent setting. More recently, Dann
et al. [2020] extended the approach to multi-agent schedul-
ing by introducing a payoff matrix, Pij . For each (i, j) pair,
the payoff matrix captures the assumed payoffs that agent i
receives upon the completion of agent j’s goals. For exam-
ple, allied agents are modelled by defining positive payoffs
for both the agent’s own goals and those of its allies, while
adversarial agents are modelled by defining positive payoffs
for the agent’s own goals but negative payoffs for the goals of
other agents. In the scheduler’s underlying MCTS algorithm,
the payoff matrix is used to calculate the return for each agent
at the end of a rollout.

4.2 IB: Multi-Agent Scheduling with pGPTs
The scheduling approach taken in this work builds directly
upon the IA scheduler of Dann et al. [2020]. However, in
contrast to IA, we do not assume that the order in which other
agents will execute their plans is known. Rather, we assume
that other agents may act in any way that is consistent with
the ordering ≺ implied by the p-effects in the agent’s own
program. Consequently, we model agents’ intentions using
pGPTs, rather than GPTs.



In the MCTS algorithm, this change impacts both node ex-
pansion and the rollout policy. Node expansion now adds
branches for all steps that are executable according to the
pGPT’s ordering constraints. Similarly, the rollout policy
chooses uniformly from amongst all such steps. This growth
in the branching factor is illustrated in Figure 2, which shows
a pGPT (left) and one possible linearisation of it into a GPT
(right). Suppose that nodes g0 and p0 have so far been tra-
versed. In the (totally ordered) GPT, the only step now exe-
cutable is a0 (providing its pre-conditions hold). However, in
the partially ordered pGPT, both a0 and g1 are executable.

An important consideration here is the amount of time
taken to compute the set of executable steps, since this cal-
culation is performed repeatedly during simulation. In Dann
et al.’s [2020] GPT-based approach this is straightforward:
since GPTs are totally ordered, one can just store a pointer
to the next node in each GPT. However, in our pGPT-based
approach, it is necessary to calculate the set of all steps that
are executable according to the ordering constraints. This can
be achieved by recursing through the tree structure, though
such recursion is relatively expensive. Instead, we propose
a more efficient method: First, for each node in each pGPT,
we store a list of its unmet temporal dependencies, i.e. the
set of steps that, according to ≺, must be executed before the
node in question. Then, each time a node is executed, we
loop through its temporal dependents (i.e., nodes that must
come afterwards according to ≺) and update their lists of un-
met dependencies. If all dependencies of a node are now met,
it is added to a list of candidate steps. Finally, the candidate
steps are filtered to ensure that all other logical requirements
are met. In particular, to be executable, a candidate step must
have its pre-conditions met. In addition, if the agent previ-
ously executed a plan or goal node, we force it to continue ex-
ecuting children of that node until it executes an action node.
The rationale here is that it makes little sense for an agent to
commit to a plan or goal until it has executed an underlying
action. Pseudocode for the computation of candidate steps
can be found in the Appendix.

5 Evaluation
In this section, we evaluate our approach to multi-agent
scheduling. We compare the performance of the IB pGPT-
based scheduler with IA, the GPT-based approach presented
in [Dann et al., 2020], and random pGPT and GPT-based
schedulers. As in [Dann et al., 2020], we consider three set-
tings: fully aware, where agents know all the top-level goals

g0

p0

a0 g1

a2 p2

a1

g0

p0

a0 g1 a2

p2

a1

ŏ ŏ

Figure 2: A pGPT (left) and one possible linearisation (right).

of other agents (termed ‘full vision’ in [Dann et al., 2020]);
partially aware, where agents know half of the other agents’
top-level goals (‘partial vision’); and unaware, where agents
know none of the other agents’ top-level goals (‘naı̈ve’). In
each setting, the agents are assumed to have plans for the top-
level goals they are aware of. However the IA agents sched-
ule on the assumption that the other agents have the same
plans (and hence the same GPTs) for these goals as them-
selves. That is, unlike [Dann et al., 2020], the plans/GPTs
of the other agents are not available to the agents; the other
agents are essentially ‘black boxes’.

As in [Dann et al., 2020], we assume that the agents share
the same model of actions (i.e., an action has the same pre-
and postconditions for each agent). We also assume that each
agent has the same set of actions available. While this is not
true in all cases, it holds for a large class of applications, e.g.,
where the agents interact with their environment via an API.

