/* Stockfish, a UCI chess playing engine derived from Glaurung 2.1 Copyright (C) 2004-2008 Tord Romstad (Glaurung author) Copyright (C) 2008-2015 Marco Costalba, Joona Kiiski, Tord Romstad Copyright (C) 2015-2019 Marco Costalba, Joona Kiiski, Gary Linscott, Tord Romstad Stockfish is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. Stockfish is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ #include #include #include "bitboard.h" #include "misc.h" uint8_t PopCnt16[1 << 16]; uint8_t SquareDistance[SQUARE_NB][SQUARE_NB]; Bitboard SquareBB[SQUARE_NB]; Bitboard LineBB[SQUARE_NB][SQUARE_NB]; Bitboard PseudoAttacks[PIECE_TYPE_NB][SQUARE_NB]; Bitboard PawnAttacks[COLOR_NB][SQUARE_NB]; Magic RookMagics[SQUARE_NB]; Magic BishopMagics[SQUARE_NB]; namespace { Bitboard RookTable[0x19000]; // To store rook attacks Bitboard BishopTable[0x1480]; // To store bishop attacks void init_magics(Bitboard table[], Magic magics[], Direction directions[]); } /// Bitboards::pretty() returns an ASCII representation of a bitboard suitable /// to be printed to standard output. Useful for debugging. const std::string Bitboards::pretty(Bitboard b) { std::string s = "+---+---+---+---+---+---+---+---+\n"; for (Rank r = RANK_8; r >= RANK_1; --r) { for (File f = FILE_A; f <= FILE_H; ++f) s += b & make_square(f, r) ? "| X " : "| "; s += "|\n+---+---+---+---+---+---+---+---+\n"; } return s; } /// Bitboards::init() initializes various bitboard tables. It is called at /// startup and relies on global objects to be already zero-initialized. void Bitboards::init() { for (unsigned i = 0; i < (1 << 16); ++i) PopCnt16[i] = std::bitset<16>(i).count(); for (Square s = SQ_A1; s <= SQ_H8; ++s) SquareBB[s] = (1ULL << s); for (Square s1 = SQ_A1; s1 <= SQ_H8; ++s1) for (Square s2 = SQ_A1; s2 <= SQ_H8; ++s2) SquareDistance[s1][s2] = std::max(distance(s1, s2), distance(s1, s2)); int steps[][5] = { {}, { 7, 9 }, { 6, 10, 15, 17 }, {}, {}, {}, { 1, 7, 8, 9 } }; for (Color c = WHITE; c <= BLACK; ++c) for (PieceType pt : { PAWN, KNIGHT, KING }) for (Square s = SQ_A1; s <= SQ_H8; ++s) for (int i = 0; steps[pt][i]; ++i) { Square to = s + Direction(c == WHITE ? steps[pt][i] : -steps[pt][i]); if (is_ok(to) && distance(s, to) < 3) { if (pt == PAWN) PawnAttacks[c][s] |= to; else PseudoAttacks[pt][s] |= to; } } Direction RookDirections[] = { NORTH, EAST, SOUTH, WEST }; Direction BishopDirections[] = { NORTH_EAST, SOUTH_EAST, SOUTH_WEST, NORTH_WEST }; init_magics(RookTable, RookMagics, RookDirections); init_magics(BishopTable, BishopMagics, BishopDirections); for (Square s1 = SQ_A1; s1 <= SQ_H8; ++s1) { PseudoAttacks[QUEEN][s1] = PseudoAttacks[BISHOP][s1] = attacks_bb(s1, 0); PseudoAttacks[QUEEN][s1] |= PseudoAttacks[ ROOK][s1] = attacks_bb< ROOK>(s1, 0); for (PieceType pt : { BISHOP, ROOK }) for (Square s2 = SQ_A1; s2 <= SQ_H8; ++s2) if (PseudoAttacks[pt][s1] & s2) LineBB[s1][s2] = (attacks_bb(pt, s1, 0) & attacks_bb(pt, s2, 0)) | s1 | s2; } } namespace { Bitboard sliding_attack(Direction directions[], Square sq, Bitboard occupied) { Bitboard attack = 0; for (int i = 0; i < 4; ++i) for (Square s = sq + directions[i]; is_ok(s) && distance(s, s - directions[i]) == 1; s += directions[i]) { attack |= s; if (occupied & s) break; } return attack; } // init_magics() computes all rook and bishop attacks at startup. Magic // bitboards are used to look up attacks of sliding pieces. As a reference see // www.chessprogramming.org/Magic_Bitboards. In particular, here we use the so // called "fancy" approach. void init_magics(Bitboard table[], Magic magics[], Direction directions[]) { // Optimal PRNG seeds to pick the correct magics in the shortest time int seeds[][RANK_NB] = { { 8977, 44560, 54343, 38998, 5731, 95205, 104912, 17020 }, { 728, 10316, 55013, 32803, 12281, 15100, 16645, 255 } }; Bitboard occupancy[4096], reference[4096], edges, b; int epoch[4096] = {}, cnt = 0, size = 0; for (Square s = SQ_A1; s <= SQ_H8; ++s) { // Board edges are not considered in the relevant occupancies edges = ((Rank1BB | Rank8BB) & ~rank_bb(s)) | ((FileABB | FileHBB) & ~file_bb(s)); // Given a square 's', the mask is the bitboard of sliding attacks from // 's' computed on an empty board. The index must be big enough to contain // all the attacks for each possible subset of the mask and so is 2 power // the number of 1s of the mask. Hence we deduce the size of the shift to // apply to the 64 or 32 bits word to get the index. Magic& m = magics[s]; m.mask = sliding_attack(directions, s, 0) & ~edges; m.shift = (Is64Bit ? 64 : 32) - popcount(m.mask); // Set the offset for the attacks table of the square. We have individual // table sizes for each square with "Fancy Magic Bitboards". m.attacks = s == SQ_A1 ? table : magics[s - 1].attacks + size; // Use Carry-Rippler trick to enumerate all subsets of masks[s] and // store the corresponding sliding attack bitboard in reference[]. b = size = 0; do { occupancy[size] = b; reference[size] = sliding_attack(directions, s, b); if (HasPext) m.attacks[pext(b, m.mask)] = reference[size]; size++; b = (b - m.mask) & m.mask; } while (b); if (HasPext) continue; PRNG rng(seeds[Is64Bit][rank_of(s)]); // Find a magic for square 's' picking up an (almost) random number // until we find the one that passes the verification test. for (int i = 0; i < size; ) { for (m.magic = 0; popcount((m.magic * m.mask) >> 56) < 6; ) m.magic = rng.sparse_rand(); // A good magic must map every possible occupancy to an index that // looks up the correct sliding attack in the attacks[s] database. // Note that we build up the database for square 's' as a side // effect of verifying the magic. Keep track of the attempt count // and save it in epoch[], little speed-up trick to avoid resetting // m.attacks[] after every failed attempt. for (++cnt, i = 0; i < size; ++i) { unsigned idx = m.index(occupancy[i]); if (epoch[idx] < cnt) { epoch[idx] = cnt; m.attacks[idx] = reference[i]; } else if (m.attacks[idx] != reference[i]) break; } } } } }