ach
lass
the
the
nge
sted

blic
int
nu-

eri-

tis
1 of
! a
ees

€88
[ds.
5 to

ITEM 15: MINIMIZE MUTABILITY

Item 15: Minimize mutability

An immutable class is simply a class whose instances cannot be modified. All of
the information contained in each instance is provided when it is created and is
fixed for the lifetime of the object. The Java platform libraries contain many
immutable classes, including String, the boxed primitive classes, and BigInte-
ger and BigDecimal. There are many good reasons for this: Immutable classes
are easier to design, implement, and use than mutable classes. They are less prone
to error and are more secure.
To make a class immutable, follow these five rules:

1. Don’t provide any methods that modify the object’s state (known as muta-
tors).

2. Ensure that the class can’t be extended. This prevents careless or malicious
subclasses from compromising the immutable behavior of the class by behav-
ing as if the object’s state has changed. Preventing subclassing is generally ac-
complished by making the class final, but there is an alternative that we’ll
discuss later.

3. Make all fields final. This clearly expresses your intent in a manner that is en-
forced by the system. Also, it is necessary to ensure correct behavior if a refer-
ence to a newly created instance is passed from one thread to another without
synchronization, as spelled out in the memory model [JLS, 17.5; Goetz06, 16].

4. Make all fields private. This prevents clients from obtaining access to muta-
ble objects referred to by fields and modifying these objects directly. While it
is technically permissible for immutable classes to have public final fields con-
taining primitive values or references to immutable objects, it is not recom-
mended because it precludes changing the internal representation in a later
release (Item 13).

5. Ensure exclusive access to any mutable components. If your class has any
fields that refer to mutable objects, ensure that clients of the class cannot obtain
references to these objects. Never initialize such a field to a client-provided ob-
ject reference or return the object reference from an accessor. Make defensive
copies (Item 39) in constructors, accessors, and readObject methods (Item
76).

73