While pGPTs can be derived from agent programs as ex-
plained in Section 3, in the interests of generality and sim-
plicity, we implemented a pGPT generator that is capable
of generating ‘synthetic’ pGPTs corresponding to agent pro-
grams of varying complexity (and hence multi-agent schedul-
ing problems of varying difficulty). The pGPT generator is
based on the GPT generator developed for the Intention Pro-
gression Competition.2 (A detailed description of the pGPT
generator can be found in the Appendix.)

To generate the GPTs used by the IA agents, for each IA
agent in each trial we generated a random linearisation of the
pGPT used by the pGPT-based agent, similarly to Figure 2.
Different linearisations will typically achieve subgoals and
execute steps in a different order, but each ordering is con-
sistent with ≺. Each linearisation thus corresponds to a GPT
derived from a valid program for the task, e.g., written by a
different agent developer. All agents are therefore effectively
using different programs for a given top-level goal, but while
the pGPT agents abstract their programs into pGPTs, the IA
agents schedule and predict the next steps of other agents us-
ing the GPTs corresponding to the their own programs.

The random pGPT and GPT-based schedulers behave iden-
tically to the MCTS rollout policies used by IB and IA, re-
spectively. That is, they select uniformly from the set of all
executable steps, E . The only difference between the pGPT
and GPT-based schedulers is that, for the GPT-based sched-
uler, E is calculated via a linearisation of the agent’s pGPTs,
similarly to IA, and thus its behaviour is more restricted.

The generated pGPTs had a depth of 5. Each subgoal had
two corresponding plans, with each plan containing three ac-
tions and one subgoal (except the lowest-level plans, which
contained three actions only). For each trial, 12 GPTs were
generated, with 6 assigned to each agent. Thus, for example,
the partially-aware IB schedulers had access to 9 pGPTs (6
for their own goals and 3 for the goals of the other agent). The
partially-aware IA schedulers likewise had access to 9 GPTs,
but the 3 corresponding to the goals of the other agent were
derived from their own programs for those goals). The full
set of pGPTs contained 80 environment variables, where this
figure was chosen to yield enough scheduling clashes that the

2Available from intentionprogression.org.
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tasks were non-trivial, yet not excessively difficult.
We evaluated our approach under the three multi-agent set-

tings considered by Dann et al. [2020]: allied, neutral and
adversarial. In each of these settings there are two agents.
The aim in the allied setting is to maximise the total num-
ber of team goals achieved. In the neutral setting, the aim is
to maximise the agent’s own goal attainment and disregard
the number of goals achieved by the external agent, i.e. to act
selfishly. In the adversarial setting, the aim is to maximise the
agent’s own goal attainment while minimising the number of
goals achieved by the external agent. Accordingly, we use the
following scoring methodology:
• Allied: we report own goals + ally goals. Each agent is

assigned 6 pGPTs, so the possible score range is [0, 12].
• Neutral: we report own goals only, so the possible score

range is [0, 6].
• Adversarial: we report own goals− opponent goals, so

the possible score range is [-6, 6].
The results of these experiments are provided in Tables 1,
2 and 3, with scores averaged over 500 randomly generated
pGPT forests. Cell values indicate the score achieved by the
agent from that row when partnered with the agent above.
The numeric suffixes to the MCTS-based agents’ names indi-
cate their level of awareness of the other agent’s goals (100 =
fully aware, 50 = partially aware, 0 = unaware).

A striking feature of the results is their consistency: In each
setting and for each partner agent type, the fully aware IB
scheduler performed best. Given that IB is more flexible than
IA, both in terms of its ability to act and its ability to model
the behaviour of other agents, this may seem unsurprising.
However, recall from Section 4.2 that the MCTS search tree

has a greater branching factor under IB than under IA. Since
IA and IB were afforded the same number of simulated roll-
outs this means that the rollouts were spread more thinly un-
der IB , with nodes’ average returns calculated from fewer
samples. IB’s consistent edge over IA shows that this trade-
off was worthwhile, i.e., IB’s greater uncertainty about the
return was more than compensated for by its extra flexibility.

Note that the significance of certain results is best appre-
ciated by considering the number of goals unachieved. For
example, in the allied setting, the (IA 100, IA 100) partner-
ship averaged 10.157 goals, while (IB 100, IB 100) aver-
aged 11.475; an increase of only ≈1.3 goals. However, since
the best possible score in this setting is 12, this represents a
72% reduction in unachieved goals.

