
final (Java)
From Wikipedia, the free encyclopedia

In the Java programming language, the final keyword is used in several different contexts to define an entity
that can only be assigned once.

Once a final variable has been assigned, it always contains the same value. If a final variable holds a
reference to an object, then the state of the object may be changed by operations on the object, but the variable
will always refer to the same object (this property of final is called non-transitivity[1]). This applies also to
arrays, because arrays are objects; if a final variable holds a reference to an array, then the components of the
array may be changed by operations on the array, but the variable will always refer to the same array.[2]

Contents

1 Final classes

2 Final methods
3 Final variables

3.1 Final and inner classes

3.2 Blank final

4 C/C++ analog of final variables

5 References

Final classes
A final class cannot be subclassed. Doing this can confer security and efficiency benefits, so many of the Java
standard library classes are final, such as java.lang.System (https://docs.oracle.com/javase/8/docs/ap
i/java/lang/System.html) and java.lang.String (https://docs.oracle.com/javase/8/docs/api/java
/lang/String.html).

Example:

public final class MyFinalClass {...}

public class ThisIsWrong extends MyFinalClass {...} // forbidden

Restricted subclasses are often referred to as "soft final" classes.[3]

https://en.wikipedia.org/wiki/Java_(programming_language)
https://en.wikipedia.org/wiki/Keyword_(computing)
https://en.wikipedia.org/wiki/Final_(Java)#cite_note-1
https://en.wikipedia.org/wiki/Final_(Java)#cite_note-2
https://en.wikipedia.org/wiki/Final_(Java)#Final_classes
https://en.wikipedia.org/wiki/Final_(Java)#Final_methods
https://en.wikipedia.org/wiki/Final_(Java)#Final_and_inner_classes
https://en.wikipedia.org/wiki/Final_(Java)#Blank_final
https://en.wikipedia.org/wiki/Final_(Java)#Final_variables
https://en.wikipedia.org/wiki/Final_(Java)#C.2FC.2B.2B_analog_of_final_variables
https://en.wikipedia.org/wiki/Final_(Java)#References
https://en.wikipedia.org/wiki/Class_(computer_science)
https://docs.oracle.com/javase/8/docs/api/java/lang/System.html
https://docs.oracle.com/javase/8/docs/api/java/lang/String.html
https://en.wikipedia.org/wiki/Final_(Java)#cite_note-3

Final methods

A final method cannot be overridden or hidden by subclasses.[4] This is used to prevent unexpected behavior
from a subclass altering a method that may be crucial to the function or consistency of the class.[5]

Example:

public class Base
{
 public void m1() {...}
 public final void m2() {...}

 public static void m3() {...}
 public static final void m4() {...}
}

public class Derived extends Base
{
 public void m1() {...} // OK, overriding Base#m1()
 public void m2() {...} // forbidden

 public static void m3() {...} // OK, hiding Base#m3()
 public static void m4() {...} // forbidden
}

A common misconception is that declaring a method as final improves efficiency by allowing the compiler to
directly insert the method wherever it is called (see inline expansion). Because the method is loaded at runtime,
compilers are unable to do this. Only the runtime environment and JIT compiler know exactly which classes
have been loaded, and so only they are able to make decisions about when to inline, whether or not the method
is final.[6]

Machine code compilers which generate directly executable, platform-specific machine code, are an exception.
When using static linking, the compiler can safely assume that methods and variables computable at compile-
time may be inlined.

Final variables
A final variable can only be initialized once, either via an initializer or an assignment statement. It does not
need to be initialized at the point of declaration: this is called a "blank final" variable. A blank final instance
variable of a class must be definitely assigned in every constructor of the class in which it is declared; similarly,
a blank final static variable must be definitely assigned in a static initializer of the class in which it is declared;
otherwise, a compile-time error occurs in both cases.[7] (Note: If the variable is a reference, this means that the
variable cannot be re-bound to reference another object. But the object that it references is still mutable, if it
was originally mutable.)

Unlike the value of a constant, the value of a final variable is not necessarily known at compile time. It is
considered good practice to represent final constants in all uppercase, using underscore to separate words.[8]

Example:

https://en.wikipedia.org/wiki/Method_(computer_science)
https://en.wikipedia.org/wiki/Method_overriding
https://en.wikipedia.org/wiki/Final_(Java)#cite_note-4
https://en.wikipedia.org/wiki/Final_(Java)#cite_note-5
https://en.wikipedia.org/wiki/Inline_expansion
https://en.wikipedia.org/wiki/Run_time_(program_lifecycle_phase)
https://en.wikipedia.org/wiki/Just-in-time_compilation
https://en.wikipedia.org/wiki/Final_(Java)#cite_note-6
https://en.wikipedia.org/wiki/Machine_code
https://en.wikipedia.org/wiki/Static_linking
https://en.wikipedia.org/wiki/Compile-time
https://en.wikipedia.org/wiki/Variable_(programming)
https://en.wikipedia.org/wiki/Final_(Java)#cite_note-7
https://en.wikipedia.org/wiki/Mutable_object
https://en.wikipedia.org/wiki/Constant_(computer_science)
https://en.wikipedia.org/wiki/Final_(Java)#cite_note-8

public class Sphere {

 // pi is a universal constant, about as constant as anything can be.
 public static final double PI = 3.141592653589793;

 public final double radius;
 public final double xPos;
 public final double yPos;
 public final double zPos;

 Sphere(double x, double y, double z, double r) {
 radius = r;
 xPos = x;
 yPos = y;
 zPos = z;
 }

 [...]
}

Any attempt to reassign radius, xPos, yPos, or zPos will result in a compile error. In fact, even if the
constructor doesn't set a final variable, attempting to set it outside the constructor will result in a compilation
error.

To illustrate that finality doesn't guarantee immutability: suppose we replace the three position variables with a
single one:

 public final Position pos;

where pos is an object with three properties pos.x, pos.y and pos.z. Then pos cannot be assigned to, but the
three properties can, unless they are final themselves.

Like full immutability, the use of final variables has great advantages, especially in optimization. For instance,
Sphere will probably have a function returning its volume; knowing that its radius is constant allows us to
memoize the computed volume. If we have relatively few Spheres and we need their volumes very often, the
performance gain might be substantial. Making the radius of a Sphere final informs developers and compilers
that this sort of optimization is possible in all code that uses Spheres.

Though it appears to violate the final principle, the following is a legal statement:

for (final SomeObject obj : someList) {
 // do something with obj
}

Since the obj variable goes out of scope with each iteration of the loop, it is actually redeclared each iteration,
allowing the same token (i.e. obj) to be used to represent multiple variables.[9]

Final and inner classes

When an anonymous inner class is defined within the body of a method, all variables declared final in the
scope of that method are accessible from within the inner class. For scalar values, once it has been assigned, the
value of the final variable cannot change. For object values, the reference cannot change. This allows the Java

https://en.wikipedia.org/wiki/Immutability
https://en.wikipedia.org/wiki/Memoization
https://en.wikipedia.org/wiki/Final_(Java)#cite_note-9
https://en.wikipedia.org/wiki/Inner_class