The unaware agents IA 0 and IB 0 have no knowledge of
other agents’ goals or the plans used to achieve those goals,
and so are unable to make any predictions about the next ac-
tion of the other agent. As such, they are essentially doing
single-agent scheduling with no consideration of the other
agents’ intentions, which is the baseline case in [Dann et al.,
2020]. The small improvement in performance of IB 0 over
IA 0 in the allied and neutral settings (4% increase in goals
achieved by two IB 0 agents over two IA 0 agents in the al-
lied setting, and 3% in neutral) is attributable to the IB agents
having more flexibility in the order in which actions are exe-
cuted. This allows each IB agent to avoid more conflicts be-
tween its own intentions. However, neither the IB 0 nor the
IA 0 agents can effectively avoid conflicts with the intentions
of the other agent (since these are unknown). As the results
show, as the agents’ knowledge of the other agent’s goals in-
creases, the performance of both IB and IA increases, but IB
is better able to exploit the additional information. For exam-

Ally

rand pGPT rand GPT IB 100 IB 50 IB 0 IA 100 IA 50 IA 0

rand pGPT 4.023 3.771 9.103 7.743 5.766 7.744 6.864 5.631
rand GPT 3.771 3.634 8.327 7.400 5.850 7.292 6.649 5.416
IB 100 9.103 8.327 11.475 11.158 10.779 10.904 10.661 10.247
IB 50 7.743 7.400 11.158 10.446 9.342 10.342 9.895 9.204
IB 0 5.766 5.850 10.779 9.342 7.180 9.522 8.673 7.097
IA 100 7.744 7.292 10.904 10.342 9.522 10.157 9.928 9.357To

ta
lS

co
re

IA 50 6.864 6.649 10.661 9.895 8.673 9.928 9.343 8.466
IA 0 5.631 5.416 10.247 9.204 7.097 9.357 8.466 6.897

Table 1: Allied setting. The best total team score with each ally type is bolded.

Other Scheduler

rand pGPT rand GPT IB 100 IB 50 IB 0 IA 100 IA 50 IA 0

rand pGPT 2.001 2.070 2.034 1.989 2.017 2.029 2.000 2.102
rand GPT 1.723 1.866 1.793 1.781 1.830 1.840 1.883 1.863
IB 100 5.537 5.211 5.339 5.299 5.548 5.098 5.098 5.282
IB 50 4.677 4.631 4.510 4.419 4.621 4.452 4.468 4.568
IB 0 3.738 3.907 3.510 3.475 3.585 3.621 3.592 3.787
IA 100 4.577 4.538 4.418 4.355 4.643 4.455 4.418 4.562

Sc
or

e

IA 50 4.007 4.171 3.898 3.795 4.025 3.945 3.852 4.175
IA 0 3.457 3.669 3.319 3.115 3.235 3.282 3.296 3.479

Table 2: Neutral setting. The best results achieved with respect to the other scheduler type are bolded.



Opponent

rand pGPT rand GPT IB 100 IB 50 IB 0 IA 100 IA 50 IA 0

rand pGPT 0.000 0.224 -4.839 -3.001 -1.767 -3.429 -2.274 -1.270
rand GPT -0.224 0.000 -4.205 -2.951 -2.094 -3.395 -2.605 -1.690
IB 100 4.839 4.205 0.000 2.280 4.317 1.666 2.542 3.735
IB 50 3.001 2.951 -2.280 0.000 2.050 -0.471 0.746 2.058
IB 0 1.767 2.094 -4.317 -2.050 0.000 -2.604 -0.977 0.652
IA 100 3.429 3.395 -1.666 0.471 2.604 0.000 1.280 2.672N

et
Sc

or
e

IA 50 2.274 2.605 -2.542 -0.746 0.977 -1.280 0.000 1.489
IA 0 1.270 1.690 -3.735 -2.058 -0.652 -2.672 -1.489 0.000

Table 3: Adversarial setting. The best net score (own goals minus opponent goals) achieved against each opponent type is bolded.

ple, in the neutral setting, two IB 100 agents can achieve 20%
more goals than two IA 100 agents because they are better at
avoiding conflicts with the other agent’s intentions. Indeed
the total number of goals achieved by two IB 100 agents in
the neutral setting is greater than two IA 100 agents in the al-
lied setting, i.e., two ‘selfish’ IB 100 agents are more effec-
tive than two cooperating IA 100 agents. A similar pattern is
seen when IB is paired with other schedulers.

The experiments also show that a key result from [Dann
et al., 2020] holds in the black-box setting; namely, both
IA and IB improve as they are afforded more knowledge
of the other agent’s goals, demonstrating that they truly are
intention-aware. In the Appendix, we break the allied setting
scores down into own goals and ally goals. From this, it is
evident that the fully aware IB scheduler was the most effec-
tive at helping its partner achieve goals, similar to findings in
[Dann et al., 2020].

6 Related work
The first MCTS-based approach to intention scheduling with
BDI agents was that of Yao et al. [2014]. They used a variant
of MCTS called Single-Player MCTS [Schadd et al., 2012] to
schedule the intentions of a single agent at the level of plans
rather than actions. The work was later extended to schedul-
ing intentions at the action level [Yao and Logan, 2016], with
deadlines [Yao et al., 2016b] and for exploiting synergies
[Yao et al., 2016c]. This work on single agent scheduling
formed the basis for the work by Dann et al. [2020] on using
MCTS-based scheduling for multi-agent settings.

There have been other approaches to scheduling intentions.
For example, the early work by Thangarajah et al. [2002;
2003; 2011] and Clement et al. [2007; 1999; 2000] used the
notion of summary information to look-ahead at the inten-
tion structures and schedule accordingly. Whilst Thangarajah
et al. focussed on scheduling the intentions of a single agent
in BDI setting using GPTs, Clement et al. focussed on cen-
trally scheduling the intentions of multiple agents in planning
agents using hierarchical task networks (HTNs).

Another line of work considers incorporating an HTN
planner into a BDI agent language, thus providing the ability
to look-ahead and find solutions to ensure the successful exe-
cution of an intention, when necessary [Sardiña et al., 2006;
de Silva, 2017]. Whilst these methods focus on finding solu-
tions to achieve a single intention and do not take into account

interactions with other concurrent intentions, it could be pos-
sible to incorporate the work of Clement et al., mentioned
above, to centrally schedule intentions of BDI agents.

Conversely, de Silva [2018] considers incorporating ideas
from the BDI paradigm into HTN planning, so as to support
interleaved deliberation, acting, and failure recovery. Again,
however, this work focuses only on the pursuit of single goals.

Finally, we note the coverage-based approach as used in
[Thangarajah et al., 2012; Waters et al., 2014; Waters et al.,
2015], where the probability of executing plans to achieve
a goal in the different possible states of the environment is
used to schedule intentions. The intuition is to progress the
intention that has the highest probability of becoming non-
executable in future states. In contrast to our work, this ap-
proach has so far been applied only to single-agent settings.

Beyond the differences already mentioned, unlike our ap-
proach, all of the above methods require full knowledge of
the agents’ intention structures.

7 Conclusion
In this paper we proposed an approach to multi-agent inten-
tion progression in environments where the other agents are
not co-designed, and thus their precise program(s) are un-
known. We evaluated our approach in allied, neutral and ad-
versarial settings, and showed that it outperformed MCTS-
based scheduling where agents assume that other agents will
execute plans in the same order as themselves. A possible
direction for future work is to further relax the assumptions
regarding other agents, e.g. by assuming that other agents will
pursue some subset of all known goals in the environment, but
where this subset must be inferred at runtime.
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A Appendix
In this appendix we provide some further experimental details
that did not fit within the space constraints of the main text.

A.1 Further Scheduler Details
As in [Dann et al., 2020], we assume that the environment
is turn-based, with each turn persisting until an agent selects
an action node from one of its pGPTs. Likewise, we assume
that agents can pass their turn, either by choice or necessity
(if there are no executable steps left).

The MCTS-based schedulers are afforded a simulation
budget per turn, meaning that they must select an action node
within this budget. Accordingly, if the first greedy step in the
search tree does not lead to an action node, we keep following
the chain of greedy steps until an action node is encountered.
For example, the scheduler might select goal g0, then the un-
derlying plan p0, then finally the action a0 from within p0.

The computational budget for the MCTS-based schedulers
is specified via two parameters: α, the number of node expan-
sions to be performed; and β, the number of simulations per-
formed per node expansion. Following previous work [Yao
and Logan, 2016; Dann et al., 2020], we set α = 100 and
β = 10.

In tree policy phase of MCTS, step selections are deter-
mined by maximising the UCB1 value [Browne et al., 2012],
which sums the average return with an exploration bonus:

UCB1 value =
sum(payoffs)

n
+ c

√
2 lnN

n

where c controls the scale of the exploration bonus, n is the
number of times the step has been tried, and N is the total
number of rollouts performed so far. Following [Dann et al.,
2020], we set c =

√
2.

Also like [Dann et al., 2020], we ran “mirror matches” for
each generated set of pGPTs. In the second leg of each mirror
match, the 6 goals assigned to each agent were swapped, as
well as the first agent to move. This was done to reduce noise
due to unfair task assignments. All results were averaged over
500 mirror matches on different sets of generated pGPTs.

One subtlety regarding the payoff matrix used by both IA
and IB is that it specifies not only the overall objective for
the scheduler itself, but also captures assumptions about the
objectives of the external agents. In the adversarial setting,
it is reasonable to assume that external agents will also be-
have adversarially. However, in certain real-world tasks (e.g.
driving a car in heavy traffic), it can be difficult to know
whether external agents will behave in a friendly manner or
selfishly. Dann et al. [2020] found in their allied and neu-
tral experiments that IA was impacted little by switching the
friendly/selfish assumption about other agents. Therefore, to
avoid having an excessive number of agent variants, we con-
figured the payoff matrix to assume neutral behaviour from
external agents in both settings.

A.2 Algorithm for Calculating Candidate Steps
In Section 4.2 of the main text we describe an algorithm for
computing the set of executable steps in a pGPT efficiently.
The pseudocode for this approach, including how it fits into
the main environment loop, is provided in Algorithm 1.

A.3 GPG Generator
We have proposed a pGPT generator based on the existing
GPT generator used in the Intention Progression Competi-
tion3. As with the original GPT generator, developers can
specify the input parameters to control the shape and the
properties of the pGPT, e.g., the depth of the tree, the number
of plans to achieve a goal and so on. To generate a pGPT,
we need first generate a GPT as before, and then replace the
total ordering relationship of steps in each plan by partial or-
dering constraints implied by the p-effects of these steps as
described in Section 3. Each action node and goal node main-
tains a set of action and goal nodes named prerequisite steps
which must be executed or achieved before the action or sub-
goal itself. From the top-level goal, we systematically check
execution steps in each plan to achieve the top-level goal and
compute all p-effects in these plans. If there is a p-effect c es-
tablished by a step si (i.e., c is one of si’s postcondition) and
it is one of the preconditions of a step sj (si and sj belong
to the same plan), then we add si to the set of prerequisite
steps of sj . Moreover, any steps sk that establish ¬c must be
executed before si or after sj , i.e., sk is either in the set of
prerequisite steps of si or sj is one of sk’s prerequisite steps.
We then recurse the above procedure for subgoals in the plan
to compute all the dependency relationships for the hierar-
chies below. Finally, an XML file representing the pGPT is
generated.

A.4 Breakdown of Allied and Adversarial Results
In the main text, we report combined team scores for the al-
lied setting and score differentials for the adversarial setting.
In Tables 4 and 5, we break these figures down into individual
agent scores so that the effect of each scheduling approach on
the partnered agent can be seen more clearly.

3https://www.intentionprogression.org/

Algorithm 1 Environment Loop with Candidate Steps
1: initialise environment state, env
2: initialise a list of unmet temporal dependencies for each node.
3: C ← G . initialise candidate steps to set of top-level goals
4:
5: while there are executable steps remaining do
6: E ← FILTERCANDIDATES(C) . get executable steps
7: s← agent.SCHEDULESTEP(E)
8: update env according to s
9: for each temporal dependent d of s do

10: Remove s from d’s list of unmet temporal dependencies.
11: if all temporal dependencies of d are now met then
12: C ← C ∪ d
13:
14: function FILTERCANDIDATES(C)
15: E ← ∅
16: for each candidate step c ∈ C do
17: if all pre-conditions of c are met

and c conforms to any previous goal/plan selection
then E ← E ∪ c

18: return E

https://www.intentionprogression.org/


Ally

rand pGPT rand GPT IB 100 IB 50 IB 0 IA 100 IA 50 IA 0

rand pGPT 4.023 3.771 9.103 7.743 5.766 7.744 6.864 5.631
rand GPT 3.771 3.634 8.327 7.400 5.850 7.292 6.649 5.416
IB 100 9.103 8.327 11.475 11.158 10.779 10.904 10.661 10.247
IB 50 7.743 7.400 11.158 10.446 9.342 10.342 9.895 9.204
IB 0 5.766 5.850 10.779 9.342 7.180 9.522 8.673 7.097
IA 100 7.744 7.292 10.904 10.342 9.522 10.157 9.928 9.357To

ta
lS

co
re

IA 50 6.864 6.649 10.661 9.895 8.673 9.928 9.343 8.466
IA 0 5.631 5.416 10.247 9.204 7.097 9.357 8.466 6.897

rand pGPT 2.012 2.076 3.950 3.095 2.008 3.525 2.908 2.119
rand GPT 1.695 1.817 3.493 2.769 1.826 3.205 2.624 1.831
IB 100 5.154 4.835 5.738 5.340 5.038 5.532 5.183 4.833
IB 50 4.648 4.631 5.818 5.223 4.618 5.602 5.132 4.721
IB 0 3.758 4.023 5.741 4.723 3.590 5.486 4.728 3.829
IA 100 4.219 4.087 5.372 4.740 4.037 5.078 4.682 4.128O

w
n

G
oa

ls

IA 50 3.955 4.025 5.478 4.762 3.944 5.246 4.672 4.014
IA 0 3.513 3.586 5.414 4.483 3.268 5.229 4.451 3.448

rand pGPT 2.012 1.695 5.154 4.648 3.758 4.219 3.955 3.513
rand GPT 2.076 1.817 4.835 4.631 4.023 4.087 4.025 3.586
IB 100 3.950 3.493 5.738 5.818 5.741 5.372 5.478 5.414
IB 50 3.095 2.769 5.340 5.223 4.723 4.740 4.762 4.483
IB 0 2.008 1.826 5.038 4.618 3.590 4.037 3.944 3.268
IA 100 3.525 3.205 5.532 5.602 5.486 5.078 5.246 5.229A

lly
G

oa
ls

IA 50 2.908 2.624 5.183 5.132 4.728 4.682 4.672 4.451
IA 0 2.119 1.831 4.833 4.721 3.829 4.128 4.014 3.448

Table 4: A breakdown of the results for the allied setting. The best total team score with each ally type is bolded. Since each scheduler was
assigned 6 GPTs, the maximum possible team score was 12.

Opponent

rand pGPT rand GPT IB 100 IB 50 IB 0 IA 100 IA 50 IA 0

rand pGPT 0.000 0.224 -4.839 -3.001 -1.767 -3.429 -2.274 -1.270
rand GPT -0.224 0.000 -4.205 -2.951 -2.094 -3.395 -2.605 -1.690
IB 100 4.839 4.205 0.000 2.280 4.317 1.666 2.542 3.735
IB 50 3.001 2.951 -2.280 0.000 2.050 -0.471 0.746 2.058
IB 0 1.767 2.094 -4.317 -2.050 0.000 -2.604 -0.977 0.652
IA 100 3.429 3.395 -1.666 0.471 2.604 0.000 1.280 2.672N

et
Sc

or
e

IA 50 2.274 2.605 -2.542 -0.746 0.977 -1.280 0.000 1.489
IA 0 1.270 1.690 -3.735 -2.058 -0.652 -2.672 -1.489 0.000

rand pGPT 2.010 2.049 0.319 1.377 2.035 0.721 1.438 2.119
rand GPT 1.825 1.878 0.412 1.238 1.895 0.636 1.298 1.876
IB 100 5.158 4.617 2.215 3.627 5.039 3.160 3.716 4.576
IB 50 4.379 4.189 1.348 2.872 4.309 2.301 3.085 4.101
IB 0 3.801 3.989 0.723 2.259 3.600 1.479 2.669 3.856
IA 100 4.150 4.031 1.494 2.772 4.082 2.179 3.026 4.005O

w
n

G
oa

ls

IA 50 3.712 3.902 1.174 2.339 3.647 1.746 2.709 3.785
IA 0 3.389 3.567 0.841 2.043 3.204 1.333 2.295 3.480

rand pGPT 2.010 1.825 5.158 4.379 3.801 4.150 3.712 3.389
rand GPT 2.049 1.878 4.617 4.189 3.989 4.031 3.902 3.567
IB 100 0.319 0.412 2.215 1.348 0.723 1.494 1.174 0.841
IB 50 1.377 1.238 3.627 2.872 2.259 2.772 2.339 2.043
IB 0 2.035 1.895 5.039 4.309 3.600 4.082 3.647 3.204
IA 100 0.721 0.636 3.160 2.301 1.479 2.179 1.746 1.333

O
pp
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tG
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IA 50 1.438 1.298 3.716 3.085 2.669 3.026 2.709 2.295
IA 0 2.119 1.876 4.576 4.101 3.856 4.005 3.785 3.480

Table 5: A breakdown of the results for the adversarial setting. The best net score (own goals minus opponent goals) achieved against each
opponent type is bolded.
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